数列常见题型汇总经典(超级经典)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列常见题型汇总经典(超级经典)
————————————————————————————————作者:————————————————————————————————日期:
高中数学《数列》常见、常考题型总结
题型一 数列通项公式的求法
1.前n 项和法(知n S 求n a )⎩⎨
⎧-=-11
n n n S S S a )
2()1(≥=n n
例1、已知数列}{n a 的前n 项和2
12n n S n -=,求数列|}{|n a 的前n 项和n T
1、若数列}{n a 的前n 项和n
n S 2=,求该数列的通项公式。
2、若数列}{n a 的前n 项和32
3
-=n n a S ,求该数列的通项公式。
3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足2
2n S T n n -=,
求数列}{n a 的通项公式。
2.形如)(1n f a a n n =-+型(累加法)
(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111
1≥+==--n a a a n n n ,证明2
1
3-=n n a
1. 已知数列{}n a 的首项为1,且*
12()n n a a n n N +=+∈写出数列{}n a 的通项公式.
2. 已知数列}{n a 满足31=a ,)2()
1(1
1≥-+=-n n n a a n n ,求此数列的通项公式.
3.形如
)(1
n f a a n
n =+型(累乘法) (1)当f(n)为常数,即:q a a n
n =+1(其中q 是不为0的常数),此数列为等比且n a =1
1-⋅n q a .
(2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111
,1-+==n n a n n
a a )2(≥n ,求数列的通项公式。
1、在数列}{n a 中111
1
,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
2、求数列)2(1
232,111
≥+-==-n a n n a a
n n 的通项公式。
4.形如s
ra pa a n n n +=
--11
型(取倒数法)
例1. 已知数列{}n a 中,21=a ,)2(1
211
≥+=--n a a a n n n ,求通项公式n a
练习:1、若数列}{n a 中,11=a ,1
31+=
+n n
n a a a ,求通项公式n a .
2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .
5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)
(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;
(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设)(1A a c A a n n +=+
+,利用待定系数法求出A
例1.已知数列}{n a 中,,2
1
21,211+==+n n a a a 求通项n a .
练习:1、若数列}{n a 中,21=a ,121-=+n n a a ,求通项公式n a 。
3、若数列}{n a 中,11=a ,13
2
1+=+n n a a ,求通项公式n a 。
6.形如)(1n f pa a n n +=+型(构造新的等比数列)
(1)若b kn n f +=)(一次函数(k,b 是常数,且0≠k ),则后面待定系数法也用一次函数。 例题. 在数列{}n a 中,2
3
1=
a ,3621-+=-n a a n n ,求通项n a .
练习:1、已知数列{}n a 中,31=a ,2431-+=+n a a n n ,求通项公式n a
(2)若n
q n f =)((其中q 是常数,且n ≠0,1)
①若p=1时,即:n
n n q a a +=+1,累加即可
②若1≠p 时,即:n
n n q a p a +⋅=+1,后面的待定系数法也用指数形式。
两边同除以1
+n q . 即:
q q a q p q a n n n n 11
1
+⋅=
++, 令n
n n q
a b =,则可化为q
b q p b n n 1
1
+⋅=+.然后转化为类型5来解,
例1. 在数列{}n a 中,5
2
1-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a
1、已知数列{}n a 中,211=a ,n
n n a a )2
1(21+=-,求通项公式n a 。
2、已知数列{}n a 中,11=a ,n
n n a a 2331⋅+=+,求通项公式n a 。
题型二 根据数列的性质求解(整体思想)
1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;
2、设n S 、n T 分别是等差数列{}n a 、{}n b 的前n 项和,327++=n n T S n n ,则=5
5b a .
3、设n S 是等差数列{}n a 的前n 项和,若==5
935,95S S
a a 则( )