变密度地下水流溶质运移模型及其海水入侵模拟应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)最枯方案下,未来2015和2030年研究区北部除小清河河道沿线外大部分地区处于 较高风险和高风险,其面积相对于基准年明显扩大,到2030年增加80%,而2030年高风险区 比2015年高风险区面积增加20%。表明若该区持续干旱(90%降水保证率),高风险地区将 随时间推移不断增加。由于淄河水库不断的补给地下水,研究区中部低风险区在2015年和 2030年相比基准年扩大,面积增加10.4%。最丰方案下,研究区北部地区较高风险和高风险 区域相比基准年面积减少70.3%,2030年比2015年减少43.7%,其原因是充足的雨水补给地 下水,从而有效的防止海水入侵,使得研究区北部大部分地区由基准年的较高和高风险区变 为了中等风险区。中部地区淄河水库周围低风险区的范围也随着时间推移不断扩大,表明河 道型水库有效的防止了海水入侵。 关键词:变密度水流,地下水流与溶质运移,海水入侵,黄河三角洲,风险评价
研究生签名:
wenku.baidu.com
时间:
年月日
关于论文使用授权的声明
本人完全了解中国科学院有关保留、使用学位论文的规定,即:中国科学院有权保留送 交论文的复印件和磁盘,允许论文被查阅和借阅,可以采用影印、缩印或扫描等复制手 段保存、汇编学位论文。同意中国科学院可以用不同方式在不同媒体上发表、传播学位 论文的全部或部分内容。 (保密的学位论文在解密后应遵守此协议)
研究生签名: 导师签名:
时间: 时间:
年月日 年月
摘要
滨海地区海水入侵含水层将引起地区性水质恶化,导致淡水水资源短缺,同时引发土 壤盐渍化及荒漠化等一系列生态环境问题,成为制约滨海地区经济社会可持续发展的重要因 素。河流供应淡水量的减少、气候变化导致的海平面上升及人类活动影响使海水入侵形势愈 发严峻。准确模拟及在不同情景下预测滨海地区海水入侵趋势对解决滨海地区水资源短缺与 生态环境问题至关重要。在解决这一问题时,必须要考虑浓度等条件引起流体密度变化。因 此,本文基于地下水动力学理论,依托分布式时变增益模型(DTVGM),构建二维变密度 地下水渗流溶质运移模块,重点模拟海水入侵过程。以黄河三角洲南部广饶县为例,探讨不 同气候变化情景及人类活动影响下研究区未来 20 年海水入侵趋势,分析降水丰枯与节水规 划共同作用下海水入侵面积差异,并综合利用监测数据和模拟结果进行现状及未来海水入侵 风险灾害评价,为区域水资源合理高效利用、规划与管理,提供科学依据和技术支撑。论文 的主要结论如下:
密级:
博士学位论文
变密度地下水流溶质运移模型 及其海水入侵模拟应用
作者姓名: 指导教师:
学位类别: 学科专业: 培养单位:
李淼 夏 军 研究员 中国科学院地理科学与资源研究所 陈 志 教 授 加拿大康考迪亚大学
理学博士 自然地理学 中国科学院地理科学与资源研究所
2012 年 11 月
Variable density flow and solute transport model and its application on seawater intrusion
(1)以流场分布,速度分布、密度分布和浓度分布作为公共变量,将变密度地下水渗 流模型与地下水溶质运移模型紧密耦合,利用强隐式(SIP)算法迭代求解,构建变密度地 下水渗流溶质运移模块,并利用Henry问题对模块进行验证,结果合理。
(2)以分布式水文模型DTVGM模拟的土壤水入渗量作为变密度地下水渗流溶质运移 模块的输入项,实现DTVGM与变密度地下水流溶质运移模块的松散式耦合。利用小清河流 域水文站月流量资料及黄河三角洲南部广饶县海水入侵监测数据对耦合模型进行验证,耦合 模型月流量模拟效率系数达到0.74以上,相对误差小于6.4%,相关系数大于0.86;地下水位 模拟与实测资料相关系数达到0.959;cl-浓度模拟与观测数据相关系数为0.914,表明耦合模 型对地表水流、地下水位及溶质运移过程模拟具有可靠性。
The main conclusions of the paper are as follows: (1) Taking the water level distribution, velocity distribution, density distribution and the concentration distribution as the public variables, the variable density groundwater flow and solute transport model is coupled tightly. It uses the algorithm of strongly implicit procedure (SIP) to get the iterative solution. The Henry problem is solved to validate the model and the result is reasonable. (2) The soil water recharge simulated by distributed hydrological model DTVGM is one of inputs to variable density groundwater flow and solute transport module which makes an achievement of loose coupling between surface water module and variable density groundwater flow and solute transport module. Then validation of the coupled model will be made by comparing the monthly runoff data from hydrological station in Xiaoqing river basin and monitoring data of seawater intrusion in Guangrao county in the south of Yellow river delta with modeling results. Efficiency coefficients of monthly runoff simulated by the coupled model are more than 0.74, the relative errors are less than 6.4% and correlation coefficients are greater than 0.86. The correlation coefficient between simulated and measured groundwater level reach up to 0.959; the correlation coefficient of simulated and observational cl- concentration is 0.914. It
I
Abstract
Seawater intrusion of the aquifer in coastal areas will lead to the regional water quality deterioration, shortage of freshwater water resources, and a series of ecological problems such as soil salinization and desertification. It becomes a significant factor to restrict of the sustainable development of economic society in coastal areas. The reduction of fresh water by rivers, sea level rising reduced by climate change and effect of human activities accelerate the seawater intrusion and make this situation more serious. It is essential to accurately simulate and predict the trend of seawater intrusion in coastal areas in different scenarios to solve the problem of shortage of water resources and ecological environment in coastal areas. The model based on variable-density flow and solute transport needs to be considered and built to solve the problem of seawater intrusion. On the basis of the groundwater dynamics theory and distributed time variable gain model (DTVGM), a two-dimensional variable density groundwater flow and solute transport module is developed to describe and simulate seawater intrusion process. The model makes a application in Guangrao County in the southern area of the Yellow River Delta to simulate the trend of seawater intrusion in the next 20 years under different climate change scenarios and impact of human activities; to take analysis of area differences by the joint action from precipitation differences and water conservation planning; and to take the risk assessment of status quo and future seawater intrusion by comprehensive utilization of monitoring data and simulation results; ultimately to provide a scientific basis and technical support for efficient using, planning and management of regional water resources.
(3)根据气候变化情景、降水保证率以及节水规划,拟定12种不同预测情景,以2009 年为基准年,利用耦合模型对研究区未来海水入侵变化趋势进行多情景预测分析。保持现状 开采不变,在SERS A1B情景下,研究区2030年西北和东部地区海侵线南移,海水入侵面积 分别增加了5.55km2和3.13km2。中部地区海侵线基本不变。12种预测方案中,到2030年最丰 方案比最枯方案海水入侵面积少19.14 km2。
By Miao Li
A Dissertation Submitted to University of Chinese Academy of Sciences
In partial fulfillment of the requirement For the degree of
Doctor of Physical Geography
Institute of Geographic Sciences and Natural Resources Research, CAS Nov, 2012
独创性声明
本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我 所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过 的研究成果,也不包含为获得中国科学院或其它教育机构的学位或证书而使用过的材 料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示 了谢意。
研究生签名:
wenku.baidu.com
时间:
年月日
关于论文使用授权的声明
本人完全了解中国科学院有关保留、使用学位论文的规定,即:中国科学院有权保留送 交论文的复印件和磁盘,允许论文被查阅和借阅,可以采用影印、缩印或扫描等复制手 段保存、汇编学位论文。同意中国科学院可以用不同方式在不同媒体上发表、传播学位 论文的全部或部分内容。 (保密的学位论文在解密后应遵守此协议)
研究生签名: 导师签名:
时间: 时间:
年月日 年月
摘要
滨海地区海水入侵含水层将引起地区性水质恶化,导致淡水水资源短缺,同时引发土 壤盐渍化及荒漠化等一系列生态环境问题,成为制约滨海地区经济社会可持续发展的重要因 素。河流供应淡水量的减少、气候变化导致的海平面上升及人类活动影响使海水入侵形势愈 发严峻。准确模拟及在不同情景下预测滨海地区海水入侵趋势对解决滨海地区水资源短缺与 生态环境问题至关重要。在解决这一问题时,必须要考虑浓度等条件引起流体密度变化。因 此,本文基于地下水动力学理论,依托分布式时变增益模型(DTVGM),构建二维变密度 地下水渗流溶质运移模块,重点模拟海水入侵过程。以黄河三角洲南部广饶县为例,探讨不 同气候变化情景及人类活动影响下研究区未来 20 年海水入侵趋势,分析降水丰枯与节水规 划共同作用下海水入侵面积差异,并综合利用监测数据和模拟结果进行现状及未来海水入侵 风险灾害评价,为区域水资源合理高效利用、规划与管理,提供科学依据和技术支撑。论文 的主要结论如下:
密级:
博士学位论文
变密度地下水流溶质运移模型 及其海水入侵模拟应用
作者姓名: 指导教师:
学位类别: 学科专业: 培养单位:
李淼 夏 军 研究员 中国科学院地理科学与资源研究所 陈 志 教 授 加拿大康考迪亚大学
理学博士 自然地理学 中国科学院地理科学与资源研究所
2012 年 11 月
Variable density flow and solute transport model and its application on seawater intrusion
(1)以流场分布,速度分布、密度分布和浓度分布作为公共变量,将变密度地下水渗 流模型与地下水溶质运移模型紧密耦合,利用强隐式(SIP)算法迭代求解,构建变密度地 下水渗流溶质运移模块,并利用Henry问题对模块进行验证,结果合理。
(2)以分布式水文模型DTVGM模拟的土壤水入渗量作为变密度地下水渗流溶质运移 模块的输入项,实现DTVGM与变密度地下水流溶质运移模块的松散式耦合。利用小清河流 域水文站月流量资料及黄河三角洲南部广饶县海水入侵监测数据对耦合模型进行验证,耦合 模型月流量模拟效率系数达到0.74以上,相对误差小于6.4%,相关系数大于0.86;地下水位 模拟与实测资料相关系数达到0.959;cl-浓度模拟与观测数据相关系数为0.914,表明耦合模 型对地表水流、地下水位及溶质运移过程模拟具有可靠性。
The main conclusions of the paper are as follows: (1) Taking the water level distribution, velocity distribution, density distribution and the concentration distribution as the public variables, the variable density groundwater flow and solute transport model is coupled tightly. It uses the algorithm of strongly implicit procedure (SIP) to get the iterative solution. The Henry problem is solved to validate the model and the result is reasonable. (2) The soil water recharge simulated by distributed hydrological model DTVGM is one of inputs to variable density groundwater flow and solute transport module which makes an achievement of loose coupling between surface water module and variable density groundwater flow and solute transport module. Then validation of the coupled model will be made by comparing the monthly runoff data from hydrological station in Xiaoqing river basin and monitoring data of seawater intrusion in Guangrao county in the south of Yellow river delta with modeling results. Efficiency coefficients of monthly runoff simulated by the coupled model are more than 0.74, the relative errors are less than 6.4% and correlation coefficients are greater than 0.86. The correlation coefficient between simulated and measured groundwater level reach up to 0.959; the correlation coefficient of simulated and observational cl- concentration is 0.914. It
I
Abstract
Seawater intrusion of the aquifer in coastal areas will lead to the regional water quality deterioration, shortage of freshwater water resources, and a series of ecological problems such as soil salinization and desertification. It becomes a significant factor to restrict of the sustainable development of economic society in coastal areas. The reduction of fresh water by rivers, sea level rising reduced by climate change and effect of human activities accelerate the seawater intrusion and make this situation more serious. It is essential to accurately simulate and predict the trend of seawater intrusion in coastal areas in different scenarios to solve the problem of shortage of water resources and ecological environment in coastal areas. The model based on variable-density flow and solute transport needs to be considered and built to solve the problem of seawater intrusion. On the basis of the groundwater dynamics theory and distributed time variable gain model (DTVGM), a two-dimensional variable density groundwater flow and solute transport module is developed to describe and simulate seawater intrusion process. The model makes a application in Guangrao County in the southern area of the Yellow River Delta to simulate the trend of seawater intrusion in the next 20 years under different climate change scenarios and impact of human activities; to take analysis of area differences by the joint action from precipitation differences and water conservation planning; and to take the risk assessment of status quo and future seawater intrusion by comprehensive utilization of monitoring data and simulation results; ultimately to provide a scientific basis and technical support for efficient using, planning and management of regional water resources.
(3)根据气候变化情景、降水保证率以及节水规划,拟定12种不同预测情景,以2009 年为基准年,利用耦合模型对研究区未来海水入侵变化趋势进行多情景预测分析。保持现状 开采不变,在SERS A1B情景下,研究区2030年西北和东部地区海侵线南移,海水入侵面积 分别增加了5.55km2和3.13km2。中部地区海侵线基本不变。12种预测方案中,到2030年最丰 方案比最枯方案海水入侵面积少19.14 km2。
By Miao Li
A Dissertation Submitted to University of Chinese Academy of Sciences
In partial fulfillment of the requirement For the degree of
Doctor of Physical Geography
Institute of Geographic Sciences and Natural Resources Research, CAS Nov, 2012
独创性声明
本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我 所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过 的研究成果,也不包含为获得中国科学院或其它教育机构的学位或证书而使用过的材 料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示 了谢意。