从数学方法论看高等代数与中学数学的多种联系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12卷第3期 数 学 教 育 学 报

Vol.12, No.3

2003年8月

JOURNAL OF MA THEMA TICS EDUCA TION

Aug., 2003

收稿日期:2003–06–15

从数学方法论看高等代数与中学数学的多种联系

侯维民

(天水师范学院 数学系,甘肃 天水 741001)

摘要:高等数学类课程在知识上是中学数学的继续和提高,在思想方法上是中学数学的因袭和扩张,在观念上是中学数学的深化和发展.高等代数与中学数学在思想方法方面的联系主要体现在抽象化思想、分类思想、结构思想、类比推理思想、公理化方法等方面.注意与中学数学的联系对比不但可以降低高等代数课的学习难度,而且增强了高等代数课对培养中学数学教师的指导作用.

关键词:高等代数;中学数学;数学知识;数学思想方法;数学观念

中图分类号:G421 文献标识码:A 文章编号:1004–9894(2003)03–0084–04

数学教育的双专业性不但要求数学教师精通较多的数学知识,具备多种数学能力;还要求他们懂得系统的教育理论,练就娴熟的教育技能.为使未来的中学数学教师精通较多的数学知识,具备多种数学能力,高师数学系除开设“中学数学复习与研究”,“中学数学教材教法”等直接指导中学数学教学的课程外,还开设了“数学分析”、“高等代数”等高等数学类的课程.然而,在长期开设高等数学类课程的实践中,一直存在着2方面的问题.一方面由于中学数学知识难以与高等数学知识直接衔接,使不少大一学生一接触到“数学分析”、“高等代数”等课程,就对数学专业课产生了畏难情绪;另一方面,由于高等数学理论与中学教学需要严重脱节,许多高师毕业生对如何用高等数学理论指导中学数学教学感到茫然.为了解决上述长期存在的问题,笔者认为,用数学方法论[1]的望远镜和显微镜来剖析各门高等数学类课程与中学数学的联系是一项有效的措施.不但要挖掘知识体系方面的联系,更要挖掘数学思想方法、数学观念方面的联系.通过这些工作,使师生都清楚地看到:高等数学类课程在知识上是中学数学的继续和提高,在思想方法上是中学数学的因袭和扩张,在观念上是中学数学的深化和发展.这样,学生学习高等数学类课程的难度就会大大降低,高等数学类课程对培养中学数学教师的指导作用也会显著增强.

下面以高等代数课为例[2],从数学知识、数学思想方法、数学观念3个方面发掘一下高等数学类课程与中学数学的联系.

1 知识方面的联系

这个问题至少可由以下6点说明.

(1)中学代数讲多项式的加、减、乘、除运算法则.高等代数在拓宽多项式的含义,严格定义多项式的次数及加法、乘法运算的基础上,接着讲多项式的整除理论及最大公因式理论.

(2)中学代数给出了多项式因式分解的常用方法.高等代数首先用不可约多项式的严格定义解释了“不可再分”的含义,接着给出了不可约多项式的性质、唯一因式分解定理及不可约多项式在3种常见数域上的判定.

(3)中学代数讲一元一次方程、一元二次方程的求解方法及一元二次方程根与系数的关系.高等代数接着讲一元n 次方程根的定义,复数域上一元n 次方程根与系数的关系及根的个数,实系数一元n 次方程根的特点,有理系数一元n 次方程有理根的性质及求法,一元n 次方程根的近似解法及公式解简介.

(4)中学代数讲二元一次、三元一次方程组的消元解法.高等代数讲线性方程组的行列式解法和矩阵消元解法、讲线性方程组解的判定及解与解之间的关系.

(5)中学代数学习的整数、有理数、实数、复数为高等代数的数环、数域提供例子.中学代数学习的有理数、实数、复数、平面向量为高等代数的向量空间提供例子.中学代数中的坐标旋转公式成为高等代数中坐标变换公式的例子.

(6)中学几何学习的向量的长度和夹角为欧氏

第3期侯维民:从数学方法论看高等代数与中学数学的多种联系85

空间向量的长度和夹角提供模型,三角形不等式为欧氏空间中2点间距离的性质提供模型,线段在平面上的投影为欧氏空间中向量在子空间的投影提供模型.

综上所述可知,高等代数在知识上的确是中学数学的继续和提高.它不但解释了许多中学数学未能说清楚的问题,如多项式的根及因式分解理论、线性方程组理论等,而且以整数、实数、复数、平面向量为实例,引入了数环、数域、向量空间、欧氏空间等代数系统.这对用现代数学的观点、原理和方法指导中学数学教学是十分有用的.

2 思想方法方面的联系

2.1 抽象化思想

小学从具体事物的数量中抽象出数字,开创了算术运算的时期.中学用字母表示数,开创了在一般形式下研究数、式、方程的时期.高等代数用字母表示多项式、矩阵,开始研究具体的代数系统,进而又用字母表示满足一定公理体系的抽象元素,开始研究抽象的代数系统——向量空间、欧氏空间.随着概念抽象化程度不断的提高,数学研究的对象急剧扩大.

2.2 化归思想

中学数学里,化无理方程为有理方程,化分式方程为整式方程,化三元一次方程组为二元一次方程组直至一元一次方程,通过化归矩形推导平行四边形面积公式,这些都用到化归思想.在高等代数里,通过按行按列展开,将阶数较高的行列式化为阶数较低的行列式;通过分离系数,将线性方程组的研究转化为增广矩阵的研究;通过选定基,将向量之间的关系转化为向量坐标之间的关系,将线性变换的研究转化为矩阵的研究,将二次型的研究转化为实对称矩阵的研究等,也都用到化归思想.2.3 分类思想

中学按概念对研究的对象分类,例如对数分类,对代数式分类等.高等代数除按概念分类,如将次数大于0的多项式分为可约与不可约2类,将二次型分为正定、负定、不定3类等;按元素间的等价关系分类,例如分别依矩阵的等价关系、相似关系、合同关系对矩阵分类;利用向量空间的同构关系对向量空间、欧氏空间按维数分类,等等.2.4 结构思想

现代数学通过3种数学结构将数学各分支联系成一个整体.中学数学与高等代数都用现代数学的观点和语言组织教材,2者的许多概念、性质及运算律具有相似性.从负数到负多项式、负矩阵再到负元素,由倒数到逆矩阵再到逆元,从数的运算律到集合、多项式、矩阵的运算律再到代数系统的运算律,由数的大小关系到集合的包含关系、多项式的整除关系再到集合的偏序关系,这些内容全都反映了结构思想.

2.5 类比推理思想

在中学数学中,由分数的性质类比推理分式的性质;由2直线的位置关系类比推理2平面的位置关系;由直角三角形的勾股定理类比推理具有3直角顶点四面体的勾股定理.在高等代数中,由整数整除理论类比推理数域F上的多项式的整除理论;由直角坐标系下,几何向量的长度、夹角、内积、距离公式类比推理规范正交基下,n维欧氏空间中向量的长度、夹角、内积、距离公式.

2.6 严格的逻辑推理方法

受中学生理解能力的限制,中学数学中严格的定义较少,定理和习题的推理过程较短,几何问题的推导还常常借助直观图形.但常用的证题方法,如反证法、同一法、综合法、分析法、数学归纳法等,学生已有接触.而高等代数对所研究的各类问题首先给出严格的定义,然后从定义出发,通过严密的逻辑推理,得出性质、定理、推论,直至建立完整的理论体系.同中学数学相比,高等代数具有提出问题,理论推导严格,讨论问题深入,知识体系完备的优点.

2.7 公理化方法

中学平面几何将利用直觉经验不证自明的少数命题和推导原则作为公理,由此出发推证出大量新的命题,这已用到实质公理化方法.高等代数中的向量空间、线性变换、欧氏空间都将若干条假设作为公理,利用这些公理,再推导出各自的理论体系,这已用到形式公理化方法.由实质公理化方法到形式公理化方法体现了公理化方法的发展.

2.8 坐标方法

中学数学通过数轴建立了直线上点的坐标,通过平面坐标系建立了平面上点的坐标.高等代数通过向量空间的基建立了向量空间中各种向量的坐标,推导出了向量和及向量数乘的坐标计算公式,证明了坐标变换公式.欧氏空间一章还给出了在规范正交基下,向量的长度、内积、投影、距离、夹

相关文档
最新文档