三角恒等变换常见题型解题方法
三角恒等变换与解题技巧
![三角恒等变换与解题技巧](https://img.taocdn.com/s3/m/bafad30ec950ad02de80d4d8d15abe23482f03f1.png)
三角恒等变换与解题技巧三角函数是数学中重要的一部分,与几何、物理等学科密切相关。
在解三角函数的问题时,常常需要运用恒等变换来简化计算或将复杂的式子转化为简单的形式。
恒等变换是指在等式两边同时做相同的运算而不改变等式的值。
掌握常用的三角恒等变换并灵活运用是解题的关键。
本文将介绍一些常用的三角恒等变换,并分享一些解题技巧。
一、正弦、余弦、正切的恒等变换1. 余切的逆关系根据余切的定义,我们知道cot(A)等于tan(A)的倒数,即cot(A) = 1 / tan(A)。
这是一个重要的恒等变换,在简化复杂式子、证明等题目中经常会用到。
2. 三角函数的平方和恒等式sin^2(A) + cos^2(A) = 1这是三角函数最基本的恒等式之一,也是勾股定理的三角形形式。
该恒等式可以用来将一个三角函数转化为其他三角函数的形式。
3. 正切的平方和恒等式1 + tan^2(A) = sec^2(A)这是正切函数的平方和恒等式,也是解析几何中的一条重要公式。
运用该恒等式可以将一个正切函数的式子转化为其他三角函数的式子。
4. 余切的平方和恒等式1 + cot^2(A) = csc^2(A)这是余切函数的平方和恒等式,与正切的平方和恒等式相对应。
在解题时运用该恒等式可以将一个余切函数的式子转化为其他三角函数的式子。
二、两角和与差的恒等变换1. 正弦的两角和与差sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这是正弦函数的两角和与差公式,可以通过将两个三角函数用另外两个三角函数来表示。
在解题时,可以通过将复杂的三角函数式子转化为正弦函数的形式来简化计算。
2. 余弦的两角和与差cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)这是余弦函数的两角和与差公式,与正弦的两角和与差公式相似。
在解题时,也可以通过转化为余弦函数的形式来简化计算。
三角恒等变换问题(典型题型)
![三角恒等变换问题(典型题型)](https://img.taocdn.com/s3/m/3d18beaec8d376eeaeaa3185.png)
三角恒等变换问题三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。
例1 (式的变换---两式相加减,平方相加减)已知11cos sin ,sin cos 23αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221cos 2cos sin sin 4ααββ++=两式相加得,1322(cos sin sin cos )36αβαβ+-=化简得,59sin()72βα-=-即59sin()72αβ-=方法评析:式的变换包括:1、tan(α±β)公式的变用2、齐次式3、 “1”的运用(1±sin α, 1±cos α凑完全平方)4、两式相加减,平方相加减5、一串特殊的连锁反应(角成等差,连乘)例2 (角的变换---已知角与未知角的转化)已知7sin()241025παα-==,求sin α及tan()3πα+. 解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α,于是3tan 4α=-故348tan()311πα-+-+===方法评析:1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.例3(合一变换---辅助角公式)设关于x的方程sin 0x x a +=在(0,2)π内有相异二解βσ和.求a 的取值范围.解:∵1sin 2(sin )2sin()23x x x x x π=+=+, ∴方程化为sin()32a x π+=-.∵方程sin 0x x a ++=在(0,2)π内有相异二解,∴sin()sin332x ππ+≠=. 又sin()13x π+≠± (1±时仅有一解),∴122a a <≠且-,即2a a <≠且∴ a的取值范围是(2,(3,2)--.方法评析:要注意三角函数实根个数与普通方程的区别,这里不能忘记(0,2)π这一条件. 例4( ,一题多解型)若cos 2sin αα+=求tan α的值.解: 方法一:(“1”的运用)将已知式两端平方得 方法二:(合一变换)()αϕ+=1tan 2ϕ=, 再由()sin 1αϕ+=-知,()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭方法三:(式的变换)令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=. 方法四:(与单位圆结合)我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=⎪⎪⎨⎪=-⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法评析:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。
高中数学三角恒等式变形技巧
![高中数学三角恒等式变形技巧](https://img.taocdn.com/s3/m/3427f1beed3a87c24028915f804d2b160b4e8637.png)
高中数学三角恒等式变形技巧在高中数学的学习中,三角恒等式是一个重要的知识点。
学生们常常会遇到需要根据已知的三角恒等式来推导出新的恒等式的情况。
在这个过程中,掌握一些三角恒等式的变形技巧是非常有帮助的。
本文将介绍几种常见的变形技巧,并通过具体的例题进行说明。
一、平方差公式的变形平方差公式是我们在学习三角函数时经常接触到的一个恒等式,即:sin^2x - cos^2x = 1在解题过程中,我们常常需要根据这个公式来进行变形。
例如,以下是一道常见的题目:已知 sin^2x = 1/4,求 cos^2x 的值。
解析:首先,我们可以利用平方差公式将已知条件进行变形:sin^2x - cos^2x = 11/4 - cos^2x = 1然后,我们可以通过移项和化简的方法求解出 cos^2x 的值:cos^2x = 1/4 - 1cos^2x = -3/4通过这个例题,我们可以看到,利用平方差公式进行变形可以帮助我们解决一些关于三角函数平方的问题。
二、和差化积公式的变形和差化积公式是我们在学习三角函数时另一个重要的恒等式,即:sin(x ± y) = sinxcosy ± cosxsiny在解题过程中,我们可以利用这个公式将已知条件进行变形,从而得到新的恒等式。
例如,以下是一道常见的题目:已知 sin2x = 2sinx,求 cos2x 的值。
解析:首先,我们可以利用和差化积公式将已知条件进行变形:sin2x = 2sinxsin(x + x) = 2sinx然后,我们可以利用和差化积公式的逆向思维,将 sin(x + x) 进行变形:sin(x + x) = sinxcosx + cosxsinx2sinxcosx = 2sinx接着,我们可以通过移项和化简的方法求解出 cos2x 的值:sinxcosx = sinxcos2x = cos^2x - sin^2xcos2x = cos^2x - (1 - cos^2x)cos2x = 2cos^2x - 1通过这个例题,我们可以看到,利用和差化积公式进行变形可以帮助我们解决一些关于三角函数和的问题。
5.5.2-简单的三角恒等变换 2025年高考数学知识点题型及考项复习
![5.5.2-简单的三角恒等变换 2025年高考数学知识点题型及考项复习](https://img.taocdn.com/s3/m/1f4a2edefc0a79563c1ec5da50e2524de518d0be.png)
+ cos
2
sin
2
2
−
2
,
= cos
cos
2
2
+ sin
sin ,
2
2
即 sin
2
所以sin
即tan
2
2
π
4
2
− cos
2
− cos
cos
2
= 1或tan
2
2
= 0或cos
2
故 =
π
4
=
2
2
= 0,
− sin
2
= 0,
= 1,又, ∈ 0, π
故 = 或 = .
cos = ± 1 −
π−
所以cos
2
=
5 2
13
=
π−
,则底角为
,由题意可知sin
2
12
π−
± ,所以cos
13
2
26 5 26
或
.
26
26
=
sin
2
=
1−cos
2
5
,所以
13
=
12
=
1±13
2
,
sin 4
6.化简:
1+cos 4
⋅
cos 2
1+cos 2
cos
⋅
1+cos
的交点,则( ABD
)
图5.5.2-1
9种常用三角恒等变换技巧总结
![9种常用三角恒等变换技巧总结](https://img.taocdn.com/s3/m/a84d0f7611661ed9ad51f01dc281e53a580251f2.png)
9种常用三角恒等变换技巧总结三角函数是数学中一种重要的函数,它广泛应用于几何、物理、工程等领域。
而在解题过程中,常常需要通过三角恒等变换技巧来简化或转换问题,以便更容易求解或证明。
下面我们将总结一下常用的九种三角恒等变换技巧。
1.正弦和余弦平方和恒等式:sin^2(x) + cos^2(x) = 1这是最基本的三角恒等式,即正弦和余弦的平方和等于1、它在很多场合都会被应用到,例如求解三角方程、证明三角函数的性质等。
2.余弦的二倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)这个公式可以将一个角的余弦值转化为另一个角的余弦值,同时也可以将余弦值转化为正弦值。
它在解决一些二次方程和证明一些三角恒等式的时候非常有用。
3.正弦的二倍角公式:sin(2x) = 2sin(x)cos(x)这个公式可以将一个角的正弦值转化为另一个角的正弦值,或者将正弦值转化为余弦值。
它在解决一些二次方程和证明一些三角恒等式的时候非常有用。
4.正切的和差公式:tan(x±y) = (tan(x)±tan(y))/(1∓tan(x)tan(y))这个公式可以将两个角的正切值的和或差转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和或差。
它在解决一些三角方程和证明一些三角恒等式的时候非常有用。
5.两角和差公式:sin(x±y) = sin(x)cos(y)±cos(x)sin(y)cos(x±y) = cos(x)cos(y)∓sin(x)sin(y)这些公式可以将两个角的正弦值或余弦值的和或差转化为一个角的正弦值或余弦值,或者将一个角的正弦值或余弦值转化为两个角的正弦值或余弦值之和或差。
它们在解决一些三角方程和证明一些三角恒等式的时候非常有用。
6.正切的和公式:tan(x+y) = (tan(x)+tan(y))/(1-tan(x)tan(y))这个公式可以将两个角的正切值的和转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和。
高中数学三角恒等式解题技巧
![高中数学三角恒等式解题技巧](https://img.taocdn.com/s3/m/93155fbae43a580216fc700abb68a98271feac15.png)
高中数学三角恒等式解题技巧在高中数学中,三角恒等式是一个重要的概念,经常出现在各种数学考试中。
掌握解题技巧对于学生来说是至关重要的。
本文将介绍一些常见的三角恒等式解题技巧,并通过具体的题目来说明这些技巧的应用。
一、基本的三角恒等式首先,我们需要掌握一些基本的三角恒等式。
这些恒等式是通过三角函数的定义和性质推导出来的,是解题的基础。
1. 余弦的平方加正弦的平方等于1:cos²θ + sin²θ = 1这个恒等式是最基本的三角恒等式,也是其他恒等式的基础。
2. 余弦的倒数等于正弦:cosθ =1/sinθ正弦的倒数等于余弦:sinθ = 1/cosθ这两个恒等式可以互相转化,并在解题过程中起到简化计算的作用。
二、应用题解析下面我们通过具体的题目来说明三角恒等式的解题技巧。
例题1:已知sinθ = 3/5,求cosθ。
解析:根据基本三角恒等式cos²θ + sin²θ = 1,我们可以得到cos²θ = 1 - sin²θ。
将已知的sinθ代入,得到cos²θ = 1 - (3/5)² = 1 - 9/25 = 16/25。
因此,cosθ =±√(16/25) = ±4/5。
例题2:已知sinθ = 2/3,求tanθ。
解析:根据tanθ = sinθ/cosθ,我们需要先求出cosθ。
根据基本三角恒等式cos²θ + sin²θ = 1,我们可以得到cos²θ = 1 - sin²θ。
将已知的sinθ代入,得到cos²θ = 1 -(2/3)² = 1 - 4/9 = 5/9。
因此,cosθ = ±√(5/9) = ±√5/3。
将sinθ和cosθ代入tanθ =sinθ/cosθ,得到tanθ = (2/3) / (√5/3) = 2/√5 = 2√5/5。
高中数学三角恒等变换的应用举例及解题思路
![高中数学三角恒等变换的应用举例及解题思路](https://img.taocdn.com/s3/m/3fd86bd74bfe04a1b0717fd5360cba1aa8118c81.png)
高中数学三角恒等变换的应用举例及解题思路引言:三角恒等变换是高中数学中的重要内容之一,它在解决各种三角函数相关问题时具有广泛的应用。
本文将通过具体的例题,结合解题思路,向高中学生和他们的父母介绍三角恒等变换的应用,帮助他们更好地理解和掌握这一知识点。
一、简化三角表达式在解决三角函数的化简问题时,三角恒等变换是一种非常有效的方法。
例如,我们考虑以下例题:例题1:化简表达式:sin^2x + cos^2x - 2sin^2x解题思路:根据三角恒等变换中的“平方和恒等式”,我们知道sin^2x + cos^2x = 1。
将这个恒等式代入原表达式中,得到:sin^2x + cos^2x - 2sin^2x = 1 - 2sin^2x这样,我们就成功地将原表达式化简为1 - 2sin^2x。
通过这个例题,我们可以看到,三角恒等变换可以帮助我们简化复杂的三角表达式,使问题更加清晰明了。
二、证明三角恒等式三角恒等变换还可以用于证明各种三角恒等式,这对于理解三角函数的性质和关系非常有帮助。
下面我们来看一个例题:例题2:证明恒等式:tan^2x + 1 = sec^2x解题思路:我们可以利用三角恒等变换中的“平方和恒等式”和“余切定义恒等式”来证明这个恒等式。
首先,根据平方和恒等式,我们有tan^2x + 1 = sin^2x/cos^2x +cos^2x/cos^2x。
将这个式子进行通分,得到:tan^2x + 1 = (sin^2x + cos^2x)/cos^2x = 1/cos^2x接下来,我们利用余切定义恒等式tanx = sinx/cosx,将1/cos^2x进行变形,得到:1/cos^2x = sec^2x通过这个例题,我们可以看到,三角恒等变换可以帮助我们证明各种三角恒等式,深入理解三角函数之间的关系。
三、解决三角方程三角恒等变换在解决三角方程时也有重要的应用。
下面我们来看一个例题:例题3:解方程sin2x = cosx解题思路:我们可以利用三角恒等变换中的“二倍角恒等式”来解决这个方程。
高二数学解三角恒等式的方法与技巧
![高二数学解三角恒等式的方法与技巧](https://img.taocdn.com/s3/m/65b453b5d1d233d4b14e852458fb770bf78a3b0c.png)
高二数学解三角恒等式的方法与技巧解三角恒等式是高中数学中的重要内容,也是考试中常见的题型之一。
掌握解三角恒等式的方法与技巧,不仅有助于理解三角函数的性质,还能提高解题效率。
下面将介绍几种常用的解三角恒等式的方法与技巧。
一、代入法代入法是解三角恒等式中常用且简便的一种方法。
具体操作如下:1. 将待证的恒等式两边分别用三角函数表示。
2. 根据已知的三角恒等式或性质,将原恒等式中的某些项替换成等价形式。
3. 将等式两边进行化简和变形,最终使等式两边完全一致。
示例1:证明恒等式sinθ / cosθ = tanθ。
解:根据代入法,将等式左边用三角函数表示得sinθ / cosθ,而右边用三角函数表示得tanθ。
根据三角函数的定义和性质,可以将等式左边进行变形,得到sinθ / cosθ = sinθ / cosθ * cosθ / cosθ = (sinθ cosθ) / (cosθ^2) = sinθ / (1 - sin^2θ)。
然后再通过三角函数的定义,将等式右边变形为sinθ / (1 - sin^2θ),经过化简后,等式左边和右边完全一致,从而证明了原恒等式。
二、化简法化简法是解三角恒等式的另一种常用方法,它通过一系列的化简和变形,将复杂的恒等式转化为简单的形式。
1. 利用三角函数的和差化积公式,将较复杂的三角函数表达式化简为简单的形式。
2. 运用三角函数的平方和差公式,将含有平方项的三角恒等式化简为不含平方项的形式。
3. 利用三角函数的倒数公式,将含有倒数的三角恒等式转化为不含倒数的形式。
示例2:证明恒等式sin^2θ - cos^2θ = -cos2θ。
解:根据化简法,利用平方差公式sin^2θ - cos^2θ = sin^2θ - (1 -sin^2θ) = 2sin^2θ - 1 = -cos(2θ)。
通过对等式两边进行化简和变形,可以得到等式左边和右边完全一致,从而证明了原恒等式。
9种常用三角恒等变换技巧总结
![9种常用三角恒等变换技巧总结](https://img.taocdn.com/s3/m/0239e86b905f804d2b160b4e767f5acfa0c7836e.png)
9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。
下面总结了九种常见的三角恒等变换技巧。
1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。
2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。
3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。
4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。
5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。
三角恒等变换之题型总结及解题策略分析
![三角恒等变换之题型总结及解题策略分析](https://img.taocdn.com/s3/m/ed824a75a36925c52cc58bd63186bceb19e8ed17.png)
撷英篇三角恒等变换是解决三角函数问题的重要工具.三角恒等变换是高中数学的一个重要模块,在历年的高考中都是必考内容,同时也是很多学生学习,考试的难点.本文将三角恒等变换的一些常见题型及解决策略作了梳理,仅供参考,希望能对学生学习有所帮助.一、公式的变形三角公式是变换的基础,应熟练地掌握公式的顺用、逆用及变形应用.1.化简(1)cos (α+β)cos β+sin (α+β)sin β;(2)sin (α+β)cos β-cos (α+β)sin β解:(1)cos (α+β)cos β+sin (α+β)sin β=cos [(α+β)-α]=cos β(2)sin (α+β)cos β-cos (α+β)sin β=sin [(α+β)-α]=sin α2.求证:tan20°+tan40°+3√tan20°tan40°=3√.证明:由tan (20°+40°)=tan20°+tan40°1-tan20°tan40°得tan20°+tan40°=3√(1-tan20°tan40°),所以3√(1-tan20°tan40°)+3√tan20°tan40°=3√.二、角的变换在表达式中或者在已知条件和所求问题中出现较多的相异角,可以通过观察,寻找两角之间的和差、倍半、互补、互余等关系,从而应用角的变换,建立已知和结论之间的联系,使问题得以解决.1.已知cos α=17,cos (α+β)=-1114且α,β均为锐角,求cos β.思路分析:通过寻找题目中的角α,α+β,β三者之间的关系,利用角的变换来解决.解:因为cos α=17,cos (α+β)=-1114,且α,β均为锐角,所以sin α=1-17()2√=43√7,sin (α+β)=1--1114()2√=53√14cos β=cos [(α+β)-β]=cos (α+β)cos β+sin (α+β)sin β=-1114×17+53√14×43√7=122.已知cos (α-β)=-45,cos (α+β=)45,且(α-β)∈π2,π()(α+β)∈3π2,2π(),求cos2α.思路分析:通过寻找题目中的角α-β,α+β,2α三者之间的关系,利用角的变换来解决.解:因为cos (α-β)=-45,(α-β)∈π2,π(),所以sin (α-β)=1--45()2√=35.因为cos (α+β)=45,(α+β)∈3π2,2π(),所以sin (α+β)=1-45()2√=-35.所以cos2α=cos [(α-β)+(α+β)]=cos (α-β)cos (α+β)-sin (α-β)sin (α+β)=-45×45-35×-35()=-725三、函数名称的改变三角变形中,常常需要变不同函数名称为同名函数.如在三角函数中正余弦是基础,通常化切为弦,化弦为切,变异名为同名.1.求sin15°sin30°sin75°值.解:sin15°sin30°sin75°=12sin15°cos15°=14sin30°=14×12=182.化简2cos 2α-1tan π4-α()sin 2π4+α().解:原式=cos 2αsin π4-α()cosπ4-α()sin 2π4+α()=cos2αsinπ4-α()cos π4-α()cos 2π4-α()=cos2αsinπ4-α()cos π4-α()=cos2α12sin π2-2α()=cos2α12cos2α=2.四、常数变换,巧用“1”在三角函数运算,求值,证明中,有时需要将常数1转化为三角函数值来代换,以达到解决问题的目的.1.已知tan π4+θ()=3,求sin2θ-2cos 2θ.解:由tan π4+θ()=3得,tan θ=12.sin2θ-2cos 2θ=2sin θcosθ-2cos 2θsin 2θ+cos 2θ=2tan θ-2tan 2θ+1=2×12-212()2+1=-45.2.求1-tan15°tan60°+3√tan15°.解:原式=tan45°-tan15°3√+3√tan15°=tan45°-tan15°3√(1+tan45°tan15°)=13√tan30°=13五、幂的变换升降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法,降幂并非绝对,有时需要升幂.求使函数f (x )=12cos 4x +3√sin x cos x -12sin 4x 为正值的x 的集合.解:f (x )=12cos 4x +3√sin x cos x -12sin 4x =12(cos 4x -sin 4x )+3√2sin2x =12(cos 2x -sin 2x )(cos 2x +sin 2x )+3√2sin2x =12cos2x +3√2sin2x =sin 2x+π6(),由sin 2x+π6()>0得2k π<2x +π6<2k π+π,k ∈z .解得-π12+k π<x <k π+5π12.所以x 的集合为x -π12+k π<x <k π+5π12,k ∈z {}.六、结构的变换通过表达式结构特点,通过构造上的变换,从而使问题得到解决.求cos20°cos40°cos80°的值.解析:根据式子结构特点,乘以并除以2sin20°.解:cos20°cos40°cos80°=2sin20°cos20°cos40°cos80°2sin20°=sin40°cos40°cos80°2sin20°=12sin80°cos80°2sin20°=14sin160°2sin20°=sin20°8sin20°=18.参考文献:[1]牛晓伟.三角恒等变换的技巧及其应用[J ].考试周刊,2012(49).[2]黄伟军.三角恒等变换之七变[J ].泛舟学海(高中),2008.[3]华丽凤.三角恒等变换之“差异分析”策略[J ].高中数理化,2011(22).[4]杜春辉.例谈三角恒等变换中的“变角”技巧及其应用[J ].考试周刊(数理系),2011(78).•编辑谢尾合三角恒等变换之题型总结及解题策略分析王传勇(诸城市实验中学,山东诸城)337--. All Rights Reserved.。
题型10 6类三角恒等变换解题技巧(解析版)
![题型10 6类三角恒等变换解题技巧(解析版)](https://img.taocdn.com/s3/m/1209f200f4335a8102d276a20029bd64783e62dc.png)
题型10 6类三角恒等变换解题技巧(拼凑思想、升(降)幂、三倍角、半角、万能、正余弦平方差公式)技法01拼凑思想的应用及解题技巧知识迁移12()[()()]221[()()]2424a a αββαααβαβπππβαβαβαα=⋅=--=++-⎛⎫=+--+=-- ⎪⎝⎭例1-1.(全国·高考真题)tan255°=【高考数学】答题技巧与模板构建【详解】000000tan 255tan(18075)tan 75tan(4530)=+==+=000tan 45tan 3021tan 45tan 30+==-【详解】由πππππ2sin 2sin 2cos sin 32666αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=-=- ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以πtan 26α⎛⎫-= ⎪⎝⎭,则ππtan tan πππ66tan tan 8ππ3661tan tan 66αααα⎛⎫-- ⎪⎡⎤⎛⎫⎛⎫⎝⎭-=--===== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+-⨯ ⎪⎝⎭1.(2022·云南·云南民族大学附属中学校考模拟预测)已知【答案】A【解析】易知()()sin sinβααβ=--,利用角的范围和同角三角函数关系可求得cos α和()sinαβ-,分别在()sin αβ-=利用两角和差正弦公式求得sin β,结合β的范围可确定最终结果.【详解】sin α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴-<-<,()sin αβ∴-==当()sin αβ-=()()()()sin sin sin cos cos sin βααβααβααβ=--=---57=-=,304πβ<< ,sin 0β∴>,sin β∴=当()sin αβ-=sin β=.综上所述:sin β=故选:A .【点睛】易错点睛:本题中求解cos α时,易忽略sin α的值所确定的α的更小的范围,从而误认为cos α的取值也有两种不同的可能性,造成求解错误.【答案】A【分析】由二倍角正切公式,同角关系化简cos tan22sin AA A=-,求sin A ,再求tan A ,再由两角差的正切公式求tan B .【详解】因为cos tan22sin A A A=-,所以sin2cos cos 22sin A AA A =-,所以22sin cos cos 12sin 2sin A A AA A=--,又A 为锐角,cos 0A >,所以()22sin 2sin 12sin A A A -=-,解得1sin4A =,因为A 为锐角,所以cos A =,tan A =又tan A B -=()所以()()()tan tan tan tan 1tan tan A A B B A A B A A B --⎡⎤=--===⎣⎦+-故选:A.【答案】D【分析】直接利用三角函数恒等变换进行凑角化简,再根据α,β的范围即可求出结果.【详解】由已知可将()()2ααβαβ=++-,2()()βαβαβ=+--,则cos[()()]cos[()()]12cos()cos()αβαβαβαβαβαβ++-++--+=-++,2cos()cos()2cos()cos()10αβαβαβαβ+----++=,[cos()1][2cos()1]0αβαβ+---=,即cos()1αβ+=或1cos()2αβ-=.又π02αβ<<<,所以π0π,02αβαβ<+<-<-<,所以cos()1αβ+≠,所以选项A ,B 错误,即1cos()2αβ-=,则π3αβ-=-,所以π3βα-=.则C 错,D 对,故选:D技法02 升(降)幂公式的应用及解题技巧知识迁移升幂公式:αα2sin 212cos -=,1cos 22cos 2-=αα降幂公式:22cos 1sin2αα-=,22cos 1cos 2αα+=【详解】因为π2sin 63x ⎛⎫+= ⎪⎝⎭,所以ππ2cos sin 363αα⎛⎫⎛⎫-=+=⎪ ⎪⎝⎭⎝⎭22ππcos 22cos 133x α⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭412199=⨯-=-.【详解】因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12(39αβαβαβ+=+=-+=-⨯=.1.(2023·全国·模拟预测)已知cos(α+【答案】A【分析】根据题意,求得4cos cos 5αβ=,再求得cos()1αβ-=,结合倍角公式,即可求解.【详解】因为3cos()cos cos sin sin 5αβαβαβ+=-=,且1sin sin 5αβ=,所以4cos cos 5αβ=,可得cos()cos cos sin sin 1αβαβαβ-=+=,所以2cos(22)cos 2()2cos ()11αβαβαβ-=-=--=.故选:A .【答案】C【分析】根据给定的条件,利用辅助角公式求出πsin()6α+,再利用二倍角的余弦公式计算即得.【详解】由cos αα=πsin(6α+所以22πππ1cos(2cos 2(12sin ()123663ααα+=+=-+=-⨯=-.故选:C【答案】A【分析】利用辅助角公式及两角和差的正弦公式化简,再根据()2sin 222sin 14παβαβ⎛⎫-=-+- ⎪⎝⎭计算可得.【详解】由已知得()()2sin cos 3αβαβ+++=,()1sin cos sin 3ααβ-=,所以()()2sin cos cos sin 4443πππαβαβαβαβαβ⎛⎫⎛⎫⎛⎫+++=++=++⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1sin cos sin sin 43παβααβ⎛⎫+=-=- ⎪⎝⎭,所以sin cos 4παβ⎛⎫+= ⎪⎝⎭cos sin 4παβ⎛⎫+= ⎪⎝⎭则sin sin cos cos sin 444πππαβαβαβ⎛⎫⎛⎫⎛⎫-+=+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()227sin 222sin 12149παβαβ⎛⎫-=-+-=⨯-= ⎪⎝⎭.故选:A .【答案】D【分析】先对两式进行平方,进而可求出()cos αβ-的值,根据二倍角公式求出结论.【详解】解:因为2sin sin αβ-=2cos cos 1αβ-=,所以平方得,()22sin sin 3αβ-=,()22cos cos 1αβ-=,即224sin 4sin sin sin 3ααββ-+=,224cos 4cos cos cos 1ααββ-+=,两式相加可得44sin sin 4cos cos 14αβαβ--+=,即1cos cos sin sin 4αβαβ+=,故()1cos 4αβ-=,()()217cos 222cos 121168αβαβ-=--=⨯-=-.故选:D.技法03 三倍角公式的应用及解题技巧知识迁移sin3α=3sin α―4sin 3αcos3α=―3cos α+4cos 3α tan3α=3tan α―tan 3α1―3tan 2α=tan αα+α例3.已知在 △ABC 中, 角 A 、B 、C 的对边依次为 a 、b 、c ,a =6,4sin B =5sin C , A =2C , 求 b 、c边长。
三角恒等变换(八大题型+精准练习)(学生版)-2025届高三数学
![三角恒等变换(八大题型+精准练习)(学生版)-2025届高三数学](https://img.taocdn.com/s3/m/aa6c606f82c4bb4cf7ec4afe04a1b0717ed5b34e.png)
三角恒等变换(八大题型+精准练习)题型归类题型一、两角和与差的三角函数公式的应用题型二、两角和与差的三角函数公式的逆用与变形题型三、角的变换问题题型四、二倍角公式的应用题型五、给角求值题型六、给值求值题型七、给值求角题型八、三角恒等变换的综合应用题型一、两角和与差的三角函数公式的应用知识要点两角和与差的正余弦与正切①sin (α±β)=sin αcos β±cos αsin β;②cos (α±β)=cos αcos β∓sin αsin β;③tan (α±β)=tan α±tan β1∓tan αtan β;精准练习1.(24-25高三·山东泰安·开学考试)已知sin α+β =13,sin α-β =12,则tan αtan β=()A.15B.-15C.5D.-52.(24-25高三上·安徽·开学考试)已知sin α+β =-35,1tan α+1tan β=2,则sin αsin β=()A.-310B.15C.-15D.3103.(24-25高三·重庆·阶段练习)已知cos α+β =13,cos αcos β=12,则cos 2α-2β =()A.23B.19C.-19D.-134.(2025·广东·一模)已知sin α+π3 -sin α=23,则cos 2α+π3 =()A.-59B.-19C.19D.595.(2024·江西九江·二模)已知α,β∈0,π2 ,cos α-β =56,tan α⋅tan β=14,则α+β=()A.π3B.π4C.π6D.2π36.(24-25高三上·江苏徐州·开学考试)已知sin α-β =2cos α+β ,tan α-β =13,则tan α-tan β=()A.47 B.74C.45D.767.(2025·黑龙江大庆·一模)已知0<α<β<π,且sin α+β +cos α+β =0,sin αsin β=6cos αcos β,则tan α-β =()A.-1B.-12C.-16D.-178.(24-25高三上·河北张家口·开学考试)已知sin (α-β)=13,tan αtan β=4,则sin (α+β)=.题型二、两角和与差的三角函数公式的逆用与变形知识要点1、两角和与差的正切公式的变形tan α±tan β=tan (α±β)(1∓tan αtan β);tan α⋅tan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.2、辅助角公式a sin α+b cos α=a 2+b 2sin (α+ϕ)(其中sin ϕ=ba 2+b2,cos ϕ=aa 2+b2,tan ϕ=ba精准练习9.(23-24高一·黑龙江齐齐哈尔·期末)tan13°+tan32°+tan13°tan32°=()A.tan19°B.1C.-tan19°D.-110.(2024·福建泉州·模拟预测)若sin θ+3cos θ=2,则tan θ=()A.-3B.-33C.33D.3题型三、角的变换问题知识要点拆分角问题:①α=2⋅α2;α=(α+β)-β;②α=β-(β-α);③α=12[(α+β)+(α-β)];④β=12[(α+β)-(α-β)];⑤π4+α=π2-π4-α .注意:特殊的角也看成已知角,如常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-π4-α 等.11.(24-25高三·安徽·阶段练习)若cosα+βcosβ=1m,tanα+β=3cosβsinβ,则cos2α=()A.32m2-1 B.16m2-1 C.4m2-1 D.2m2-112.(2024·江苏镇江·三模)已知角α,β满足tanα=2,2sinβ=cos(α+β)sinα,则tanβ=()A.13B.17C.16D.213.(24-25高三·福建福州·开学考试)已知α,β∈(0,π),且cosα=35,sin(α-β)=513,则cosβ=()A.5665B.1665C.3365D.636514.(23-24高一·江苏南京·期末)若sin(α+β)=cos2αsin(α-β),则tan(α+β)的最大值为()A.62B.64C.22D.2415.(2024·黑龙江双鸭山·模拟预测)已知α,β∈0,π4,cos2α-sin2α=17,且3sinβ=sin(2α+β),则α+β的值为()A.π12B.π6C.π4D.π316.(23-24高三·天津·阶段练习)已知角α,β为锐角,tanα=32,sin(α-β)=2114,则tan2α-β的值为.17.(24-25高三·福建·阶段练习)已知tanα+β=4,tanα-β=-3,则tan2β=.题型四、二倍角公式的应用知识要点1、二倍角公式①sin2α=2sinαcosα;②cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α;③tan2α=2tanα1-tan2α;2、降次(幂)公式sinαcosα=12sin2α;sin2α=1-cos2α2;cos2α=1+cos2α2;3、半角公式sinα2=±1-cosα2;cosα2=±1+cosα2;tanα2=sinα1+cosα=1-cosαsin a.18.(2025·安徽·模拟预测)sin 2π12-sin 27π12=( ).A.32B.12C.-12D.-3219.(24-25高三·安徽亳州·开学考试)已知a ∈0,π2 ,sin3α=5sin a cos2α,则tan α值为()A.3B.32C.22D.120.(24-25高三·广西·阶段练习)已知sin π4+α =3sin π4-α ,则cos2α=()A.-45B.-35C.35D.4521.(24-25高三·云南昆明·阶段练习)已知3sin θ+π3 =cos θ+π6 ,则cos2θ=()A.-12B.17C.12D.3222.(23-24高一·江苏无锡·阶段练习)已知函数f (x )=cos 2ωx +sin ωx cos ωx -12(ω>1)的一个零点是π2,且f (x )在-π6,π16 上单调,则ω=()A.54B.74C.94D.11423.(24-25高三·江苏徐州·阶段练习)已知sin2α=23,α∈0,π4 ,则cos α+π4 =()A.66B.56C.306D.15324.(24-25高三·全国·阶段练习)已知4tan π121+tan2π12cos αsin β+π3=1,则tan (β-α)=()A.3B.33C.1D.23325.(多选)(2024·辽宁·模拟预测)已知α∈π2,π ,β∈0,π ,cos2α=-35,cos β-α =-210,则()A.tan α=-12B.sin β-α =-7210C.α+β=5π4D.cos αcos β=-3210题型五、给角求值知识要点(1)给角求值问题求解的关键在于“变角”,使其角相同或具有某种关系,借助角之间的联系寻找转化方法.(2)给角求值问题的一般步骤①化简条件式子或待求式子;②观察条件与所求之间的联系,从函数名称及角入手;③将已知条件代入所求式子,化简求值.精准练习26.(23-24高三·甘肃·阶段练习)计算12cos 35π+cos 25πcos 45π()A.2B.-12C.-1D.-227.(多选)(23-24高三·安徽合肥·阶段练习)下列代数式的值为14的是()A.cos 275°-sin 275°B.tan15°1+tan 215°C.cos36°cos72°D.2cos20°cos40°cos80°28.(23-24高三·吉林长春·阶段练习)cos20°1+cos20°tan20°+3 =.29.(2024·广东深圳·模拟预测)计算:cos72°cos -36° =.30.(23-24高三·安徽·期中)tan20°+4sin20°=.31.(2024高三·全国·专题练习)化简求值:cos36°cos72°+sin50°1+3tan10° -cos20°cos80°1-cos20°.32.(2024高一·湖南株洲·竞赛)1-2sin 25°2sin10°-2cos10°=.33.(11-12高一·全国·课后作业)3tan12°-34cos 212°-2 sin12°=.题型六、给值求值知识要点给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式精准练习34.(2024·河南新乡·模拟预测)设cos20°=a ,则13tan50°-1=()A.1-a 23B.a 2+12C.aD.a 235.(24-25高三上·江苏徐州·开学考试)已知sin α+π3 +sin α=23,则cos 2α+π3=()A.-1927B.-19C.19D.192736.(24-25高三·湖南衡阳·开学考试)已知cosα+β=6-24,sinα⋅sinβ=24,则cos2α-2β=()A.12B.22C.32D.137.(24-25高三·云南昆明·阶段练习)若sin160°=m,则sin40°=()A.-2mB.-2m1-m2C.-2m1+m2D.2m1-m238.(24-25高三·四川绵阳·开学考试)已知sin4θ2-cos4θ2=35,θ∈0,π,则1+sin2θcos2θ-sin2θ+cosθ=()A.-2635B.-325C.-314D.-172839.(24-25高三·安徽·阶段练习)若cosα+βcosβ=1m,tanα+β=3cosβsinβ,则cos2α=()A.32m2-1 B.16m2-1 C.4m2-1 D.2m2-140.(24-25高三·贵州黔东南·开学考试)已知α∈0,π,且cosα+π4=13,则cos2α=()A.429B.±429C.79D.±7941.(2024·山东淄博·二模)设β∈0,π2,若sinα=3sin(α+2β),tanβ=22,则tan(α+2β)=()A.-24B.24C.-22D.2242.(2024·江西宜春·模拟预测)已知α∈π2,3π4,tanπ4+α=12tanπ4-α,则1-sin2α4cos2α=() A.6+42 B.6-42 C.17+122 D.17-12243.(2024·湖南衡阳·模拟预测)已知cosπ5-α=13,则sin11π10+2α=()A.79B.-79C.429D.-42944.(2024·安徽合肥·三模)已知2sinα=1+23cosα,则sin2α-π6=()A.-18B.-78C.34D.7845.(2024·河北保定·三模)已知锐角α,β(α≠β)满足sin α+2cos α=sin β+2cos β,则sin (α+β)的值为()A.31010B.255C.35D.4546.(2024·福建泉州·模拟预测)已知α,β均为锐角,sin 2α-β =253cos α+sin β,则sin α-β =()A.255B.55C.23D.5347.(2024·重庆·三模)已知α∈0,π3,且2sin2α=4cos α-3cos 3α,则cos2α=()A.29B.13C.79D.22348.(2024·山西·三模)若sin2α=33,sin β-α =66,且α∈π4,π ,β∈π,3π2 ,则cos α+β =()A.5+26B.306C.63D.25-26题型七、给值求角知识要点给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.精准练习49.(23-24高一·江苏盐城·期中)已知tan α=-13,tan β=2,且α,β∈0,π ,则α+β的值为()A.π4B.3π4C.5π4D.7π450.(23-24高一·河南·阶段练习)已知0<α<π2,1+sin2α sin π7=2cos 2π14cos2α,则α=()A.3π14B.5π28C.π7D.π1451.(多选)(2023·山西·模拟预测)已知0<β<α<π4,且sin α-β =13,tan α=5tan β,则()A.sin αcos β=56B.sin βcos α=112C.sin2αsin2β=536D.α+β=π352.(2024·陕西铜川·模拟预测)若α∈-π2,π2 ,且cos2α=sin π4-α ,则α的值为.53.(2024高三·江苏·专题练习)已知α为锐角,且sin α+sin α+π3 +sin α+2π3=3,则α=.54.(23-24高三·河北石家庄·阶段练习)若α,β∈0,π2 ,cos α-β2=32,sin α2-β =-12,则α+β=.题型八、三角恒等变换的综合应用知识要点(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.(2)形如y =a sin x +b cos x 化为y =a 2+b 2sin (x +φ),可进一步研究函数的周期性、单调性、最值与对称性.精准练习55.(2024·广东珠海·一模)函数f x =23sin 2ωx +sin 2ωx +2π3,其中ω>0,其最小正周期为π,则下列说法错误的是()A.ω=1B.函数f x 图象关于点π3,3对称C.函数f x 图象向右移φφ>0 个单位后,图象关于y 轴对称,则φ的最小值为5π12D.若x ∈0,π2,则函数f x 的最大值为3+156.(22-23高三上·河北唐山·开学考试)已知α,β∈0,π2 ,且1+sin βcos β=tan π4+α ,则()A.2α=βB.α=βC.α+β=π2D.α+β=π57.(2024·宁夏吴忠·模拟预测)下列四个函数中,最小正周期为2π的是()A.f x =cos 2x +sin x cos xB.f x =1-cos2x2sin x cos xC.f x =cos x +π3+cos x -π3 D.f x =sin x +π6cos x +π6 58.(多选)(2023·河北保定·三模)已知f x =23cos 2x +2sin x cos x -3,则()A.f x =2cos 2x -π6B.f x 的图象的对称轴方程为x =2k π-π3k ∈Z C.f 2023π =3D.f x 在-3π2,-π2上单调递减59.(2024高三·全国·专题练习)设f x =2sin x cos x -2sin 2x -π4.当x ∈0,π2 时,f x +π6 =-13,则cos2x 的值为.60.(24-25高三上·河南·开学考试)已知函数f x =sin2x +sin 2x -π3在区间0,m 上有且仅有2个零点,则实数m 的取值范围为.61.(24-25高三·福建·阶段练习)已知函数f x =22cos 2x +22sin x cos x .(1)将f x 化成f x =A cos ωx +φ +B A >0,ω>0,φ <π 的形式;(2)求f x 的单调区间;(3)若f x 在α,α+π4上的值域为a ,b ,求b -a 的取值范围.62.(24-25高三·北京·开学考试)已知函数f x =cos x 23sin x +cos x -sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)若f (x )在区间[0,m ]上有且只有两个零点,求m 的取值范围.63.(22-23高三·陕西榆林·阶段练习)已知平面向量m =sin x -π6 ,12 ,n =cos x ,12.(1)若m ⊥n ,x ∈0,π2,求实数x 的值;(2)求函数f (x )=m ⋅n的单调递增区间.64.(24-25高一·全国·期末)设f (x )=2sin x cos x +2sin x +π4 ⋅sin π4-x .(1)当x ∈-π2,0时,求f (x )的最大值和最小值;(2)已知f -α2 =33,且当π2≤α≤2π时,求f (α)的值.。
进行三角恒等变换的几个技巧
![进行三角恒等变换的几个技巧](https://img.taocdn.com/s3/m/8246d3c5541810a6f524ccbff121dd36a32dc429.png)
很多三角函数题目侧重于考查三角恒等变换的技巧.进行三角恒等变换的关键是选择合适的公式或变形式,将三角函数式中的角、函数名称、幂等进行灵活的转化,从而顺利化简三角函数式,求出三角函数式的值.下面,笔者介绍几个进行三角恒等变换的技巧,以供大家参考.一、拆角与补角有些三角函数式中的角不相同,就需要运用拆角与补角的技巧,将题目中的角进行转化.在转化角时,要先联系已知条件和所求目标,将角进行拆分、拼凑,再灵活运用诱导公式、二倍角公式、两角的和差公式等进行变换.例1.已知cos (α+π4)=35,π2≤α≤3π2,求cos (2α+π4)的值.解:由于π2≤α≤3π2,所以3π4≤α+π4≤7π4,因为cos (α+π4)=35>0,可知3π2≤α+π4≤7π4,因此sin (α+π4)=-45,所以sin 2(α+π4)=2sin (α+π4)cos (α+π4)=-2425,cos 2(α+π4)=2cos 2(α+π4)-1=-725,因此cos (2α+π4)=cos[2(α+π4)-π4]=cos 2(α+π4)cos π4+sin 2(α+π4)sin π4=.观察题目中的各个角,可以发现:已知角α+π4与所要求的角2α+π4之间相差一个α,可得2(α+π4)-π4=2α+π4,用二倍角公式和诱导公式求出sin 2(α+π4)和cos 2(α+π4)的值,最后根据余弦的两角和公式,即可求出cos(2α+π4)的值.二、降幂与升幂当三角函数式中出现高次或者次数不一的式子时,就要运用降幂与升幂的技巧来解题.常用到的公式有cos 2α=2cos 2α-1=1-2sin 2α、tan 2α=2tan α1-tan 2α、sin 2α+cos 2α=1.例2.证明cos 2α+cos 2(x +π3)+cos 2(x -π3)的值与x 的取值无关.证明:cos 2α+cos 2(x +π3)+cos 2(x -π3)=1+cos 2x 2+1+cos(2x +23π)2+1+cos(2x -23π)2=32+12[cos 2x +cos(2x +23π)cos(2x -2π3)]=32+12(cos 2x -12cos 2x -2x -12cos 2x +2x )=32.该式与x 无关,命题得证.该三角函数式较为复杂,cos 2α、cos 2(x +π3)、cos 2(x -π3)均为二次式,且各个角不相等,需先利用余弦函数的二倍角公式降幂,将其转化为一次式,然后再进行化简,这样运算起来就会容易很多.三、弦切互化当函数式中出现多种不同的三角函数名称时,就需要通过弦切互化,将不同名函数化为同名函数.常用的办法是利用tan α=sin αcos α或sin 2α+cos 2α=1将切化弦或将弦化切.例3.已知tan α=2,求4sin α-2cos α5cos α+3sin α的值.解:因为tan α=2,所以cos α≠0,所以4sin α-2cos α5cos α+3sin α=4sin α-2cos αcos α5cos α+3sin αcos α=4tan α-25+2tan α=611.解答本题,需挖掘题目中的隐含信息cos α≠0,将所求目标式的分子、分母同时除以cos α,利用tan α=sin αcos α,使所求目标式中的函数名称统一为正切函数,最后将已知值代入,求得目标函数式的值.无论是对函数名称、角,还是对幂进行转化,都需要灵活运用三角函数中的基本公式及其变形式,有时也要学会逆用公式.在进行三角恒等变换时,要注意仔细观察三角函数式,选择恰当的三角恒等变换技巧.(作者单位:江苏省射阳县高级中学)解题宝典40。
三角恒等变形中常见解题方法与技巧
![三角恒等变形中常见解题方法与技巧](https://img.taocdn.com/s3/m/15cf4e3ca32d7375a41780fc.png)
n si
. . . . . . .
种角作为基本量 , 其他形式 的角化为这种 形式 的角, 将 从
而 使 问题 得 以解 决 .
例 已 c i = ,s 值 2 知。 T )了求i 的 . s' 一 3 n 十 2
例 1 求 证
—
2,知 寻+的 倍 詈+ ,诱 公 得s x 角 2 为 2由 导 式 i = 已 n 2
一 os
( z. 号+)
,。z : 。 进 行 幂 的 升 降.
3 .幂 的 升 降 在三角恒等变形 中, 常根 据 三 角 式 的 次 数 的 差 异 , 用 运
分 本 不 直 求 角 需 凑 ,詈+ 析 题 能 接 出 2 故 要 角即 ,
s n
— 一 .
. . . . . .
iO
. .
 ̄
,
cos
. . . . . . .
O
-
. . . . .
 ̄
.
O
.. .
..
2
-
c os
. . . . . . . . . . . —
0
—
.
“
解 原式 :L
+L
+
分析
等式 左 边 有 正 切 函数 和 余 弦 函 数 , 等 式 右 边 而
只 有 正 弦 , 可 以 采 用 切 化 弦 来 化 简 等 式左 边. 故
.
—
。 —
1 .
岫 ∞ ,
÷ n。 (3 7 一 0 n 0 ÷+ (s。co + s0 ÷c0 一s ) 1n。 00 。。 i l 4 7 = 1 (2i m。1n。 + x一so 3 丁i ÷ x m。 + so 卜 )7 0 n n 。u u m 7 ÷一 ×n。÷i。÷ 一 so so . i n = ‘ ÷ 7+ “ u 7
2023高中数学三角恒等变换题型总结及解题方法
![2023高中数学三角恒等变换题型总结及解题方法](https://img.taocdn.com/s3/m/549d81b6951ea76e58fafab069dc5022aaea46e3.png)
(每日一练)2023高中数学三角恒等变换题型总结及解题方法单选题1、若3sinθ=cosθ−1,则tan θ2的值为( ) A .−3B .13C .−3或0D .−13 答案:C 解析:观察角度之间的联系,利用倍角公式和同角三角函数的基本关系式化简求值. 由3sinθ=cosθ−1,得6sin θ2cos θ2=1−2sin 2θ2−1,得2sin θ2(3cos θ2+sin θ2)=0,得sin θ2=0或3cos θ2+sin θ2=0, 得tan θ2=0或tan θ2=−3. 故选:C 小提示:本题利用倍角公式和同角三角函数的基本关系式化简求值,属于容易题. 2、若tan α=2tan 10∘,则cos (α−80∘)sin (α−10∘)=( ) A .1B .2C .3D .4 答案:C 解析:利用诱导公式、两角和公式可得cos (α−80∘)sin (α−10∘)=sin αcos10∘+cosαsin10∘sin αcos10∘−cosαsin10∘,再利用弦化切即得.∵tan α=2tan 10∘, ∴cos (α−80∘)sin (α−10∘)=cos (α+10∘−90∘)sin (α−10∘)=sin (α+10∘)sin (α−10∘) =sin αcos10∘+cosαsin10∘sin αcos10∘−cosαsin10∘=tan α+tan10∘tan α−tan10∘ =3tan 10∘tan 10∘=3. 故选:C.3、关于函数y =sinx(sinx +cosx)描述正确的是( ) A .最小正周期是2πB .最大值是√2C .一条对称轴是x =π4D .一个对称中心是(π8,12) 答案:D 解析:利用三角恒等变换化简y 得解析式,再利用正弦型函数的图像和性质得出结论. 解:由题意得:∵y =sinx(sinx +cosx) =sin 2x +12sin2x=1−cos2x 2+12sin2x =√22sin(2x −π4)+12选项A:函数的最小正周期为T min=2πω=2π2=π,故A错误;选项B:由于−1≤sin(2x−π4)≤1,函数的最大值为√22+12,故B错误;选项C:函数的对称轴满足2x−π4=kπ+π2,x=k2π+3π8,当x=π4时,k=−14∉Z,故C错误;选项D:令x=π8,代入函数的f(π8)=√22sin(2×π8−π4)+12=12,故(π8,12)为函数的一个对称中心,故D正确;故选:D4、函数f(x)=√3cosx−sinx在区间[0,2π3]上的值域为()A.[−√32,√32]B.[−√3,√3]C.[−√32,1]D.[−1,2]答案:B 解析:先将函数转化为f(x)=2cos(x+π6),再根据x∈[0,2π3],利用余弦函数的性质求解.函数f(x)=√3cosx−sinx=2cos(x+π6)因为x∈[0,2π3],所以x+π6∈[π6,5π6],cos(x+π3)∈[−√32,√32],所以函数f(x)的值域为[−√3,√3],故选:B5、设锐角△ABC的内角A,B,C所对的边分别为a,b,c,若A=π3,a=√3,则b2+c2+bc的取值范围为()A.(1,9]B.(3,9]C.(5,9]D.(7,9]答案:D 解析:由正弦定理求出b=2sin B,c=2sin(2π3−B),再由余弦定理可得b2+c2+bc=8sin B sin(2π3−B)+3,化为5+4sin(2B−π6),结合角的范围,利用正弦函数的性质可得结论.因为A=π3,a=√3,由正弦定理可得asin A =√3√32=2=bsin B=csin(2π3−B),则有b=2sin B,c=2sin(2π3−B),由△ABC的内角A,B,C为锐角,可得{0<B<π2,0<2π3−B<π2,,∴π6<B<π2⇒π6<2B−π6<5π6⇒12<sin(2B−π6)≤1⇒2<4sin(2B−π6)≤4,由余弦定理可得a2=b2+c2−2bc cos A⇒3=b2+c2−bc,因此有b2+c2+bc=2bc+3=8sin B sin(2π3−B)+3=4√3sinBcosB+4sin2B+3=2√3sin2B−2cos2B+5=5+4sin(2B−π6)∈(7,9]故选:D.小提示:方法点睛:正弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.。
三角恒等变换各种题型归纳分析
![三角恒等变换各种题型归纳分析](https://img.taocdn.com/s3/m/547b8399dc3383c4bb4cf7ec4afe04a1b071b000.png)
三角恒等变换各种题型归纳分析三角恒等变换一、知识点:一)公式回顾:cos(α±β)=cosαcosβ∓sinαsinβ,简记为C(α±β)sin(α±β)=sinαcosβ±cosαsinβ,简记为S(α±β)sin2α=2sinαcosα,XXX为S2αcos2α=cos²α-sin²α,XXX为C2αtan2α=(α≠kπ/2且α≠kπ)简记为T2α2、二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的两倍,α/2是α/4的两倍,3α是3α/2的两倍,α/3是α/6的两倍等,所有这些都可以应用二倍角公式。
因此,要理解“二倍角”的含义,即当α=2β时,α就是β的二倍角。
凡是符合二倍角关系的就可以应用二倍角公式。
二)公式的变式1±sin²α=(sinα±cosα)²cos²α=1/(1+tan²α)1-cos²α=2sin²αtan(α±β)=(tanα±tanβ)/(1∓tanαtanβ)公式前的±号,取决于2合1公式所在的象限,注意讨论。
absinx+cosx=a+ba+b其中tanθ=b/a二、经典例题剖析:基础题型例1:已知sin2α=5π/13,0<α<π/2,求sin4α,cos4α,tan4α.例2:在△ABC中,cosA=4/5,tanB=2,求tan(2A+2B).题型二:公式的逆向运用例3:求下列各式的值:2tan15°1.化简下列各式:1) sin²22.5°cos²22.5°;2) (1-2sin²75°)/(21-tan15°);3) sin(3π/4)/[1-(tanπ/5)²].2.化简下列各式:1) sin⁴θ-cos⁴θ;2) -αcosα-(3α²/4).3.求值:1) cos(π/12)cos(π/6);2) cos36°cos72°.题型三:升降幂功能与平方功能的应用例3.化简下列各式:1) 1+sin40°;2) 1-sinα;3) 1+cos20°;4) 1-cosα.1) (cos²θ+sin²θ+2sinθcosθ-cos²θ)/(cos²θ+sin²θ-2sinθcosθ) = 2sinθ/(1-cos2θ);2) (cos²θ+sin²θ+2sinθcosθ+cos²θ)/(cos²θ+sin²θ-2sinθcosθ) = 2cosθ/(1+cos2θ).3.已知sinx+cosx=3/2.x∈(0,π),求sin2x和cos2x.2sinxcosx = sin2x。
2024年高考数学专项三角恒等变换4种常见考法归类(解析版)
![2024年高考数学专项三角恒等变换4种常见考法归类(解析版)](https://img.taocdn.com/s3/m/0f8361b8f9c75fbfc77da26925c52cc58bd690a4.png)
三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1 2024年高考数学专项三角恒等变换4种常见考法归类(解析版)T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sinα1+cosα=1-cosαsinα,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin2α2=1-cosα2,cos2α2=1+cosα2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos-75°的值是A.6-22B.6+22C.6-24D.6+2415(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.116(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.17(2023·全国·高三专题练习)sin220°-cos220°sin45°cos155°1-sin40°=.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sinα=23,cosβ=-75,则cos(α-β)=()A.-115B.-1315C.-41415D.2141519(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cosα=13,cosα-β=223,则cosβ=()A.89B.79C.429D.020(2023·陕西榆林·统考模拟预测)若tanα+π4=15,则tanα=()A.-23B.23C.-13D.1321(山西省晋中市2023届高三三模数学试题(A卷))已知α,β为锐角,且tanα=2,sinα+β= 22,则cosβ=()A.-31010B.31010C.-1010D.101022(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tanαtanβ=2,cosα+β=-15,则cosα-β=()A.35B.-35C.115D.-11523(2023·全国·高三专题练习)若α∈π2,3π4,cosα-π4=210,则sinα+π3=24【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sinα=13,cos(α+β)=-223,下列选项正确的有()A.sin(α+β)=±13B.cosβ=-79C.cos2β=-1781D.sin(α-β)=-232725(2023·陕西商洛·统考三模)已知tan(α+β)=3,tanα+π4=-3,则tanβ=()A.-15B.15C.-17D.1726(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sinα=2sinβ,2cosα=cosβ,则sinα-β=.(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cosα=17,cos(α+β)=-1114,则β=.28(2023·全国·高三专题练习)已知cosα=17,cos(α-β)=1314,若0<β<α<π2,则β=.29(2023·河南·校联考模拟预测)设tanα,tanβ是方程x2+33x+4=0的两根,且α,β∈-π2 ,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π330(2023·全国·高三专题练习)已知cosα=255,sinβ=1010,且α∈0,π2,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π431【多选】(2023·全国·高三专题练习)若tan α+tan β=3-3tan αtan β,则α+β的值可能为()A.π3 B.π6C.-2π3D.-5π632(2023·全国·高三专题练习)已知0<α<π2,cos α+π4 =13.(1)求sin α的值;(2)若-π2<β<0,cos β2-π4=33,求α-β的值.33(2023·全国·高三专题练习)已知角α为锐角,π2<β-α<π,且满足tan α2=13,sin β-α =7210(1)证明:0<α<π4;(2)求β.34(2023·全国·高三专题练习)已知sin π4-α=-55,sin 3π4+β =1010,且α∈π4,3π4,β∈0,π4,求α-β的值为.(四)三角函数式的化简35(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3=sin π3-α ,则sin α=()A.0B.±217C.±22D.±3236(2023春·山西·高三校联考阶段练习)已知2sin θ+π4 =3cos θ,则sin θsin θ-cos θ=.37(2023·湖北·校联考模拟预测)已知sin x +π4 =-35,3π4<x <5π4,则sin x 1-tan x =()A.21100B.-21100C.7280D.-728038(2023·全国·高三专题练习)已知θ≠k π+π4k ∈Z ,且cos2θcos 3π2-θ=cos θ-sin θ,则tan θ-π4-tan2π2-θ =()A.83B.53C.-13D.-13339(2023·湖南长沙·长郡中学校考一模)已知α,β∈0,π2,sin (2α+β)=2sin β ,则tan β的最大值为()A.12B.33C.22D.3240(河南省部分学校2023届高三高考仿真适应性测试理科数学试题)已知向量a=2cos75°,2sin75°,b =cos15°,-sin15° ,且(2a +b )⊥(a -λb ),则实数λ的值为()A.8B.-8C.4D.-441(2023·陕西·统考一模)在△ABC 中,点D 是边BC 上一点,且AB =4,BD =2.cos B =1116,cos C =64,则DC =.42【多选】(2023·江苏南通·模拟预测)重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中∠COD =2π3,OC =3OA =3,动点P 在CD 上(含端点),连结OP 交扇形OAB 的弧AB 于点Q ,且OQ =xOC +yOD,则下列说法正确的是()A.若y =x ,则x +y =23B.若y =2x ,则OA ⋅OP=0C.AB ⋅PQ≥-2D.PA ⋅PB ≥11243(广东省潮州市2023届高三二模数学试题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3tan A tan C =tan A +tan C +3.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.考点二二倍角公式(一)给角求值44【多选】(2023·全国·高三专题练习)下列等式成立的是()A.sin275°-cos275°=32B.12sin15°+32cos15°=22C.sin75°cos75°=14D.1-tan15°1+tan15°=3345(2023·河南开封·开封高中校考模拟预测)4sin40°-tan40°sin75°-cos75°sin75°+cos75°的值为()A.66B.12C.63D.146(2023·重庆·统考模拟预测)式子2sin18°3cos29°-sin29°-1cos6°+3sin6°化简的结果为()A.12B.1C.2sin9°D.247(2023·全国·高三专题练习)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为m=2sin18°,若m2+n=4,m n2cos227°-1 =.48(2023·全国·高三专题练习)若λsin160°+tan20°=3,则实数λ的值为()A.4B.43C.23D.433(二)给值(式)求值49【多选】(2023·山西·校联考模拟预测)已知sin x=35,其中x∈π2,π,则()A.tan x=-43B.cos x2=1010C.sin2x=-2425D.cos x-π4=-21050(2023·福建泉州·校考模拟预测)已知cosα=-35,π2≤α≤π,则cos2α+π4=.51(2023秋·湖南衡阳·高三衡阳市一中校考期中)已知sinα-cosα=-23,则sin2α=.52【多选】(2023·全国·高三专题练习)已知cosα+β=-55,cos2α=-45,其中α,β为锐角,则以下命题正确的是()A.sin2α=35B.cosα-β=-2255C.cosαcosβ=510D.tanαtanβ=1353(2023春·山西太原·高三山西大附中校考阶段练习)已知α∈0,π,cosα=-35,则cos2α2+π4=.54(2023秋·辽宁葫芦岛·高三统考期末)已知α∈0,π2,sin2α=cosπ4-α,则cos2α的值为()A.0B.12C.32D.-3255(2023·全国·高三专题练习)已知sinαsinπ3-α=3cosαsinα+π6,则cos2α+π3=()A.-32B.-1 C.12D.3256(2023·全国·高三专题练习)已知cos2π4+α=45,则sin2α=()A.35B.-35C.15D.-15(三)给值求角57(2023·全国·高三专题练习)已知tan α=13,tan β=-17,且α,β∈(0,π),则2α-β=()A.π4B.-π4C.-3π4D.-3π4或π458(2023·全国·高三专题练习)若α∈0,π ,cos2α=sin 2α2-cos 2α2,则α=.(四)与同角三角函数的基本关系综合59(2023·全国·高三专题练习)已知α∈π4,π2,且sin2α=45,则3sin α-cos α4sin α+2cos α=60(2023·海南·校联考模拟预测)已知tan α=2,则1-3cos 2αsin2α=.61(2023秋·四川成都·高三四川省成都市玉林中学校考阶段练习)已知tan α=2,则sin2αsin 2α+sin αcos α-cos2α-1的值为()A.12B.1C.2D.-1(五)与诱导公式的综合62(2023春·江西南昌·高三统考开学考试)已知tan (π-α)=22,则sin2α=()A.429B.229C.-229D.-42963(2023·全国·高三专题练习)若cos π3-2x =-78,则sin x +π3的值为( ).A.14B.78C.±14D.±7864(2023·河北·统考模拟预测)已知sinα-π6=-25,则cos2α+5π3=()A.825B.1725C.255D.5565(2023·湖北武汉·统考二模)已知sinα+π3=35,则sin2α+π6=()A.2425B.-2425C.725D.-725(六)利用二倍角公式化简求值66(2023·全国·高三专题练习)已知tanα=3,则sinα-π4cosα+π4sin2α=.67(2023·全国·高三专题练习)若sinθ1-cosθ=2,则1+2sin2θ+3cos2θ1-2sin2θ+3cos2θ=()A.5B.43C.2D.468(2023·全国·高三专题练习)已知函数f x =sin2x+cos2x-2sinπ-xcosπ+xsin9π2-x-cos13π2+x.(1)求fπ12的值;(2)已知fα =23,求sin2α的值.考点三辅助角公式的应用69(2023·全国·高三专题练习)函数y =cos x +cos x -π3x ∈R 的最大值为,最小值为.70(2023·陕西铜川·统考二模)已知函数f x =cos x +π2 cos x +π4,若x ∈-π4,π4,则函数f x 的值域为.71(2023·山东泰安·统考二模)已知sin α+3cos α=233,则sin 5π6-2α =.72(2023·湖北荆门·荆门市龙泉中学校联考模拟预测)若sin 2α+π6+cos2α=-3,则tan α=.73(2023·辽宁丹东·统考二模)若cos α≠0,2(sin2α+5cos α)=1+cos2α,则tan2α=()A.-43B.-34C.34D.4374(2023秋·福建莆田·高三校考期中)已知函数f (x )=23sin x cos x -2cos 2x +1.(1)求函数f (x )的最小正周期及单调递增区间;(2)求函数f (x )在区间-5π12,π6的值域;考点四简单的三角恒等变换(一)半角公式的应用75(2023秋·河北石家庄·高三统考期末)已知1+cos θsin θ=33,则tan θ2=.76(2023·全国·高三专题练习)若α∈0,π2 ,sin α2-cos α=tan α2,则tan α=( ).A.33B.3C.34D.6277(2023·全国·高三专题练习)若cos α=-45,α是第三象限的角,则1-tan α21+tan α2=()A.2B.12C.-2D.-1278(2023·浙江·校联考二模)数学里有一种证明方法叫做Pr oofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH ⊥AB ,垂足为H ,记∠COB =θ,则由tan ∠BCH =BHCH可以直接证明的三角函数公式是()A.tanθ2=sin θ1-cos θB.tanθ2=sin θ1+cos θC.tanθ2=1-cos θsin θD.tanθ2=1+cos θsin θ(二)三角恒等式的证明79(2023·全国·高三专题练习)已知α,β∈0,π2 ,且满足sin βsin α=cos α+β .(1)证明:tan β=sin αcos α1+sin 2α;(2)求tan β的最大值.80(2023·高三课时练习)小明在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2-18°cos48°;+cos248°-sin-18°⑤sin2-25°+cos255°-sin-25°cos55°.(1)请依据②式求出这个常数;(2)相据(1)的计算结果,将小明的发现推广为三角恒等式,并证明你的结论.81(2023春·江苏宿迁·高三校考阶段练习)已知△ABC为斜三角形.(1)证明:tan A+tan B+tan C=tan A tan B tan C;(2)若△ABC为锐角三角形,sin C=2sin A sin B,求tan A+tan B+tan C的最小值.(三)三角恒等变换的综合问题82(2023春·北京·高三清华附中校考期中)已知函数f x =sin x +cos x 2-2sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)求函数f x 在区间0,π2上的最大值和最小值,并求相应的x 的值.83(2023·上海浦东新·统考三模)已知向量a =3sin x ,cos x ,b =sin x +π2,cos x .设f x =a ⋅b .(1)求函数y =f x 的最小正周期;(2)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若f A =1,b =4,三角形ABC 的面积为23,求边a 的长.84(2023·浙江绍兴·统考模拟预测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足a +b +c a +b -c =3ab .(1)求角C 的大小;(2)若△ABC 是锐角三角形,求a +2bc的取值范围.85(2023春·四川成都·高三成都外国语学校校考期中)已知向量a =sin x +π6,cos 2x ,b =cos x ,-1 .设函数f x =2a ⋅b +12,x ∈R .(1)求函数f x 的解析式及其单调减区间;(2)若将y =f x 的图像上的所有点向左平移π4个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数h x 的图像.当x ∈m ,m +π2(其中m ∈0,π2 )时,记函数h x 的最大值与最小值分别为h x max 与h x min ,设φm =h x max -h x min ,且使对∀m ∈0,π2都有k ≥φm 成立,求实数k 的最小值.86(2023春·四川成都·高三成都市锦江区嘉祥外国语高级中学校联考期中)嘉祥教育秉承“为生活美好、社会吉祥而努力”的企业理念及“坚韧不拔、创造第一”的企业精神,经过30年的发展和积累,目前已建设成为具有高度文明素质和良好社会信誉的综合性教育集团.某市有一块三角形地块,因发展所需,当地政府现划拨该地块为教育用地,希望嘉祥集团能帮助打造一所新的教育品牌学校.为更好地利用好这块土地,集团公司决定在高三年级学生中征集解决方案.如图所示,AB=BC=AC=2km,D是BC中点,E、F分别在AB、AC上,△CDF拟建成办公区,四边形AEDF拟建成教学区,△BDE拟建成生活区,DE和DF拟建成专用通道,∠EDF=90°,记∠CDF=θ.(1)若θ=30°,求教学区所在四边形AEDF的面积;(2)当θ取何值时,可使快速通道E-D-F的路程最短?最短路程是多少?三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos -75° 的值是A.6-22B.6+22C.6-24D.6+24【答案】C【解析】变形cos -75° =cos 45°-120° 后,根据两角差的余弦公式计算可得答案.【详解】cos -75° =cos 45°-120° =cos45°⋅cos120°+sin45°sin120°=22×-12+22×32=6-24,故选:C .【点睛】本题考查了两角差的余弦公式,属于基础题.15(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.1【答案】A【分析】根据诱导公式及三角恒等变换化简求值即可.【详解】已知可化为:sin20°cos40°+cos20°sin40°=sin 20°+40° =32.故选:A16(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.【答案】-2【分析】根据三角函数的诱导公式和两角和的余弦公式,准确化简,即可求解.【详解】由三角函数的诱导公式和两角和的余弦公式,可得:cos70°-cos20°cos65°=cos (90°-20°)-cos20°cos65°=sin20°-cos20°cos 45°+20°=sin20°-cos20°cos45°cos20°-sin45°sin20°=- 2.故答案为:- 2.17(2023·全国·高三专题练习)sin 220°-cos 220°sin45°cos155°1-sin40°=.【答案】2【分析】根据三角恒等变换公式化简求值即可.【详解】因为sin 220°-cos 220°=sin20°-cos20° sin20°+cos20° ,cos155°=-cos25°=-cos 45°-20° ,1-sin40°=cos 220°+sin 220°-2sin20°cos20°=cos20°-sin20° =cos20°-sin20°,所以sin 220°-cos 220°sin45°cos155°1-sin40°=cos20°+sin20°22cos 45°-20° =cos20°+sin20°22×cos45°cos20°+sin45°sin20°=cos20°+sin20° 12cos20°+sin20°=2故答案为:2.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sin α=23,cos β=-75,则cos (α-β)=()A.-115B.-1315C.-41415D.21415【答案】A【分析】先根据0<α<π2<β<π,sin α=23,cos β=-75求出cos α,sin β,再利用两角差的余弦公式求cos (α-β)【详解】解析:∵0<α<π2<β<π,sin α=23,cos β=-75,∴cos α=1-sin 2α=1-29=73,sin β=1-cos 2β=1-725=325,∴cos (α-β)=cos αcos β+sin αsin β=73×-75 +23×325=-115,故选:A .19(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cos α=13,cos α-β =223,则cos β=()A.89B.79C.429D.0【答案】D【分析】利用三角恒等变换计算即可,注意整体思想的运用.【详解】解法一:∵0<α<π,cos α=13,∴sin α=223,又-π<α-β<0,cos α-β =223⇒-π2<α-β<0,∴sin α-β =-13,∴cos β=cos α-α-β =cos αcos α-β +sin a sin α-β=13×223+223×-13 =0,故选:D .解法二:∵0<α<π,cos α=13,∴sin α=223,∴cos α-β =sin α,即cos β-α =cos π2-α ∵0<β-α<π,0<π2-α<π2∴β-α=π2-α⇒β=π2,cos β=0,故选:D .20(2023·陕西榆林·统考模拟预测)若tan α+π4 =15,则tan α=()A.-23B.23C.-13D.13【答案】A【分析】利用正切函数的和差公式即可得解.【详解】因为tan α+π4 =15,所以tan α=tan α+π4 -π4 =15-11+15×1=-23.故选:A .21(山西省晋中市2023届高三三模数学试题(A 卷))已知α,β为锐角,且tan α=2,sin α+β =22,则cos β=()A.-31010B.31010C.-1010D.1010【答案】D【分析】由条件,结合同角关系求sin α,cos α,再由特殊角三角函数值求α+β,再利用两角差的余弦公式求cos β.【详解】因为tan α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,α为锐角,所以sin α=255,cos α=55,且α>π4.因为α,β为锐角,α>π4,所以π4<α+β<π,又sin (α+β)=22,所以α+β=3π4,故cos β=cos 3π4-α =cos 3π4cos α+sin 3π4sin α=1010.故选:D .22(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tan αtan β=2,cos α+β =-15,则cos α-β =()A.35B.-35C.115D.-115【答案】A【分析】根据切化弦以及两角和差公式解出sin αsin β,cos αcos β,代入两角差的余弦公式即可.【详解】由题意可得tan αtan β=sin αsin βcos αcos β=2cos α+β =cos αcos β-sin αsin β=-15,即sin αsin β=2cos αcos βcos αcos β-sin αsin β=-15 ,sin αsin β=25cos αcos β=15,故cos α-β =cos αcos β+sin αsin β=35.故选:A .23(2023·全国·高三专题练习)若α∈π2,3π4,cos α-π4 =210,则sin α+π3=【答案】4-3310【分析】根据同角三角函数的基本关系求出sin α-π4,由cos α=cos π4+α-π4 求出cos α,从而求出sin α,再利用两角和的正弦公式计算可得.【详解】∵cos α-π4 =210,α∈π2,3π4 ,所以α-π4∈π4,π2,∴sin α-π4 =1-cos 2α-π4 =7210,∴cos α=cos π4+α-π4 =cos π4cos α-π4 -sin π4sin α-π4 =22×210-7210×22=-35,sin α=1-cos 2α=45,所以sin α+π3 =sin αcos π3+cos αsin π3=45×12-35×32=4-3310.故答案为:4-331024【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sin α=13,cos (α+β)=-223,下列选项正确的有()A.sin (α+β)=±13B.cos β=-79C.cos2β=-1781D.sin (α-β)=-2327【答案】BD【分析】根据同角关系以及诱导公式可得可得α+β=π-α,进而可判断A ,根据和差角公司以及二倍角公式即可代入求解BCD .【详解】由于0<α<π2且sin α=13,所以cos α=223,又α+β∈π2,3π2 ,cos (α+β)=-223=-cos α,故α+β=π-α或α+β=π+α,当α+β=π+α时,β=π显然不满足,故α+β=π-α,所以sin (α+β)=13,故A 错误,对于B ,cos β=cos α+β cos α+sin α+β sin α=-223×223+13×13=-79,故B 正确,对于C , cos2β=2cos 2β-1=2×-792-1=1781,故C 错误,对于D ,由B 可知sin β=1-cos 2β=429,所以sin (α-β)=sin αcos β-cos αsin β=13×-79-223×429=-2327,故D 正确,故选:BD25(2023·陕西商洛·统考三模)已知tan (α+β)=3,tan α+π4=-3,则tan β=()A.-15B.15C.-17D.17【答案】D【分析】由tan α+π4 =-3求得tan α,再使用凑配角由tan (α+β)=3求tan β.【详解】tan α+π4 =1+tan α1-tan α=-3,解得tan α=2,则tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan β=17.故选:D 26(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sin α=2sin β,2cos α=cos β,则sin α-β =.【答案】35/0.6【分析】利用题目信息以及平方关系分别计算得α、β角的正弦、余弦值,再利用两角差的正弦公式即可求得结果.【详解】因为sin α=2sin β,2cos α=cos β,即cos α=12cos β,所以sin 2α+cos 2α=4sin 2β+14cos 2β=1,又4sin 2β+14cos 2β=154sin 2β+14sin 2β+14cos 2β=1,即sin 2β=15,则cos 2β=45,又α、β均为锐角,所以sin β=55,cos β=255,所以sin α=255,cos α=55,所以sin α-β =sin αcos β-cos αsin β=255×255-55×55=35.故答案为:35(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cos α=17,cos (α+β)=-1114,则β=.【答案】π3/60°【分析】要求β,先求cos β,结合已知可有cos β=cos [(α+β)-α],利用两角差的余弦公式展开可求.【详解】∵α、β为锐角,∴0<α+β<π∵cos α=17,cos (α+β)=-1114∴sin α=1-cos 2α=437,sin (α+β)=1-cos 2α+β =5314∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=-1114 ×17+5314×437=12由于β为锐角,∴β=π3故答案为:π328(2023·全国·高三专题练习)已知cos α=17,cos (α-β)=1314,若0<β<α<π2,则β=.【答案】π3【详解】因为cos α=17,0<α<π2,所以sin α=437,又因为0<α-β<π2,所以sin (α-β)=3314,所以sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=437×1314-17×3314=32,又因为0<β<π2,所以β=π3.29(2023·河南·校联考模拟预测)设tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈-π2,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π3【答案】B【分析】利用两角和的正切公式求解即可.【详解】因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33,tan αtan β=4,所以tan (α+β)=tan α+tan β1-tan αtan β=3,因为tan α+tan β=-33,tan αtan β=4,所以tan α<0,tan β<0,且α,β∈-π2,π2,所以α,β∈-π2,0 ,所以α+β∈-π,0 ,所以α+β=-2π3,故选:B .30(2023·全国·高三专题练习)已知cos α=255,sin β=1010,且α∈0,π2 ,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π4。