专题五 第1讲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲函数的图象与性质
热点一函数的性质及应用
1.单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.
2.奇偶性
(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.
(2)在公共定义域内:
①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数; ②两个偶函数的和函数、积函数都是偶函数; ③一个奇函数、一个偶函数的积函数是奇函数. (3)若f (x )是奇函数且在x =0处有定义,则f (0)=0. (4)若f (x )是偶函数,则f (x )=f (-x )=f (|x |).
(5)图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称. 3.周期性
定义:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f (a +x )=f (x )(a ≠0),则其一个周期T =|a |. 常见结论:
(1)若f (x +a )=-f (x ),则函数f (x )的最小正周期为2|a |,a ≠0. (2)若f (x +a )=
1
f (x )
,则函数f (x )的最小正周期为2|a |,a ≠0. (3)若f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b
2
对称.
例1 (1)设函数f (x )=cos ⎝⎛⎭
⎫π
2-πx +(x +e )2x 2+e 2
的最大值为M ,最小值为N ,则(M +N -1)2 019的值为( )
A .1
B .2
C .22 019
D .32 019 答案 A
解析 由已知x ∈R ,f (x )=cos ⎝⎛⎭
⎫π
2-πx +(x +e )2x 2+e 2
=sin πx +x 2+e 2+2e x x 2+e 2=sin πx +2e x x 2+e 2+1,
令g (x )=sin πx +2e x
x 2+e
2
,易知g (x )为奇函数, 由于奇函数在对称区间上的最大值与最小值的和为0,
M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,所以(M +N -1)2 019=1,故选A.
(2)已知定义在R 上的函数f (x )满足:函数y =f (x -1)的图象关于点(1,0)对称,且x ≥0时恒有f (x +2)=f (x ),当x ∈[0,1]时,f (x )=e x -1,则f (-2 019)+f (2 018)=________. 答案 1-e
解析 因为函数y =f (x -1)的图象关于点(1,0)对称,所以y =f (x )的图象关于原点对称, 又定义域为R ,所以函数y =f (x )是奇函数, 因为当x ≥0时恒有f (x +2)=f (x ), 所以f (-2 019)+f (2 018)=-f (2 019)+f (0) =-f (1)+f (0)=-(e 1-1)+(e 0-1)=1-e.
思维升华 可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.
跟踪演练1 (1)已知函数f (x )=⎩
⎪⎨⎪⎧
|(x -a )2-1|+a ,x ≥0,
|x -a |+2a -1,x <0的最小值为2a -1,则实数a 的取
值范围是( ) A .a =1 B .0<a ≤1 C .a <0或a =1 D .a <0或a ≥1
答案 C
解析 在平面直角坐标系内画出函数f (x )的图象(图略),由图易得当a ≥0时,函数f (x )在[0,+∞)上的最小值为a ,在(-∞,0)上单调递减,当x →0(x <0)时,f (x )→3a -1,要使函数f (x )的最小值为2a -1,则有a =2a -1≤3a -1,解得a =1;当-1≤a <0时,函数f (x )在[0,+∞)上的最小值为a ,在(-∞,0)上的最小值为2a -1,要使函数f (x )的最小值为2a -1,则有2a -1≤a ,解得a ≤1,所以-1≤a <0;当a <-1时,函数f (x )在[0,+∞)上的最小值为a 2+a -1,在(-∞,0)上的最小值为2a -1,要使函数f (x )的最小值为2a -1,则有2a -1≤a 2+a -1,解得a ≤0或a ≥1,所以a <-1.综上所述,实数a 的取值范围为a <0或a =1,故选C. (2)(2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( ) A .-50 B .0 C .2 D .50 答案 C
解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ),
∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),
∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,
∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50)=f (1)+f (2)=2+0=2. 故选C.
热点二 函数图象及应用
1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.
2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点. 例2 (1)(2018·全国Ⅱ)函数f (x )=e x -e -
x
x 2
的图象大致为( )