张量分析——初学者必看
张量入门
![张量入门](https://img.taocdn.com/s3/m/349b7216eff9aef8941e06b9.png)
3
2 33
ii
2
2 ii ( 11 22 33 ) i 1
3
2
ij ij ij ij
i 1 j 1
3
3
11 11 12 12 13 13 21 21 22 22 23 23 31 31 32 32 33 33
2.下标记号法
◆ 在张量的讨论中,都采用下标字母符号,来表
示和区别该张量的所有分量。
◆ 不重复出现的下标符号称为自由标号。自由标
号在其方程内只罗列不求和。以自源自标号的数 量确定张量的阶次。◆ 重复出现,且只能重复出现一次的下标符号称
为哑标号或假标号。哑标号在其方程内先罗列, 再求和。
3.求和约定
◆ 张量导数就是把张量的每个分量都对坐标参数
求导数。
◆ 对张量的坐标参数求导数时,采用在张量下标 符号前上方加“ ′”的方式来表示。例如 Ai j , 就表示对一阶张量 Ai 的每一个分量对坐标参数
xj求导。
◆ 如果在微商中下标符号i是一个自由下标,则
算子 i 作用的结果,将产生一个新的升高一阶 的张量;如果在微商中,下标符号是哑标号, 则作用的结果将产生一个新的降低一阶的张量。 例如:
★
关于求和标号,即哑标有: ◆ 求和标号可任意变换字母表示。 ◆ 求和约定只适用于字母标号,不适用于数字标号。
◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii a a a
2 11 2 22
2
2
2 33
2
(aii ) (a11 a22 a33 )
第一章 张量分析初步
![第一章 张量分析初步](https://img.taocdn.com/s3/m/13061c0a7cd184254b353510.png)
eijk eijk 6
证明见例题
eijk与ij间的关系
由排列符号的性质 : ei e j eijk ek
ei e j • ek eijk
由于ei e j • ek表示的是混合积,其物理意义是单位立方体的体积.
另外,由矢量分析知, 平行六面体的体积可以表示成其三个棱的行
i e1, j e2, k e3
X1
X3 P(x1, x2, x3)
O
X2
➢ 再对上述代换结果进行简写P点改写为: P(x1,x2,x3)P(xi, i=1,2,3)P(xi)
➢ 基向量:ei, i=1,2,3 ei ➢ 则称上述字母i为指标,i的取值i=1,2,3为指标i的取值
列式形式.
eeij
(i1, ( j1
i2,i3 , j2,
)
j3
)
ek (k1,k 2 ,k3)
ei,ej,ek为3个单位基向量, i,j,k互不相等。
i1 i2 i3 ei e j • ek j1 j2 j3 eijk
k1 k2 k3
a13 x3 a23 x3
b1 b2
a31x1 a32 x2 a33 x3 b3
如何用一个最简单 的式子来表示?
用矩阵? 还有更简单的表示方法吗? 可总结为:aij x j bi
aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号
两种方式:
将左式展开,再给定每一个i值,求左右是否相等;
只有当i=j时ij才不等于“0”,
∴
a j ij ai ii ( ii不求和) ai
张量分析清华大学张量分析你值得拥有
![张量分析清华大学张量分析你值得拥有](https://img.taocdn.com/s3/m/1551d59aba4cf7ec4afe04a1b0717fd5360cb290.png)
g是正实数(右手系)
斜角直线坐标系旳基矢量与矢量分量
➢ 三维空间中旳斜角直线坐标系和基矢量
定义逆变基矢量 g j,满足对偶条件:
g j gi ij (i, j = 1, 2,3)
问题:已知 gi,怎样求 g j ?
※ 根据几何图形直接拟定
由对偶条件可知, g1与 g2 、g3 均正交,所以正交于 g2与 g3所
第1章 矢量与张量
2023年12月12日
张量旳两种体现形式
实体形式
分量形式
几何形式 定义式
代数形式 计算式
概念旳内涵和外 延(定量)
怎样计算?
主要内容
➢ 矢量及其代数运算 ➢ 斜角直线坐标系旳基矢量与矢量分量 ➢ 曲线坐标系及坐标转换关系 ➢ 并矢与并矢式 ➢ 张量旳基本概念 ➢ 张量旳代数运算 ➢ 张量旳矢积
g1 1
g2 x1(cos x2 cos x3i cos x2 sin x3 j sin x2k) g2 x1
g3 x1注sin:x2(()s式in 只x3i对 c正os交x3曲j) 线坐标系成立,g3 x1 sin x2
☆正交曲可作线为坐求标正系交与系L中am度é量常张数量旳一种措施。
y
※平面极坐标系
(x, y) (x1, x2)
r
g gr
(r, ) (x1, x2 )
矢径:
r x1i x2 j
j
x1
x2
(x1)2 (x2)2
arctan
x2 x1
x1
x1
cos
x2
x2 x1 sin x2
i
x
平面极坐标系
xi' = xi' xi
r g1 i cos x2 j sin x2
最新第1章-张量分析(清华大学张量分析-你值得拥有)PPT课件
![最新第1章-张量分析(清华大学张量分析-你值得拥有)PPT课件](https://img.taocdn.com/s3/m/6c7b940dad51f01dc281f1f7.png)
1 、g
2
P
其中 g 1 、g 2 不一定是单位矢量。
矢量 P 可表示为:
P P1 g1 P 2 g2
2
P g P g 1
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系的协变基矢量和逆变基矢量
P P g :哑指标
x2
( x 1 , x 2 ) Einstein求和约定
r
g2
如何计算 u(vw)?
vw
观察右图,可知 vw正交于
u
v 、w 构成的平面,而 u(vw)
w
正交于 vw,因此,u(vw)
一定在 v 、w 构成的平面
v
u (v w) v w
u(vw)
(u w)v (u v)w (uv) w
数形结合
矢量及其代数运算
➢矢量的乘法 矢量的混合积
uv wuvw群u论的v轮w换次序不变性w
张
gij gi gj gij gi gj
量
可证明:
分 析
g ij g ji
gij g ji
的
称 g i j 为度量张量的协变分量
起
称 g i j 为度量张量的逆变分量
点
gi gij g j gi = g ij g j
协变基矢量在逆变基矢量下分解 逆变基矢量在协变基矢量下分解
斜角直线坐标系的基矢量与矢量分量
※ 根据几何图形直接确定
由对偶条件可知, g 1 与 g 2 、g 3 均正交,因此正交于 g 2 与 g 3 所
确定的平面;其模的大小等于
g1 1
g1 cos
g1 g1
2 g2
2
g3
斜角直线坐标系的基矢量与矢量分量
弹性力学张量分析学习—对于初学者很有用PPT课件
![弹性力学张量分析学习—对于初学者很有用PPT课件](https://img.taocdn.com/s3/m/470698c7482fb4daa48d4b45.png)
符号ij 与erst
➢ erst 符号 (排列符号或置换符号,Eddington)
➢ 定义(笛卡尔坐标系)
1
e rst
1
0
当r, s, t为正序排列时 当r, s, t为逆序排列时 当r, s, t中两个指标值相同时
或
erst
1rssttr
2
(1,2,3)及其轮流换位得到的(2,3,1)和(3,1,2)称为正序排列。 (3,2,1)及其轮流换位得到精的选(课2件,1,3)和(1,3,2)称为逆序排列。
ij
1 0
(i = j) (i, j=1, 2, …, n) (i j)
➢ 特性
1. 对称性,由定义可知指标 i 和 j 是对称的,即
ij ji
精选课件 29
符号ij 与erst
2. ij 的分量集合对应于单位矩阵。例如在三维空间
11 12 13 1 0 0
21
22
23
0
1
0
31 32 33 0 0 1
3
➢ 分解式记法: uu1e1u2e2u3e3 uiei i1
➢ 分量记法: u i
精选课件
Appendix A.1
8
张量基本概念
➢ 指标符号用法
1. 三维空间中任意点 P 的坐标(x, y, z)可缩写成 xi , 其中x1=x, x2=y, x3=z。
2. 两个矢量 a 和 b 的分量的点积(或称数量积)为:
d s2 d x 1 2 d x 22 d x 32
可简写成: ds2 dxi dxi
场函数 f (x1, x2, x3) 的全微分: f
d f xi d xi
精选课件 24
张量分析——初学者必看精选全文
![张量分析——初学者必看精选全文](https://img.taocdn.com/s3/m/725c3837a55177232f60ddccda38376baf1fe084.png)
§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
偶次置换
1 若i, j, k 1,2,3, 2,3,1, 3,1,2 eijk 1 若i, j, k 3,2,1, 2,1,3, 1,3,2
0 若有两个或三个指标相等
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
§A-4 张量的代数运算 三、矢量与张量的叉积
A 张量分析
右叉乘
T a (Tijeie j ) (akek ) Tij akeie jkrer e T jkr ij akeier B
§A-4 张量的代数运算
A 张量分析
四、两个张量的点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
坐标变换式 xi ii xi xi ii xi
ii cos(xi, xi ) ii cos(xi , xi )
§A-3 坐标变换与张量的定义 A 张量分析
[ii ], [ii ]
互逆、正交矩阵
ii ii
ij
1 0
0 1
基矢量变换式
ei iiei ei iiei
坐标变换系数
v 任意向量变换式 i vii i vii i
ip iq ir eijk epqr jp jq jr
kp kq kr
pk
eijk ekqr
iq jq
ir jr
iq jr ir jq
a11 a12 a13 A a21 a22 a23 a11a22a33 a12a23a31
a31 a32 a33 a13a21a32 a13a22a31 a12a21a33 a11a23a32 eijk a1ia2 j a3k eijk ai1a j2ak3
张量分析书籍附详尽易懂
![张量分析书籍附详尽易懂](https://img.taocdn.com/s3/m/16ba2eb2112de2bd960590c69ec3d5bbfd0adabc.png)
n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。
第一章 张量分析基础知识
![第一章 张量分析基础知识](https://img.taocdn.com/s3/m/161cf9f27c1cfad6195fa7fd.png)
晶体物理性能南京大学物理系由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用.鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容.由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.第一章张量的基础知识§1.1标量、矢量和二阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5二阶张量的变换与张量的定义………………………………………………………§1.6张量的足符互换对称…………………………………………………………………§1.7张量的矩阵表示和矩阵的代数运算…………………………………………………§1.8二阶对称张量的几何表示和二阶张量的主轴………………………………………§1.9二阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第二章晶体的弹性与弹性波§2.1弹性性质与原子间力…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应力……………………………………………………………………………………§2.4推广的虎克定律、弹性系数…………………………………………………………§2.5立方晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因子的测量方法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3高频电场的介电极化(光的色散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离子晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的一般性质…………………………………………………………………§4.2常用铁电体的实验规律……………………………………………………………§4.3铁电体的相变热力学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电方程和机电耦合系数…………………………………………………………§4.7压电晶体的应用实例――石英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲面……………………………………………………………§5.4晶体表面上的折射…………………………………………………………………§5.5晶体偏光干涉及其应用……………………………………………………………第六章倍频与参量频率转换§6.1非线性极化…………………………………………………………………………§6.2非线性极化系数……………………………………………………………………§6.3非线性介质中电磁场耦合方程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7角度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放大…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐方法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13非线性材料的性能要求……………………………………………………………第七章电光效应及其应用§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的几个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第八章声光效应及其应用§8.1弹光效应……………………………………………………………………………§8.2声光交互作用产生的衍射现象……………………………………………………§8.3声光交互作用的理论………………………………………………………………§8.4声光效应在一些物理常数测量中的应用…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散角α的推导………………………………………………………E.双轴晶体中双折射面相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第一章 张量分析基础知识以前学的课程中,有关力学、热学、电学、光学等的性质都是以各向同性介质来表述的或以一维问题来说明问题,这对于突出某些物理现象的微观的物理原因方面是必要的,但晶体物理性能是讲晶体中的力学、电学、光学、声学、磁学、热学等物理性能,而晶体的各向异性却是一种很普遍的特性,特别是很多现象如热电、压电、电光、声光、非线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要方面。
第一章张量分析基础知识
![第一章张量分析基础知识](https://img.taocdn.com/s3/m/c086b4d29fc3d5bbfd0a79563c1ec5da50e2d6c6.png)
第⼀章张量分析基础知识晶体物理性能南京⼤学物理系由于近代科学技术的发展,单晶体⼈⼯培养技术的成熟,单晶体的各⽅⾯物理性能(如⼒、声、热、电、磁、光)以及它们之间相互作⽤的物理效应,在各尖端科学技术领域⾥,都得到了某些应⽤.特别是⽯英⼀类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电⼦技术中,⽐较早地在⼯业规模上进⾏⼤批⽣产和⼴泛应⽤.激光问世的四⼗多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应⽤中,已成单晶体应⽤中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之⼀,⽬的就是希望对晶体特别是光电技术中使⽤的晶体(包括基质晶体与⾮线性光学晶体)的有关物理性能及其应⽤⽅⾯的基本知识,有⼀个了解.对今后从事光电晶体的⽣长、检测和应⽤的⼯作,在分析问题、解决问题⽅⾯有所帮助,同时要在今后⼯作中不断从实践和理论两个⽅⾯扩⼤知识领域,有⼀个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个⽅⾯作深⼊全⾯的介绍,也将侧重于激光晶体有关的⼀些性能及其应⽤.鉴于以上考虑,《晶体物理性能》讲义将以离⼦晶体为主要对象,以光电技术上应⽤为线索组织内容,共分为⼋章.着重于从宏观⾓度结合微观机制介绍晶体基本物理性能以及各种交互作⽤过程的物理效应和它们在光电技术中的某些应⽤,包括弹性与弹性波(第⼆章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第⼋章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、⽅便地描述这些物理性能必须使⽤张量来表⽰.因此,在第⼀章,我们介绍了关于张量分析基础知识⽅⾯的内容.由于⽔平有限,实践经验缺乏,时间仓促,因⽽内容安排不妥、取舍不当、错误之处⼀定很多,希望同学们提出宝贵意见,批评指正.第⼀章张量的基础知识§1.1标量、⽮量和⼆阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5⼆阶张量的变换与张量的定义………………………………………………………§1.6张量的⾜符互换对称…………………………………………………………………§1.7张量的矩阵表⽰和矩阵的代数运算…………………………………………………§1.8⼆阶对称张量的⼏何表⽰和⼆阶张量的主轴………………………………………§1.9⼆阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第⼆章晶体的弹性与弹性波§2.1弹性性质与原⼦间⼒…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应⼒……………………………………………………………………………………§2.4推⼴的虎克定律、弹性系数…………………………………………………………§2.5⽴⽅晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因⼦的测量⽅法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3⾼频电场的介电极化(光的⾊散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离⼦晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的⼀般性质…………………………………………………………………§4.2常⽤铁电体的实验规律……………………………………………………………§4.3铁电体的相变热⼒学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电⽅程和机电耦合系数…………………………………………………………§4.7压电晶体的应⽤实例――⽯英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲⾯……………………………………………………………§5.4晶体表⾯上的折射…………………………………………………………………§5.5晶体偏光⼲涉及其应⽤……………………………………………………………第六章倍频与参量频率转换§6.1⾮线性极化…………………………………………………………………………§6.2⾮线性极化系数……………………………………………………………………§6.3⾮线性介质中电磁场耦合⽅程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7⾓度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放⼤…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐⽅法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13⾮线性材料的性能要求……………………………………………………………第七章电光效应及其应⽤§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的⼏个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第⼋章声光效应及其应⽤§8.1弹光效应……………………………………………………………………………§8.2声光交互作⽤产⽣的衍射现象……………………………………………………§8.3声光交互作⽤的理论………………………………………………………………§8.4声光效应在⼀些物理常数测量中的应⽤…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散⾓α的推导………………………………………………………E.双轴晶体中双折射⾯相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第⼀章张量分析基础知识以前学的课程中,有关⼒学、热学、电学、光学等的性质都是以各向同性介质来表述的或以⼀维问题来说明问题,这对于突出某些物理现象的微观的物理原因⽅⾯是必要的,但晶体物理性能是讲晶体中的⼒学、电学、光学、声学、磁学、热学等物理性能,⽽晶体的各向异性却是⼀种很普遍的特性,特别是很多现象如热电、压电、电光、声光、⾮线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要⽅⾯。
张量分析——初学者必看87页PPT
![张量分析——初学者必看87页PPT](https://img.taocdn.com/s3/m/e2be68e83169a4517623a3a0.png)
张量分析——初学者必看
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
第2章-张量分析(清华大学张量分析-你值得拥有)PPT课件
![第2章-张量分析(清华大学张量分析-你值得拥有)PPT课件](https://img.taocdn.com/s3/m/1cebbdf75901020207409cfb.png)
• 负整数次幂
G T 0 T 1(1) T 1 T 1 T T 1
T 2 T 1 T 1
T m T 1 T 1 T 1 T 1
几种特殊的二阶张量
➢ 正张量:N>0的对称二阶张量
uN u 0
➢ 非负张量:N≥0的对称二阶张量 u N u 0
对称二阶张量总可以化为:
N N1e1e1 N2e2e2 N3e3e3
能量密度。而大变形情况会出现高度非线性,则不能 用加法分解,而要用乘法分解。
• 最简单的坐标变换
y y
x cos sin x
y
sin
cos
y
x
• 椭圆曲线的坐标变换
x
正交变换可使椭圆曲线的方程由以下一般形式
ax2 bxy cy2 d 0
变换为最简形式,即两主轴坐标系下形式。
x a
2
y b
2
1
几种特殊的二阶张量
➢ 正交张量Q
• 正交张量的定义和性质
可证: Q e3 e3
Q e1 cos e1 sin e2 Q e2 cos e2 sin e1
e1, e2 整体绕轴向旋转一个角度
几种特殊的二阶张量
• 正交张量对应的正交变换的特性
① 保内积性质 ② 保长度性质 ③ 保角度性质
(Q u) (Q v) u v
(Q u) (Q u) u u
l i
Tii
J2
1 2!
T T ij l
lm i
m j
1 2
(TiiTll
TliTil )
J3
1 3!
T T ijk l
lmn i
Tm n
j k
det(T )
【张量分析ppt课件】张量分析课件第一章 线性空间-50页精选文档
![【张量分析ppt课件】张量分析课件第一章 线性空间-50页精选文档](https://img.taocdn.com/s3/m/e51663c0763231126fdb11a5.png)
(2)∵ x y z ( x 1 y 1 ) z 1 , , ( x n y n ) z n
( x 1 y 1 z 1 , ,x n y n z n )
x ( y z ) ( x 1 ( y 1 z 1 ) , , ( x n ( y n z n ))
( x 1 y 1 z 1 , ,x n y n z n )
∴ x + (y + z )= ( x + y )+ z = x + y + z (4)∵ o(0, ,0)V0 x o (x 1 0 , x n 0 )(x1, ,xn)
∴ xox
(5)∵ ()x ()(x 1 , ,xn) (()x 1 , ,()xn)
∴
(x 1 , ,xn) (x 1 ), ,)xn)
第一章 线性空间
若记实数集合为F,F中的元素记为a、b、c、…。
则加法法则将F中的任意两个元素 a, bF ; c F
+ (a, b)c
abc
乘法法则将F中的任意两个元素 a, bF ; c F
× (a, b)c
abc
显然具有加法法则和乘法则所确定的实数集中元
素间确定关系使得实数集构成一个空间。并记为:
所有以x点为起点的矢量按:
u x yu x z(y 1 x 1 , ,y n x n ) (z 1 x 1 , ,z n x n )
(y 1 ( x 1 ) (z 1 x 1 ) ,,(y n x n ) (z n x n ))
u xy (y1x1, ,ynxn) ((y1x1) ,,(ynxn)) F
a, b,xF
(6) (a b ) x a x b x
a, b,xF
第3章张量分析(清华大学张量分析你值得拥有)精品PPT课件
![第3章张量分析(清华大学张量分析你值得拥有)精品PPT课件](https://img.taocdn.com/s3/m/c3751ca7cc7931b765ce15c7.png)
※矢量的矢量函数 F (v) 的有限微分
F(v; u) lim F (v hu) F (v)
h0
h
F (v hu) F (v) hF (v; u) O(h2 )
dF hF(v; u) hF(v) u F (v) dv F(v) dF
dv
※张量的张量函数的有限微分(协变微分意义下)
张量函数 T ( A),其中, A Aij gi g j,C Cij gi gj
T(A;C) lim T (A hC) T (A)
h0
h
T(A;C) T(A;Cij gi gj ) T(A; gi gj )Cij
T (A hC) T (A) T(A;C)h O(h2)
T( A) : Ch O(h2)
T(A) : C
dT T ( A) : dA T ( A) dT dA
注意:至此,都只是给出定义!
➢ 张量函数导数的链规则
★类似于经典的复合函数求导
经典复合函数 (g(x)) 的导数
d d dg d dg dx d d dg
dg
dห้องสมุดไป่ตู้ dx
dx dg dx
张量的张量复合函数 H H(F (T)) 的导数(二阶张量)
H f (N ) H k0G k1N k2 N 2
ki
ki
(
J1N
,
J
N 2
,
J
N 3
)
例:应力应变关系
1、各向同性材料
σ k0G k1ε k2ε2 ,
ki
ki (J1
,
J
2
,
J
3
)
2、线性各向同性材料
k2 0 k1 2 k0 J1
张量分析
![张量分析](https://img.taocdn.com/s3/m/ef9382a5b0717fd5360cdc77.png)
第一篇 张量分析第一章 矢 量 §1—1 矢量表示法物理中的位移、速度、力都是矢量。
利用三维空间中的有向线段ν表示矢量是最直观的表示法,如图1-1所示。
有向线段的长度v 代表矢量的大小。
这种方法不依赖于坐标系的选择。
矢量的分量表示法是另一种表示方法,选定一个坐标系。
比如通常的正交直线坐标系,即卡氏坐标系,然后确定矢量对于该坐标系的分量(,,)x y z v v v ν(1-1a)这一有序数也可视作一个单行矩阵。
矢量也可以用基矢与其对应分量写成x y z iv jv kv ν=++ (1-1b)其中,,x y z iv jv kv 称为分矢量。
而i(1,0,0),j(0,1,0),k(0,0,1) (1-1c)是单位矢量,它们组成卡氏系中的一组基矢(称为标架)。
§1-2指标符号上面所述用分量(,,)x y z v v v 或用基矢量i,j,k 来表示矢量的方法,在推广到比三维更高的空间时就有困难了。
因此,发展了另一种记法。
把x 、y 、z 分别记为111,,x y z 这样,一个n 维空间的矢量(无法用直观图表示)用分量表示时为123(,,,...,)n v v v v ν= (1-2a)它可视为一个M 维的单行矩阵,且可写为{}i v ν= (1,2,3,...,)i n =同理,基矢i,j,k 可分别写为123,,e e e ,n 维空间的基矢i e (1,2,3,...,)i n =。
而与式(1-1b)对应的写法为112233n n e v e v e v e v ν=++++ (1-2b)相应的分矢量为11,,,i i e v e v ,其中1e =(0,…,0,1,0,…,0) (1-2c)↑ 顺序第i 个这里i 叫做v 的下标,也有记作jv (如本书第三章以后章节所出现)的,这时j 称为上标。
有些量比矢量更复杂,只用一个下(或上)指标还不够,还要采用更多的指标,比如,,,ij ij ijk A B C ,等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ekijekst is jt js it
§A-2 矢量的基本运算
在三维空间中, 任意矢 量都可以表示为三个基 矢量的线性组合
A 张量分析
e1 , e2 , e3
a a1e1 a2e2 a3e3 ai ei
ai为矢量a在基矢量ei下的分解系数, 也称矢量
A 张量分析
T A B ( Aij Bij )eie j Tijeie j
二、矢量与张量的点积(点乘)
矢量与张量点乘的结果仍为张量,新张量b比原张量 T的阶数降低一阶
左点乘
a T (ai ei ) (Tjk e j ek ) aiTjk ijek b
§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Kronecker-符号定义
1 ji ij 0
当i j 当i j
当i, j 1,2,3时,有 11 22 33 1
12 21 23 32 31 13 0
§A-3 坐标变换与张量的定义
A 张量分析
[ii ],[ii ]
互逆、正交矩阵
1 0 ii ii ij 0 1
基矢量变换式
ei ii ei ei iiei
坐标变换系数
任意向量变换式
vi iivi ii vi
§A-3 坐标变换与张量的定义
a11 A a21 a31
a12 a22 a32
a13 a23 a11a22 a33 a12 a23 a31 a33
a13 a21a32 a13 a22 a31 a12 a21a33 a11a23 a32 eijk a1i a2 j a3k eijk ai1a j 2 ak 3
两个二阶张量点积的结果为一个新的二阶张量,这 相当于矩阵相乘
§A-4 张量的代数运算
五、张量的双点积
A 张量分析
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 4
A : B ( Aijkei e j ek )(Brst er es et ) Aijk Brst jr ksei et Aijk B jktei et S
ei ik ek e j jk ek
i1 i 2 i 3 ei e j j1 j 2 j 3
e1 e2 e3 erst ir jset eijtet eijk ek
§A-2 矢量的基本运算
二、矢量叉积
A 张量分析
a b ai ei b j e j ai b j ei e j ai b j eijk ek eijk ai b j ek c ck eijk ai b j
左叉乘
a T (ai ei ) (T jk e j ek ) aiT jk eijrer ek eijr a三、矢量与张量的叉积
右叉乘
A 张量分析
T a (Tij ei e j ) (ak ek ) Tij ak ei e jkrer e jkrTij ak ei er B
e321
31 32 33 0 0 1 21 22 23 0 1 0 1 11 12 13 1 0 0
eijk e jik eikj ekji eijk e jki ekij
i1 i 2 i 3 p1 q1 r1 j1 j 2 j 3 p 2 q 2 r 2 k1 k 2 k 3 p 3 q 3 r 3
Aijk xi y j zk
代表27项 的和式
二、自由指标
§ A-1 指标符号
A11 x1 A12 x2 A13 x3 b1 A21 x1 A22 x2 A23 x3 b2 A31 x1 A32 x2 A33 x3 b3
筒写为
Aij x j bi
j ——哑指标 i——自由指标,在每一项中只出现一次,一个公式 中必须相同
ab a1b1e1e1 a1b2e1e2 a1b3e1e3
§A-3 坐标变换与张量的定义
A 张量分析
x x cos y sin y x sin y cos
x x cos y sin y x sin y cos
§A-3 坐标变换与张量的定义
附A 张量分析
§ A-1 指标符号 例如, 三维空间任意一点P在笛卡儿坐 标系
x1 , x2 , x3
用指标符 号表示为
xi ,
i 1,2,3
数
a1 , a2 , a3 , , an x1 , x2 , x3 , , xn
变量
ai , i 1,2, , n xi , i 1,2, , n
ii 11 22 33 3 ik kj ij ij ij ii jj 3 ij jk kl il
aik kj aij aij ij aii a11 a22 a33 ai ij a j
八、指标置换
A 张量分析
A Aijkei e j ek
§ A-1 指标符号 三、Kronecker-符号和置换符号 (Ricci符号) Kronecker-符号定义
11 12 13 1 0 0 ij 21 22 23 0 1 0 1 31 32 33 0 0 1
ij a j i1a1 i 2 a2 i 3a3 ai im Amj Aij
eijk e pqr
i1 p1 i 2 p 2 i3 p3 i1 p1 ip
eijke pqr
ip iq ir jp jq jr kp kq kr
pk eijk ekqr
iq ir iq jr ir jq jq jr
§A-4 张量的代数运算
七、张量的缩并
A 张量分析
在张量的不变性记法中, 将某两个基矢量点乘, 其结果是一个较原张量低二阶的新张量, 这种运 算称为缩并
A Aijei e j
A Aijei e j Aij ij Aii A11 A22 A33
§A-4 张量的代数运算
§A-2 矢量的基本运算
四、矢量的并乘(并矢)
A 张量分析
a ai ei , b b j e j
并乘
ab ai ei b j e j ai b j ei e j
a2b1e2e1 a2b2e2e2 a2b3e2e3 a3b1e3e1 a3b2e3e2 a3b3e3e3
§A-2 矢量的基本运算
三、矢量的混合积
A 张量分析
a b c eijk ai b j ek cr er eijk ai b j cr kr eijk ai b j ck
ei e j ek eijrer ek eijr rk eijk
Ricci符号
S ai xi a j x j
指标范围
用拉丁字母表示3维,希腊字母表2维
一、求和约定和哑指标
§ A-1 指标符号
双重求和
Aij xi y j
i 1 j 1
3
3
Aij xi y j A11 x1 y1 A12 x1 y2 A13 x1 y3 A21 x2 y1 A22 x2 y2 A23 x2 y3 A31 x3 y1 A32 x3 y2 A33 x3 y3
§A-4 张量的代数运算
四、两个张量的点积
A 张量分析
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
A B ( Aijk ei e j ek ) ( Brs t er es et ) Aijk Brs t ei e j kr es et Aijk Bkst ei e j es et S
指标符号
i—指标——取值范围为小于或等于n的所有正整数
n—维数
§ A-1 指标符号
一、求和约定和哑指标
A 张量分析
S a1 x1 a2 x2 an xn
S ai xi a j x j
i 1 j 1 n n
求和指标 与所用的 字母无关 指标重复 只能一次
约定
直角坐标系的 基矢量
ei e j ij
§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
eijk
偶次置换
1 若i, j , k 1,2,3, 2,3,1, 3,1,2 1 若i, j , k 3,2,1, 2,1,3, 1,3,2 0 若有两个或三个指标相 等
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
奇次置换
§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
i1 i 2 i 3 i1 j1 k1 eijk j1 j 2 j 3 i 2 j 2 k 2 k1 k 2 k 3 i 3 j 3 k 3
的分量
一、矢量点积
ei e j ij
§A-2 矢量的基本运算
一、矢量点积
A 张量分析
a b ai ei b j e j ai b j ij ai bi a j b j
二、矢量叉积