数系的扩充和复数的概念教案
高中数学选修1,2《数系的扩充和复数的概念》教案
高中数学选修1,2《数系的扩充和复数的概念》教案高中数学选修1-2《数系的扩充和复数的概念》教案【一】教学准备教学目标知识与技能1、了解数系扩充的过程及引入复数的需要2、掌握复数的有关概念和代数符号形式、复数的分类方法及复数相等的充要条件过程与方法1、通过数系扩充的介绍,让学生体会数系扩充的一般规律2、通过具体到抽象的过程,让学生形成复数的一般形式情感态度与价值观1、体会数系的扩充过程中蕴含的创新精神与实践精神,感受人类理性思维的作用2、体会类比、分类讨论、等价转化的数学思想方法教学重难点重点:引入复数的必要性与复数的相关概念、复数的分类,复数相等的充要条件难点:虚数单位i的引进和复数的概念教学过程(一)问题引入事实上在实数范围内x和y确实不存在?为什么会这样呢?假设x和y是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么呢?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数系的扩充和复数的引入》(二)回顾数系的扩充历程师:其实对于这种“数不够用”的情况,我们并不陌生。
大家记得吗?从小学到现在,我们一直在经历着数的不断扩充。
现在就让我们来回顾一下,看看我们以前是怎么解决“数不够用”的问题的。
(三)类比,引入新数,将实数集扩充1、类比数系的扩充规律,引导学生找出解决“实数不够用”这个问题的办法生:引入新数,使得平方为负数师:我们希望引入的数的平方为负数,但是负数有无穷多个,我们不肯能一下子引入那么多,只要引入平方为多少就行呢?2、历史重现:3、探究复数的一般形式:(四)新的数集——复数集1.复数的定义(略)2.复数的应用:复数在数学、力学、电学及其他学科中都有广泛的应用,复数与向量、平面解析几何、三角函数等都有密切的联系,是进一步学习数学的基础。
(五)复数的分类(六)复数相等的充要条件复数相等的充要条件可以把复数相等的问题转化为求方程组的解的问题,是一种转化的思想。
课后小结1、由于实际的需要,我们总结数的三次扩充过程的规律,运用类比的方法,我们引进了新的数i,并将实数集扩充到了复数集,认识到了复数的代数形式,并讨论了复数的分类及复数相等的充要条件,并且利用相等的条件把复数问题转化为方程组的解的问题2、那么,复数究竟是什么东西呢?能不能像实数一样在现实中找到它的影子呢?别急,我们的探索脚步并不会停止下去,这是我们下次将要探索的内容。
数系的扩充和复数的概念(教学设计)
§7.1.1 数系的扩充和复数的概念一、内容和内容解析内容:从实数系扩充到复数系的过程与方法,复数的概念.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第七章第1节的内容.本节内容是数系的扩充和复数的概念,基于之前所学的数系的发展历程,由一元二次方程的根的问题导入,将数学扩充到复数范围,并研究复数的概念,为复数的运算打好基础。
复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认知,也为进一步学习数学打下基础.通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.二、目标和目标解析目标:(1)了解引进虚数单位i的必要性,了解数集的扩充过程.(2)理解复数的概念、表示法及相关概念.(3)掌握复数的分类及复数相等的充要条件.目标解析:(1)能够通过方程的解,感受引入复数的必要性,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用.(2)学生能够从自然数系逐步扩充到实数系的过程中,归纳出数系扩充的一般“规则",体会扩充的合理性及人类理性思维在数系扩充中的作用.(3)学生能说明虚数i的由来,能够明晰复数代数表示式的基本结构,会对复数进行分类,会用Venn 图表示复数集、实数集、虚数集、纯虚数集之间的关系;知道两个复数相等的含义,能利用复数概念和复数相等的含义解决相关的简单问题.基于上述分析,本节课的教学重点定为:复数的分类及复数相等的充要条件.三、教学问题诊断分析1.教学问题一:因为现实生活中没有任何事物支持虚数,学生可能会怀疑引入复数的必要性,在教学中,如果单纯地讲解或介绍复数的概念会显得枯燥无味,学生不易接受.解决方案:适当介绍数的发展简史,增强学生学习的生动性.2.教学问题二:由于知识储备和认知能力的限制,学生对数系扩充的一般规则并不熟悉,对虚数单位的引入,以及虚数单位和实数进行形式化运算的理解会出现一定困难.解决方案:通过解方程问题引导,借助已有的数系扩充的经验,特别是从有理数系扩充到实数系的经验,从特殊到一般,帮助学生梳理出数系扩充过程中体现的“规则”,进而在“规则”的引导下进行从实数系到复数系的扩充,感受引入复数的必要性和合理性.3.教学问题三:学生以前学习过的数都是单纯的一个数,而复数的代数形式是两项和的形式,学生比较陌生,因此理解上会存在一定困难.解决方案:引导学生按照“规则”自主探究出复数集中可能存在的各种数,并归纳总结出复数的一般表示方法,经历复数形式化的过程.基于上述情况,本节课的教学难点定为:理解复数的概念、表示法及相关概念.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生类比得到复数的概念,应该为学生创造积极探究的平台,可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视复数概念的理解和表示,让学生体会数系扩充的基本过程.五、教学过程与设计纯虚数.[课堂练习2]已知M={2,m2-2m +(m2+m-2)i},N={-1,2,4i},若M∪N=N,求实数m的值.课堂小结升华认知[问题10]通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]z=a2-(2-b)i的实部和虚部分别是2和3,则实数a,b的值分别是()A.2,1B.2,5C.±2,5D.±2,12.下列复数中,满足方程x2+2=0的是()A.±1B.±iC.±2iD.±2i2 021=________.4.设i为虚数单位,若关于x的方程x2-(2+i)x+1+m i=0(m∈R)有一实根为n,则m=________.教师14:提出问题10.学生14:学生14:学生课后进行思考,并完成课后练习.师生共同回顾总结.引领学生感悟数学认知的过程,体会数学核心素养.课后练习是对定理巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。
数系的扩充和复数的概念教案
数系的扩充和复数的概念教案第一章:数系的扩充1.1 有理数和无理数学习目标:1. 理解有理数和无理数的定义及其性质。
2. 学会有理数和无理数的运算方法。
教学内容:1. 有理数的定义:整数和分数的统称,包括正整数、负整数、正分数、负分数。
2. 无理数的定义:不能表示为两个整数比的实数,如π和√2。
3. 有理数和无理数的性质:有理数和无理数都是实数的一部分,有理数可以表示为分数,无理数不能表示为分数。
4. 有理数和无理数的运算方法:加、减、乘、除和乘方。
教学活动:1. 引入有理数和无理数的定义,让学生通过实例理解有理数和无理数的概念。
2. 通过练习题,让学生熟悉有理数和无理数的性质。
3. 讲解有理数和无理数的运算方法,并通过练习题巩固。
1.2 实数和虚数学习目标:1. 理解实数和虚数的定义及其性质。
2. 学会实数和虚数的运算方法。
教学内容:1. 实数的定义:包括有理数和无理数。
2. 虚数的定义:形如a+bi的数,其中a和b是实数,i是虚数单位,满足i²=-1。
3. 实数和虚数的性质:实数和虚数统称为复数,复数可以表示为a+bi的形式。
4. 实数和虚数的运算方法:加、减、乘、除和乘方。
教学活动:1. 引入实数和虚数的定义,让学生通过实例理解实数和虚数的概念。
2. 通过练习题,让学生熟悉实数和虚数的性质。
3. 讲解实数和虚数的运算方法,并通过练习题巩固。
1.3 复数的表示学习目标:1. 理解复数的表示方法及其性质。
2. 学会复数的运算方法。
教学内容:1. 复数的定义:实数和虚数的统称,形如a+bi的形式,其中a和b是实数,i 是虚数单位,满足i²=-1。
2. 复数的性质:复数可以表示为a+bi的形式,实部a和虚部b可以相加、相减、相乘、相除和相乘方。
3. 复数的运算方法:加、减、乘、除和乘方。
教学活动:1. 引入复数的定义,让学生通过实例理解复数的概念。
2. 通过练习题,让学生熟悉复数的性质。
数系的扩充与复数的概念》教案
数系的扩充与复数的概念》教案教案:数系的扩充与复数的概念一、教学目标:1.理解数系的扩充是为了解决方程$x^2=a$(a<0)而引入复数的概念;2.掌握复数的定义与基本运算;3.了解复数在平面直角坐标系中的表示方式;4.掌握解一元二次方程及其应用。
二、教学重难点:1.复数的定义与基本运算;2.复数在平面直角坐标系中的表示;3.解一元二次方程及其应用。
三、教学过程:Step 1: 引入教师在黑板上写下方程$x^2=-1$,并询问学生这个方程有没有实数解。
引导学生思考并让他们发表自己的观点。
Step 2: 数系的扩充1.教师讲解当a<0时,方程$x^2=a$没有实数解的情况。
为了解决这个问题,数学家们引入了复数的概念,即数系从实数扩充为复数。
2.教师简要介绍复数的历史背景和意义,以增加学生对复数概念的兴趣。
Step 3: 复数的定义与表示1. 教师引导学生理解复数的定义:复数表示为 a + bi,其中 a 和b 都是实数,i 是虚数单位,满足 $i^2 = -1$。
2. 通过例子引导学生掌握复数的表示方式,如 2 + 3i、-5i、$\sqrt{2} + \sqrt{3}i$。
Step 4: 复数的基本运算1.教师简要介绍复数的基本运算法则:加法、减法、乘法和除法。
2.通过例子分别演示复数的加减乘除运算,并指导学生进行练习。
Step 5: 复数的图示表示1. 教师引导学生理解复数在平面直角坐标系中的表示方法。
将实部和虚部分别看作是复平面上的横坐标和纵坐标,复数 a + bi 对应复平面上的一个点。
2.通过例子和练习让学生熟悉复数在复平面上的图示表示。
Step 6: 一元二次方程的解及其应用1. 教师复习一下一元二次方程的一般形式:$ax^2 + bx + c = 0$,其中 a、b 和 c 都是实数,且 $a \neq 0$。
2.教师讲解如何用复数解一元二次方程,通过例题引导学生理解。
四、课堂练习与讨论五、作业布置1.练习册上的相关习题;2.解一些一元二次方程。
数系的扩充和复数的概念-教学设计
《数系的扩充和复数的概念》教学设计一、教学内容从实数系扩充到复数系的过程与方法,复数的概念.二、教材分析本节课选自人民教育出版社《普通高中教科书数学必修第二册(A版)》第七章第一节第一课时《数系的扩充和复数的概念》.复数的引入是数系的又一次扩充,也是中学阶段数系的最后一次扩充,通过复数的学习,可以使学生对数的概念有一个更加完整的认识.复数与平面向量、平面解析几何、三角函数等都有密切的联系,也是进一步学习数学的基础. 复数在力学、电学及其他学科中都有广泛的应用.在数学中,数系的扩充必须遵循有关的“规则”,即扩充后的数系中规定的加法运算、乘法运算,与原数系中的加法运算、乘法运算协调一致,并且加法和乘法都满足交换律和结合律,乘法对加法满足分配律. 从实数系向复数系扩充,同样要符合这样的规则.复数概念的引入,从实系数一元二次方程当判别式小于0时没有实数根出发,回顾从自然数系逐步扩充到实数系、特别是有理数系扩充到实数系的过程,发现数系扩充中体现出的“规则”;进而在“规则”的引导下,考虑为使方程有解,引入新数i,从而可以像实数一样进行加法、乘法运算并保持运算律的角度,将实数集扩充到复数集.这一过程,通过数系扩充“规则”的归纳,提升学生的数学抽象素养;通过实数系向复数系的扩充,让学生体会类比的数学思想,提升学生的逻辑推理素养,并感受人类理性思维在数系扩充中的作用.复数的概念是整个复数内容的基础.复数的有关概念都是围绕复数的代数表示形式展开的,虚数单位、实部、虚部的命名,复数相等的含义,以及虚数、纯虚数等概念的提出,都是在促进对复数实质的理解,即复数a+bi实质上是有序实数对(a,b). 通过对复数实质的揭示,为后续复数的几何意义、复数的四则运算以及复数的三角表示的学习作准备. 因此,复数的概念,对本章具有奠基性的作用.三、教学目标:1、知识与技能目标:(1)了解引入复数的必要性;了解数系扩充的一般“规则”(2)理解复数的代数表示式,理解复数的有关概念,理解复数相等的意义.2、过程与方法目标:(1)通过数系的扩充历史,了解数系的扩充过程和引入复数的必要;(2)通过对新概念的学习提高学生的认知能力,在复数相等充要条件的研究过程中提高学生类比思考与转化的能力。
高中数学《数系的扩充和复数的概念》教案
高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生理解实数和虚数的概念,了解复数的基本形式。
2. 让学生掌握复数的运算规则,包括加、减、乘、除以及共轭复数的概念。
3. 培养学生运用复数解决实际问题的能力。
二、教学内容1. 实数和虚数的概念:介绍实数和虚数的定义,举例说明实数和虚数的区别。
2. 复数的基本形式:介绍复数的一般形式,解释实部和虚部的意义。
3. 复数的运算规则:讲解复数的加、减、乘、除运算方法,并通过例题演示。
4. 共轭复数的概念:介绍共轭复数的定义,讲解共轭复数的性质和运用。
三、教学重点与难点1. 教学重点:实数和虚数的概念,复数的基本形式,复数的运算规则,共轭复数的概念。
2. 教学难点:复数的运算规则,共轭复数的性质和运用。
四、教学方法1. 采用讲授法,讲解实数、虚数和复数的概念,复数的运算规则,共轭复数的性质和运用。
2. 利用例题演示,让学生直观地理解复数的运算方法。
3. 设计练习题,让学生巩固所学知识。
五、教学步骤1. 引入实数和虚数的概念,举例说明实数和虚数的区别。
2. 讲解复数的一般形式,解释实部和虚部的意义。
3. 讲解复数的加、减、乘、除运算方法,并通过例题演示。
4. 介绍共轭复数的定义,讲解共轭复数的性质和运用。
5. 设计练习题,让学生运用所学知识解决问题。
教案仅供参考,具体教学过程中请根据学生的实际情况进行调整。
六、教学评价1. 通过课堂讲解、例题分析和练习题,评价学生对实数、虚数和复数的概念的理解程度。
2. 通过复数运算的练习题,评价学生对复数运算规则的掌握情况。
3. 通过共轭复数相关练习题,评价学生对共轭复数性质和运用的理解程度。
七、教学拓展1. 介绍复数在工程、物理等领域的应用,激发学生学习复数的兴趣。
2. 引导学生思考复数运算的规律,培养学生的逻辑思维能力。
八、教学资源1. PPT课件:实数、虚数和复数的概念,复数的运算规则,共轭复数的性质和运用。
数系的扩充与复数的概念教案
数系的扩充与复数的概念【教学目标】(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念;(2)理解复数的基本概念以及复数相等的充要条件;(3)了解复数的代数表示方法.【教学重难点】重点:引进虚数单位i的必要性、对i的规定、复数的有关概念.难点:实数系扩充到复数系的过程的理解,复数概念的理解.【教学过程】一、创设情景、提出问题问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢?问题3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?二、学生活动1.复数的概念:(1)虚数单位:数__叫做虚数单位,具有下面的性质:①_________②_______________________________(2)复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示.(3)复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数.(4)对于复数a+bi(a,b∈R),当且仅当_____时,它是实数;当且仅当_____时,它是实数0;当_______时,叫做虚数;当_______时,叫做纯虚数;2.学生分组讨论(1)复数集C和实数集R之间有什么关系?(2)如何对复数a+bi(a,b∈R)进行分类?(3)复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗?3.练习:(1)下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?2+ 2i ,, 2i/7 , 0,5 i +8, 3-9 i(2)判断下列命题是否正确:若a、b为实数,则Z=a+bi为虚数;若b为实数,则Z=bi必为纯虚数;若a为实数,则Z= a一定不是虚数.三、归纳总结、提升拓展例1实数m分别取什么值时,复数z=m+1+(m-1)i是(1)实数?(2)虚数?(3)纯虚数?解:归纳总结:确定复数z=a+bi是实数、虚数、纯虚数的条件是:练习:实数m分别取什么值时,复数z=m2+m-2+(m2-1)i是(1)实数?(2)虚数?(3)纯虚数?两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是a+bi=c+di _______________________(a、b、c、d为实数)由此容易出:a+bi=0 _______________________.例2 已知x +2y +(2x+6)i=3x-2 ,其中,x,y为实数,求x与y.四、反馈训练、巩固落实1.若x,y为实数,且2x -2y+(x+ y)i=x-2 I,求x与y.2.若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值.。
高中数学《数系的扩充和复数的概念》教案
高中数学《数系的扩充和复数的概念》教案章节一:实数与数轴教学目标:1. 理解实数与数轴的关系。
2. 学会在数轴上表示实数。
3. 掌握实数的性质。
教学重点:实数与数轴的关系,实数的性质。
教学难点:实数的性质。
教学准备:数轴教具。
教学过程:1. 引入实数与数轴的概念。
2. 讲解实数与数轴的关系,引导学生通过数轴理解实数。
3. 示例讲解如何在数轴上表示实数。
4. 引导学生通过数轴理解实数的性质。
5. 练习题,巩固所学内容。
章节二:复数的概念教学目标:1. 理解复数的概念。
2. 学会表示复数。
3. 掌握复数的性质。
教学重点:复数的概念,复数的性质。
教学难点:复数的性质。
教学准备:复数教具。
教学过程:1. 引入复数的概念。
2. 讲解复数的表示方法。
3. 示例讲解复数的性质。
4. 引导学生通过复数教具理解复数的概念和性质。
5. 练习题,巩固所学内容。
章节三:复数的代数表示法教学目标:1. 理解复数的代数表示法。
2. 学会用代数表示法表示复数。
3. 掌握代数表示法的性质。
教学重点:复数的代数表示法,代数表示法的性质。
教学难点:代数表示法的性质。
教学准备:复数教具。
教学过程:1. 引入复数的代数表示法。
2. 讲解复数的代数表示法,示例讲解如何用代数表示法表示复数。
3. 引导学生通过复数教具理解代数表示法的性质。
4. 练习题,巩固所学内容。
章节四:复数的几何表示法教学目标:1. 理解复数的几何表示法。
2. 学会用几何表示法表示复数。
3. 掌握几何表示法的性质。
教学重点:复数的几何表示法,几何表示法的性质。
教学难点:几何表示法的性质。
教学准备:复数教具。
教学过程:1. 引入复数的几何表示法。
2. 讲解复数的几何表示法,示例讲解如何用几何表示法表示复数。
3. 引导学生通过复数教具理解几何表示法的性质。
4. 练习题,巩固所学内容。
章节五:复数的运算教学目标:1. 理解复数的运算规则。
2. 学会进行复数的运算。
3. 掌握复数的运算性质。
高中数学《数系的扩充和复数的概念》教案
高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生了解数系的扩充过程,理解实数和复数的概念。
2. 培养学生运用数系知识解决实际问题的能力。
3. 提高学生对数学美的感受,培养学生的创新意识。
二、教学内容1. 数系的扩充过程:有理数、实数、复数。
2. 实数和复数的概念及其性质。
3. 复数的几何意义。
三、教学重点与难点1. 教学重点:数系的扩充过程,实数和复数的概念及其性质。
2. 教学难点:复数的几何意义,复数方程的求解。
四、教学方法1. 采用问题驱动法,引导学生探究数系的扩充过程。
2. 运用实例讲解法,让学生理解实数和复数的概念。
3. 利用数形结合法,揭示复数的几何意义。
五、教学过程1. 导入新课:通过复习实数的概念,引出数系的扩充过程。
2. 讲解数系的扩充过程:有理数、实数、复数。
3. 讲解实数和复数的概念:实数的定义、性质;复数的定义、性质。
4. 讲解复数的几何意义:复平面、复数的几何表示。
5. 巩固练习:解决一些与实数和复数有关的实际问题。
6. 课堂小结:总结本节课的主要内容和知识点。
7. 布置作业:布置一些有关实数和复数的练习题,巩固所学知识。
六、教学拓展1. 介绍复数在工程、物理等领域的应用,如电路分析中的复数表示法。
2. 引导学生探究复数的运算规则,如复数的乘法、除法、乘方等。
七、案例分析1. 分析实际问题,如利用复数解决几何问题、信号处理问题等。
2. 引导学生运用复数知识解决实际问题,提高学生的应用能力。
八、课堂互动1. 组织学生进行小组讨论,探讨复数的几何意义。
2. 开展课堂提问,检查学生对实数和复数概念的理解。
3. 引导学生进行互动交流,分享学习心得和解决问题的方法。
九、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。
2. 作业完成情况:检查学生作业的完成质量,巩固所学知识。
3. 课后反馈:收集学生对课堂内容的反馈,了解学生的学习效果。
十、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的实际需求。
《数系的扩充与复数的概念》教学设计(范文大全)
《数系的扩充与复数的概念》教学设计(范文大全)第一篇:《数系的扩充与复数的概念》教学设计《数系的扩充和复数的概念》教学设计安阳市第三十八中学付娟本节为人教A版选修1-2,第二章第一节第一课时一、《课程标准》对本节课的学习要求:(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及与现实世界的联系。
(2)理解复数的基本概念以及复数相等的充要条件。
(3)了解复数的代数表示法及其几何意义。
(4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。
二、教材内容和学生情况分析:在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。
另一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。
三、教学目标:根据《课程标准》,依据教材内容和学生情况,确定本课时的教学目标为:1、通过回忆数系的扩充过程,观察所列举的复数能简述复数的定义,并能说出复数的实部与虚部。
2、通过小组讨论能将复数归类,并能用语言或图形表达复数的分类,会解决含有字母的复数的分类问题。
3、通过比较给出的两个复数能归纳出复数相等的充要条件,并能解决与例题相似的题目。
四、教学环节设计第二篇:3.1数系的扩充和复数的概念教学设计教案教学准备1. 教学目标(1)知识目标:理解复数产生的必然性、合理性;掌握复数的代数表示形式;掌握复数系下的数的分类. (2)过程与方法目标:从为了解决方程在实数系中无解的问题出发,设想引入一个新数i,使i是方程的虚数根.到将i添加到实数集中去,使新引入的数i和实数之间能象实数系那样进行加、乘运算;掌握类比的方法,转化的方法。
(3)情感与能力目标:通过介绍数系扩充的简要进程,使同学们感受人类理性思维对数学的发展所起的重要作用,体会数与现实世界的联系。
高中数学《数系的扩充和复数的概念》教案
高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生理解实数和复数的概念,掌握实数和复数的关系。
2. 让学生掌握复数的代数表示法,了解复数的几何表示。
3. 让学生学会运用复数的概念和性质解决实际问题。
二、教学内容1. 实数和复数的概念2. 复数的代数表示法3. 复数的几何表示4. 复数的运算5. 复数的应用三、教学重点与难点1. 重点:实数和复数的概念,复数的代数表示法,复数的几何表示,复数的运算。
2. 难点:复数的几何表示,复数的运算。
四、教学方法采用问题驱动法、案例分析法、小组讨论法、讲授法等,引导学生主动探究,提高学生分析问题、解决问题的能力。
五、教学过程1. 实数和复数的概念(2)引入复数的概念,解释复数的概念。
(3)通过实例让学生理解实数和复数的关系。
2. 复数的代数表示法(1)介绍复数的代数表示法,让学生掌握复数的标准形式。
(2)讲解复数的实部和虚部的含义。
(3)通过实例让学生学会写出复数的标准形式。
3. 复数的几何表示(1)介绍复数的几何表示,让学生了解复平面的概念。
(2)讲解复数在复平面上的位置与实部和虚部的关系。
(3)通过实例让学生学会在复平面上表示复数。
4. 复数的运算(1)讲解复数的加减乘除运算规则。
(2)通过实例让学生掌握复数的运算方法。
5. 复数的应用(1)讲解复数在实际问题中的应用,如电路分析、信号处理等。
(2)通过实例让学生学会运用复数解决实际问题。
(3)引导学生思考复数的在其他领域中的应用。
六、课后作业2. 练习复数的代数表示法,写出给定复数的标准形式。
3. 学习复数的几何表示,画出给定复数在复平面上的位置。
4. 练习复数的运算,掌握加减乘除运算规则。
5. 思考复数在实际问题中的应用,举例说明。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生的作业完成情况,评估学生对知识点的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。
数系的扩充与复数的概念教案
3.1.1数系的扩充与复数的概念【教学目标】(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念(2)理解复数的基本概念以及复数相等的充要条件(3)了解复数的代数表示方法【教学重难点】重点:引进虚数单位i的必要性、对i的规定、复数的有关概念难点:实数系扩充到复数系的过程的理解,复数概念的理解【教学过程】一、创设情景、提出问题问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢?问题3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?二、学生活动1.复数的概念:⑴虚数单位:数__叫做虚数单位,具有下面的性质:①_________②______________________________________________⑵复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示.⑶复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数.(4)对于复数a+bi(a,b∈R),当且仅当_____时,它是实数;当且仅当_____时,它是实数0;当_______时, 叫做虚数;当_______时, 叫做纯虚数;2.学生分组讨论⑴复数集C和实数集R之间有什么关系?⑵如何对复数a+bi(a,b∈R)进行分类?⑶复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗?3.练习:(1).下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?2+ 2i , 0.618, 2i/7 , 0,5 i +8, 3-9 i(2)、判断下列命题是否正确:(1)若a、b为实数,则Z=a+bi为虚数(2)若b为实数,则Z=bi必为纯虚数(3)若a为实数,则Z= a一定不是虚数三、归纳总结、提升拓展例1 实数m分别取什么值时,复数z=m+1+(m-1)i是(1)实数?(2)虚数?(3)纯虚数?解:归纳总结:确定复数z=a+bi是实数、虚数、纯虚数的条件是:练习:实数m分别取什么值时,复数z=m2+m-2+(m2-1)i是(1)实数?(2)虚数?(3)纯虚数?两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是a+bi=c+di _______________________(a、b、c、d为实数)由此容易出:a+bi=0 _______________________例2已知x +2y +(2x+6)i=3x-2 ,其中,x,y为实数,求x与y.四、反馈训练、巩固落实1、若x,y为实数,且 2x -2y+(x+ y)i=x-2 i求x与y.2、若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值.。
数系的扩充和复数的概念教案
数系的扩充和复数的概念教案一、教学目标1. 了解数系的扩充,掌握实数集、有理数集、无理数集和复数集的概念;2. 掌握复数的定义和表示方法;3. 理解复数加法和乘法的几何意义;4. 能够计算复数的模、共轭和商。
二、教学重难点1. 数系的扩充,包括实数集、有理数集、无理数集和复数集的概念;2. 复数的定义和表示方法;3. 复数加法和乘法的几何意义。
三、教学内容1. 数系的扩充(1)实数集:包括有理数和无理数两部分,用符号“R”表示。
(2)有理数集:可以表示为两个整数之比(分母不为0),用符号“Q”表示。
(3)无理数集:不能表示为两个整数之比,用符号“Q'”表示。
(4)复数集:由实部和虚部构成,形如a+bi,其中a和b均为实数,i是虚单位,用符号“C”表示。
2. 复数的定义与表示方法(1)定义:由一个实部a和一个虚部b构成的有序数组(a,b)称为一个复数z,即z=a+bi。
其中a称为z的实部,b称为z的虚部。
(2)表示方法:用复平面上的点表示。
3. 复数加法和乘法的几何意义(1)复数加法:设z1=a1+b1i,z2=a2+b2i,则z1+z2=(a1+a2)+(b1+b2)i。
即把两个复数看作向量,在复平面上用平行四边形法则相加。
(2)复数乘法:设z1=a1+b1i,z2=a2+b2i,则z1×z2=(a1a2-b1b2)+(a1b2+a2b1)i。
即把两个复数看作向量,在复平面上用角度叠加原理相乘。
4. 计算方法(1)模:|a+bi|=√(a²+b²)。
(2)共轭:若z=a+bi,则其共轭为z*=a-bi。
(3)商:设z1=a+bi,z2=c+di,则它们的商为(z1/z2)=(ac+bd)/(c²+d²)+((bc-ad)/(c²+d²))i。
四、教学过程Step 1 引入新知识介绍实数集、有理数集和无理数集,并引入复数集的概念。
数系的扩充和复数的概念教学设计
7.1.1《数系的扩充和复数的概念》教学设计一、教学目标学习任务1.了解引进虚数单位i的必要性,了解数系的扩充过程.(重点)2.理解复数的概念、表示法及相关概念.(重点)3.掌握复数的分类及复数相等的充要条件.(重点、易混点);核心素养1.通过学习数系的扩充,培养逻辑推理的素养.2.借助复数的概念,提升数学抽象的素养.二、教学重难点1. 教学重点:从实数系扩充到复数系的过程与方法,复数的概念.2. 教学难点:复数概念引入的必要性,复数系扩充过程的数学基本思想,复数的代数表示.三、教学过程1.情境导入问题一对于一元二次方程ax2+bx+c=0,当△=b2-4ac<0时,方程根的情况呢?【预设答案】方程判别式小于0,无解(正答:没有实数根)因此,在研究代数方程的过程中,如果限于实数集,有些问题就无法解决问题二:那么,如何解决数学家在研究解方程问题时遇到的负实数开平方问题呢?能否引入新数,适当地扩充实数集,使这个方程在新数集中有解呢?如果引入了新数,则必然产生运算数系定义:我们把一个数集连同规定的运算以及满足的运算律叫做一个数系.【数学活动】回顾数的发展过程结论:数的发展与生产生活、随着社会的发展,数系在不断扩充。
【设计意图】通过回顾数的发展过程,使学生体会到现实生产生活对数学发展的推动作用,体会方程与数的发展的联系,激发学生对数系扩充的兴趣.2.探究交流数系的每一次扩充解决了原有数集中某种运算不能解决的问题.【设计意图】让学生类比从自然数集到实数集的扩充过程,自然地引导学生从解方程的角度出发探究数系的扩充,使“新数i”的添加变得水到渠成,积累研究数学问题的经验.强调数系扩充规则视频引入i视频播放中展示复数单位i,计算i2=1,平面直角坐标系的引入(涉及大单元,复数的几何意义)交流电(涉及学科融合,强调数学研究为其他学科发展铺路搭桥,数学的发展推动科学的进步!强调学好数学的重要性,激发学生兴趣。
数系的扩充和复数的概念教案
第3章数系的扩充与复数的引入§3.1.1数系的扩充和复数的概念教学目标:1. 知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i复数集的分类关系2. 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部)理解并掌握复数相等的有关概念分类,深刻领会哪里有需求哪里就有创造的矛盾与统一的辩证唯物主义思想.教学重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,在规定i的第二条性质时,原有的加、乘运算律仍然成立教具准备:多媒体、实物投影仪教学设想:生产和科学发展的需要而逐步扩充,在生活中当我们生活中需求什么时候时,就有相应的发明创造应运而生.同样在数的范围已不能满足解题的需求时数集便得到扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,对于初中阶段所学习的一元二次方程解的问题有了扩充,解决了为什么方程有实数根和没有实数根的真正疑惑的回答.教学过程:学生探究过程:数的概念是从实践中产生和发展起来的. 由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N以至于发展到现在的实数集.是不是数集就此得到满足了呢?像x2=-1这样的方程还是无实数解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i,叫做虚数单位.并由此产生的了复数,在规定了21i =-之后同学们可以试着求解方程 210x += (作为探测性创新)22210,1,()1,x x i x i +==-±=-∴=± .讲解新课:1.虚数单位i :(1)它的平方等于-1,即 21i =-;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.如一个正数有两个平方根,他们为互为相反数.同样-1的平方根也是可以推广的.2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i .3. i 运算的周期性:12324221,1,,=1 i i i i i i i i ==-=⋅=-=由();54562743842,1,,()1;i i i i i i i i i i i i i =⋅====-=⋅=-==知41n i i += , i 4n+2=-1, 43n i i +=-, 41n i =4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:(1).对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R)是实数a .(2).当b ≠0时,复数z =a +bi 叫做虚数;(此时不必考虑a 的情况)(3).当a =0且b ≠0时,z =bi 叫做纯虚数;(4).当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a ,b ,c ,d ∈R ,那么a+bi=c+di ⇔a=c ,b=d 复数相等的定义是求复数值,在复数集中解方程的重要依据一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小. 现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 两个虚数只有相等,没有不等关系,也无从求解.例1请说出复数 i i i i 53,31,213,32---+-+的实部和虚部,有没有纯虚数? 答:它们都是虚数,它们的实部分别是2,-3,0,-3;虚部分别是3,21,-31,-5;-31i 是纯虚数.例2 复数-2i +3.14的实部和虚部是什么?答:实部是3.14,虚部是-2.易错为:实部是-2,虚部是3.14!虚数单位i 的系数连同其符号就是虚部,必须要化成代数形式才可以.再如24534i i i +-就要先化成代数形式2453453475i i i i i +-=--=-+,再判断实部为-7和虚部为5. 例3(课本例1)实数m 取什么数值时,复数z =m +1+(m -1)i 是:(1)实数? (2)虚数? (3)纯虚数?[分析]因为m ∈R ,所以m +1,m -1都是实数,由复数z =a +bi 是实数、虚数和纯虚数的条件可以确定m 的值.解:(1)当m -1=0,即m =1时,复数z 是实数;(2)当m -1≠0,即m ≠1时,复数z 是虚数;(3)当m +1=0,且m -1≠0时,即m =-1时,复数z 是纯虚数.例4 已知m ∈R ,复数z =1)2(-+m m m +(m 2+2m -3)i ,当m 为何值时, (1) z ∈R; (2)z 是虚数;(3)z 是纯虚数;(4)z =21+4i . 解:(1)m 须满足⎩⎨⎧≠-=-+.11,0322m m m 解之得:m=-3. (2)m 须满足m 2+2m -3≠0且m -1≠0,解之得:m ≠1且m ≠-3.(3)m 须满足⎪⎩⎪⎨⎧≠-+=-+.032,01)2(2m m m m m 解之得:m=0或m=-2.(4)m 须满足⎪⎩⎪⎨⎧=-+=-+.432211)2(2m m m m m 解之得:m ∈∅例5 已知(2x -1)+i =y -(3-y )i ,其中x ,y ∈R ,求x 与y .解:根据复数相等的定义,得方程组⎩⎨⎧--==-)3(1,12y y x ,所以x =25,y =4巩固练习:1.设集合C ={复数},A={实数},B ={纯虚数},若全集S=C ,则下列结论正确的是( )A.A ∪B =CB. S C A =BC.A ∩S C B =∅D.B ∪S C B =C2.复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足( )可安排在例题中A.x =-21B.x =-2或-21 C.x ≠-2 D.x ≠1且x ≠-2 3.已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i },集合P ={-1,3}.M ∩P ={3},则实数m 的值为( )A.-1B.-1或4C.6D.6或-14.满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数是______.5.复数z 1=a +|b |i ,z 2=c +|d |i (a 、b 、c 、d ∈R),则z 1=z 2的充要条件是______.6.设复数z =log 2(m 2-3m -3)+i log 2(3-m )(m ∈R),如果z 是纯虚数,求m 的值.7.若方程x 2+(m +2i )x +(2+mi )=0至少有一个实数根,试求实数m 的值. 答案:1.D 2.D 3. 解析:由题设知3∈M ,∴m 2-3m -1+(m 2-5m -6)i =3 ∴⎩⎨⎧=--=--06531322m m m m ,∴⎩⎨⎧-==-==1614m m m m 或或∴m =-1,故选A. 4. 解析:由题意知⎩⎨⎧=+-=--,0169,03222y y x x ∴⎪⎩⎪⎨⎧=-==3113y x x 或 ∴点对有(3,31),(-1,31)共有2个.答案:2 5. 解析:z 1=z 2⇔⎩⎨⎧==⇔||||d b c a a =c 且b 2=d 2.答案:a =c 且b 2=d 26.解:由题意知⎩⎨⎧≠-=--,0)3(log ,0)33(log 222m m m ∴⎪⎩⎪⎨⎧>-≠-=--03131332m m m m∴⎩⎨⎧<≠=--320432m m m m 且∴⎩⎨⎧≠<-==2314m m m m 且或,∴m =-1.7. 解:方程化为(x 2+mx +2)+(2x +m )i =0.∴⎩⎨⎧=+=++02022m x mx x ,∴x =-2m ,∴,02242=+-m m ∴m 2=8,∴m =±22. 课后作业:课本第55页 习题3.1 1 , 2.教学反思:这节课我们学习了虚数单位i 及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件,复平面等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,数集的扩充让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展需求,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类学生在求解是实数还是虚数或者纯虚数时,对于虚部是一次式形式,学生掌握较好,但是在出现二次式时,除考虑实部为零的情况下还要考虑虚部不为零才可判断该复数是纯虚数.“瞻前顾后”的验证思想,是正确解决此类问题的关键.另外学生对求解结果中的“且”和“或”联接上,部分同学还有模糊认识,需要说明,肯定的结论联接时要用“或”而否定的联接则用“且”才能保证条件的同时满足.另外对纯虚数的求解过程可以令实部为0,解得结果去验证虚部不为0,最后结果即为此参数值.。
数系的扩充和复数的概念教案
第3章 数系的扩充与复数的引入§3.1.1数系的扩充和复数的概念【教学目标】1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的分类表;2.理解复数的有关概念以及符号表示;3.掌握复数的代数表示形式及其有关概念;4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.【教学重点】引进虚数单位i 的必要性、对i 的规定以及复数的有关概念.【教学难点】复数概念的理解.【教学过程】1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简明扼要的概括和总结) 自然数 整数 有理数 无理数 实数2.提出问题我们知道,对于实系数一元二次方程012=+x ,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?3.组织讨论,研究问题我们说,实系数一元二次方程012=+x 没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢?组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问题.即一个什么样的数,它的平方会等于-1.4.引入新数i ,并给出它的两条性质根据前面讨论结果,我们引入一个新数i ,i叫做虚数单位,并规定:(1)12-=i ;(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数i ,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是i ±).5.提出复数的概念根据虚数单位i 的第(2)条性质,可以与实数b 相乘,再与实数a 相加.由于满足乘法交换律及加法交换律,从而可以把结果写成bi a +这样,数的范围又扩充了,出现了形如 ),(R b a bi a ∈+的数,我们把它们叫做复数.全体复数所形成的集合叫做复数集,一般用字母C 表示,显然有:N*NZQRC .【巩固练习】下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?例1.实数m 分别取什么值时,复数z =m+1+(m-1)i 是(1)实数?(2)虚数?(3)纯虚数? 分析:因为m ∈R ,所以m+1,m-1都是实数,由复数z =a +bi 是实、虚数、纯虚数与零的条件可以确定实数m 的值..1,010131,0121011为纯虚数时,即)当(为虚数;时,即)当(为实数;时,,即)当解(z m m m z m m z m m -=⎩⎨⎧≠-=+≠≠-==-6.提出两个复数相等的定义,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是由此容易得出:6cos 6sin ,,0,2,7212ππi i i i --+)纯虚数)虚数;(是(为何值时,复数当且练习:已知复数21,)()1(2z m R m i m i m z ∈+-+=例2 已知i y y i x )3()12(--=+-,其中,x,y ∈R ,求x 与y .分析:因为x ,y ∈R ,所以由两个复数相等的定义,可列出关于x ,y 的方程组,解这个方程组,可求出x ,y 的值.4,25)3(112==⎩⎨⎧--==-y x y y x 解得解:由复数相等可知练习:.),(023)21(2的值求实数已知m R m i mi x i x ∈=--++【课堂游戏】【想一想】两个复数是否可以比较大小.【归纳总结】一、数系的扩充;二、复数有关的概念:1、复数的代数形式;2、复数的实部、虚部。
数系的扩充和复数的概念教案
§3.1.1 数系的扩充和复数的概念一、教学目标1.知识与技能了解引进复数的必要性;能清楚的表述复数的有关概念;能应用复数相等的充要条件解决有关问题。
2.过程与方法通过预习任务了解数系的扩充过程,能清楚的表述复数的有关概念;能应用复数相等的充要条件解决有关问题。
3. 情感、态度、价值观在数系扩充过程中,感受人类理性思维的作用以及数与现实世界的联系。
二、教学重点、难点(1)教学重点理解虚数单位i 的引进的必要性及复数的有关概念.(2)教学难点复数的有关概念及应用.三、教具准备多媒体课件,投影仪四、教学过程(一)教学目标呈现 (二)反馈问题的呈现与评价 (三) 合作探究 【知识链接】 前两个学段学习的数系的扩充:1.为什么引入复数?2.什么是虚数单位?有何规定?3.两个复数相等的条件是什么?R Q Z N为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负整,将数系扩充至整数集Z.为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数,将数系扩充至有理数集Q.用方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.有理数集与无理数集合并在一起,构成实数集R .人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为在实数范围内,没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗?【问题探究】探究一、复数的引入引导1:由于解方程的需要,人们引入了一个新数i ,并规定:(1)=2i 1- ;(2)实数可以与i 进行加法和乘法运算:实数a 与数i 相加记为:i a +;实数b 与数i 相乘记为:bi ;实数a 与实数b 和i 相乘的结果相加记为:bi a +;(3)实数与i 进行加法和乘法时,原有的加法、乘法运算律仍然成立。
数系的扩充与复数的概念参考教案
数系的扩充与复数的概念一、教学目标:1、知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i ;2、过程与方法:理解并掌握虚数单位与实数进行四则运算的规律;3、 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念。
二、教学重点,难点:复数的基本概念以与复数相等的充要条件。
三、教学方法:阅读理解,探析归纳,讲练结合四、教学过程(一)、问题情境1、情境:数的概念的发展:从正整数扩充到整数,从整数扩充到有理数,从有理数扩充到实数,数的概念是不断发展的,其发展的动力来自两个方面.①解决实际问题的需要.由于计数的需要产生了自然数;为了刻画具有相反意义的量的需要产生了负数;由于测量等需要产生了分数;为了解决度量正方形对角线长的问题产生了无理数(即无限不循环小数).②解方程的需要.为了使方程40x +=有解,就引进了负数,数系扩充到了整数集;为了使方程320x -=有解,就要引进分数,数系扩充到了有理数集;为了使方程22x =有解,就要引进无理数,数系扩充到了实数集. 引进无理数以后,我们已经能使方程2x a =(0)a >永远有解.但是,这并没有彻底解决问题,当0a <时,方程2x a =在实数范围内无解.为了使方程2x a =(0)a <有解,就必须把实数概念进一步扩大,这就必须引进新的数.(可以以分解因式:44x -为例)2、问题:实数集应怎样扩充呢?(二)、新课探析1、为了使方程2x a =(0)a <有解,使实数的开方运算总可以实施,实数集的扩充就从引入平方等于1-的“新数”开始.为此,我们引入一个新数i ,叫做虚数单位(imaginary unit ).并作如下规定:①21i =-;②实数可以与i 进行四则运算,进行四则运算时,原有的加法、乘法运算律仍然成立.在这种规定下,i 可以与实数b 相乘,再同实数a 相加得i b a ⋅+.由于满足乘法交换律和加法交换律,上述结果可以写成a bi + (,a b R ∈)的形式.2、复数概念与复数集C形如a bi +(,a b R ∈)的数叫做复数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1.1数系的扩充和复数的概念教案
李志文
【教学目标】
知识与技能:1.了解数系的扩充过程;2.理解复数的基本概念
过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法.
2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于
新数系中,在此基础上,理解复数的基本概念.
情感态度与价值观:1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系;
2、初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和
处理问题。
【重点难点】
重点:理解虚数单位i的引进的必要性及复数的有关概念.
难点:复数的有关概念及应用.
【学法指导】
1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义;
2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础.
没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗?
【问题探究】
探究一、复数的引入
引导1:由于解方程的需要,人们引入了一个新数i ,并规定:
(1)=2i 1- ;
(2)实数可以与i 进行加法和乘法运算:
实数a 与数i 相加记为:i a +;
实数b 与数i 相乘记为:bi ;
实数a 与实数b 和i 相乘的结果相加记为:bi a +;
(3)实数与i 进行加法和乘法时,原有的加法、乘法运算律仍然成立。
引导2:复数的有关概念:
(1)我们把形如bi a +()R b a ∈,的数叫做复数,其中i 叫做 虚数单位 ,
全体复数所组成的集合叫做复数集,常用大写..
字母 C 表示。
(2)复数的代数形式:
复数通常用小写字母z 表示,即bi a z +=()R b a ∈,,这一表示形
式叫做复数的代数形式,其中a 叫做复数z 的实部,b 叫做复数z 的虚部。
例1请说出复数i i 31,5,32--+的实部和虚部。
引导:考虑复数的有关概念.对于复数(),z a bi a b R =+∈,a 叫实部,b 叫虚部.
解:
变式再练:请说出复数)12(,231,
0,6,84-++-i i i 的实部和虚部。
点拨:当我们遇到使用原有知识解决不了的问题时,可以适当地引入一些新的规定,譬如这里我们引入的数i 及引入数i 后实数与i 进行加法和乘法时的运算律,但是切记引入的规定要合理,要有一定的依据基础.
;,虚部是的实部是虚部是的实部是;
,虚部是的实部是3
1031;0,553232----+i i .
120)12(5;2
3212314066300024884)1(--+-+-,虚部是的实部是)(,虚部是的实部是);(,虚部是的实部是)(;
,虚部是的实部是);(,虚部是的实部是解:i i i
探究二、复数与实数、虚数、纯虚数及0的关系
对于复数(),z a bi a b R =+∈:
当且仅当0=b 时,复数z 表示 实数
当0≠b 时,复数z 叫做 虚数
当0,0≠=b a 时,复数z 叫做 纯虚数
你能用图表的形式将复数、实数、纯虚数的关系形象的表示出来吗?
例2 指出下列各数中,哪些是实数,哪些是虚数,哪些是纯虚数? 72+,618.0,
i 7
2,0,i ,2i ,85+i ,i 293- 实数: 虚数: 纯虚数: 例3 实数m 分别取什么值时,复数()i m m z 11-++=是(1)实数?(2)虚数?(3)纯虚数? 引导:因为m R ∈,所以1m +,1m -都是实数,由复数(),z a bi a b R =+∈是实数、虚数、纯虚数的条件可以确定实数m 的值.
解: 变式再练1:当取何实数时,复数i m m z )1(12-+-=是:
(1)实数 (2) 虚数 (3)纯虚数 (4)零
解:(1)z 为实数,则101==-m m 即 (2)z 为虚数,则101≠≠-m m 即
(3)z 为纯虚数,则11101012-=⇒⎩⎨⎧≠±=⇒⎩
⎨⎧≠-=-m m m m m (4)z 为0 则1110
1012=⇒⎩⎨⎧=±=⇒⎩⎨⎧=-=-m m m m m 复数集 ( 虚数集 ) ( 实数集 )
(纯虚数集) 2,0,618.0,72i +i i i i 293,85,,72-+i i ,72(
1)z 为实数,则 m-1=0 即 m=1 (2)z 为虚数,则 1
01≠≠-m m 即(3)z 为纯虚数,则 10101-=≠-=+m m m
,即且
变式再练2:若复数()()
i m m m m 36522-++-为纯虚数,试求实数m 的值. 提示:由复数(),z a bi a b R =+∈是纯虚数的条件可以确定实数m 的值.
解:由题意:230320
306522=⇒⎩⎨⎧≠≠==⇒⎪⎩⎪⎨⎧≠-=+-m m m m m m m m m 且或
探究三、复数集与其它数集之间的关系: N ⊆ Z ⊆ Q ⊆ R ⊆ C .
【总结提升】
1.复数的引入,体现了数系扩充的必要性及现实意义;给出的相关规定体现了数系扩充 后运算的封闭性,同时体现了规定的合理性;
2.复数的有关概念是学习复数的基础,学习时需根据复数是由其实部和虚部共同决定的这 一特征理解记忆.
【总结反思】
知识 .
重点 .
能力与思想方法 .
【自我评价】你完成本学案的情况为( )
A.很好
B.较好
C.一般
D.较差。