水泥回转窑纯低温余热发电技术和经验介绍

合集下载

水泥窑纯低温余热发电技术与装备简介_百度文库

水泥窑纯低温余热发电技术与装备简介_百度文库

水泥窑纯低温余热发电技术与装备简介、刖言水泥生产过程需要消耗大量的能源和天然矿物,而这些资源是不可再生的,因此制约了水泥工业的可持续发展,降低水泥生产过程中原燃料的消耗是保证水泥工业可持续发展的最有效措施。

水泥熟料煅烧过程需要较高的煅烧温度,消耗大量的天然矿石能源一一煤炭,以目前先进的新型干法水泥窑为例,其单位熟料烧成热耗在2900~3300kJ/kg但同时约占熟料烧成热耗30--40%的热量随废气从窑尾和窑头排入大气,而采用余热发电技术将这部分热量回收是一种非常有效的办法----、华效公司在低温余热发电方面的技术保障能力及业绩公司简介协作单位公司技术力量及外聘技术顾问相关工作业绩三、水泥低温余热发电技术和装备:设计思想A冷却机中部开口,抽取较高温度的废气以提高发电能力。

(由用户选择目前,?窑外分解窑所配套的篦式冷却机出口废气温度多在200r左右,在这种温度下的热量品位较低,?很难进行动力回收,除非窑尾废气温度相当高的特殊情况,一般情况下要对冷却机进行相应的改造。

由于从冷却机各段篦床上逸出的温度是不一样的,可以将这股废气人为地分为两部分,一部分是从冷却机中部逸出的,温度在300C 以上的中温废气,?利用这股废气进行余热动力回收是可行的;另一部分是从冷却机后部逸出的120 C左右的废气,这股废气基本上没有动力回收价值,而且与前一部分废气混合时降低了其热能的品位,使系统的可用能遭受很大的损失。

因此,在冷却机原有废气出口前新开一抽气口,用以抽取冷却机中部逸出的气体进行余热动力回收,原有抽气口抽取冷却机后部废气,两抽气口之间用挡墙相隔,压力的平衡用挡板实现。

设置锅炉旁通烟道,以便锅炉停运时不影响水泥生产。

锅炉出口废气与原抽气口的废气混合后进入电收尘,汇入水泥工艺流程。

B对预热器进行相应改造,由五级换热改为四级换热。

经过认真核算,可实施预热器的改造以提高发电能力,从而提高全厂整体的热利用效率(由用户选择。

低温余热发电技术

低温余热发电技术

纯低温水泥余热发电技术介绍宁国水泥厂余热发电处前言新型干法水泥生产技术在我国经历了一个逐步完善提升的发展过程。

近年来,新型干法水泥生产技术在应用中不断提升,尤其是海螺集团,在工艺系统优化、自动控制、投资成本、生产规模、劳动生产率和环境保护等生产技术和装备方面,已赶上甚至领先国际先进水平,只是在可燃废料替代率和生产用电自供率方面,与发达国家相比,还存在一定的差距。

近两年来,我国经济发展水平持续高扬,电力需求增长迅猛,电能供应紧张,国家对工业企业节能提出了更高的要求,尤其是对高耗能产业,要求最大限度地回收利用余热,降低能耗,节约能源,实现经济可持续发展战略。

因此,随着水泥市场竞争的日益激烈与残酷,充分利用窑系统排放废气进行余热发电,提高工厂生产用电自供率,降低水泥生产成本,提高产品的性价比,从而占领和扩大水泥市场份额,保持企业可持续发展,是大型水泥企业当前及今后可供选择的技术之一。

一、水泥窑余热发电技术的发展历程简介:水泥窑余热发电技术的发展大致经历了中空水泥窑余热发电技术、带补燃炉的预分解窑余热发电技术和当前的纯低温水泥窑余热发电技术三个阶段,每个阶段的发展都与同时期的水泥发展技术、企业需求、国家产业政策、环境要求等因素息息相关,密不可分。

1、中空水泥窑余热发电技术中空水泥窑余热发电技术已有80多年的历史,我国水泥窑余热发电技术起源于二十世纪三十年代东北及华北地区建设的若干条中空窑配套的高温余热发电系统,很长一段时间内随着小水泥在全国范围的“遍地开花”,中空水泥窑余热发电技术也随之“扎根落户”,得到了较快的发展。

其水泥窑废气温度为800℃~900℃、熟料热耗为6700KJ~8400KJ/kg,所配套的高温余热发电系统的发电能力为每吨熟料100kW~130kW。

二十世纪八十年代后期,由于新型干法水泥技术的迅猛发展,中空窑等落后生产工艺的高能耗、低产量等劣势凸显,已逐步被淘汰,其中空水泥窑余热发电技术同样也少有发展的空间与意义。

水泥余热发电普及知识

水泥余热发电普及知识
22
2012年3月30日
循环水流程
23
2012年3月30日
汽轮机是将水蒸汽的内能转换成汽轮机的机械能。 汽轮机是将水蒸汽的内能转换成汽轮机的机械能。
12
2012年3月30日
发电机
发电机是将转子的动能转换成电能。 发电机是将转子的动能转换成电能。
13
2012年3月30日
工质的性能
为何选水为工质? 为何选水为工质?
量大, 量大,廉价 比热大
水的汽化 水蒸气的过热 水蒸气的膨胀
9
2012年3月30日
能量的品质
10
2012年3月30日
余热锅炉
320℃废气
300℃过热蒸汽 126℃热水 200℃废气
锅炉是将废气的热能传递给水和水蒸汽。 锅炉是将废气的热能传递给水和水蒸汽。
11
2012年3月30日
汽轮机
320 ℃, 1.0MPa n=3000转/分 过热蒸汽
0.0068MPa饱和蒸汽
8
2012年3月30日
能量传递与转换
能量守恒定律 能量的传递和转换过程中可能伴随着物质形态的变化 热传递,是热从温度高的物体传到温度低的物体, 热传递,是热从温度高的物体传到温度低的物体,或者 从物体的高温部分传到低温部分的过程。 从物体的高温部分传到低温部分的过程。 能量的转换是指能量从一种形式的能量转变为另一种形 式的能量,即一个物体对另一个物体做功。 式的能量,即一个物体对另一个物体做功。
5
2012年3月30日
对水泥生产线的影响
对窑头袋除尘器的影响 对窑头排风机的影响 对窑尾高温风机的影响 对原料磨烘干能力的影响 对窑尾袋收尘的影响 对窑操的影响? 对窑操的影响?
6

水泥回转窑纯低温余热发电技术和经验介绍

水泥回转窑纯低温余热发电技术和经验介绍

水泥回转窑纯低温余热发电技术和经验介绍来源:更新日期:2007-3-23 【字体:小大】水泥生产过程需要消耗大量的能源(煤或油)和天然矿物,而这些资源是不可再生的,所以这就制约了水泥工业的可持续发展,如何降低水泥生产过程中原燃料的消耗是保证水泥工业可持续发展的最有效措施。

水泥熟料煅烧过程需要较高的煅烧温度,消耗大量的天然矿石能源—煤炭(或油)。

以目前先进的新型干法水泥窑为例,其单位熟料烧成热耗在2 900—3300kj/kg,以年产熟料50万吨规模计,每年消耗原煤约6.5万,但同时约占熟料烧成热耗30%左右的大量350℃左右的废气从窑尾和窑头收尘器排入大气。

采用余热发电技术将这部分热量回收是一种非常有效的办法,由于废气温度较低,对装备和技术的要求较高,采用纯低温余热发电国内尚未有非常成熟和成功的技术和工程,宁国水泥厂纯低温余热发电是引进日本的技术和装备。

目前国内新型干法窑主要采用的是带补燃炉的余热发电技术,但这种技术和国家有关政策有冲突,使这种技术的利用受到限制。

日产1050吨(实际1350吨)φ3.5×88m四级旋风预热器窑(SP窑)采用纯低温余热发电技术进行技术改造,项目由天津水泥设计研究院设计,于2003年5月建成投产,项目装机容量2.5MW,设计发电能力1800kw/h,全部采用国产设备和技术,经过半年左右的运行,主要设备和整个系统都运转正常,各项技术经济指标达到设计要求。

下面就纯低温余热发电系统作一介绍。

1 热力系统系统主机为两台余热锅炉(窑头AQC锅炉和窑尾SP锅炉)和一套补汽凝汽式汽轮发电机组,装机容量为2.5MW,设计发电能力为1800kw/h。

余热来源SP(窑尾预热器):废气流量95000Nm3/h,温度390℃(实际360℃);AQC(冷却机):废气流量40000Nm3/h,温度350℃。

冷却机中部设置抽风口作为AQC锅炉的取风口,通过与冷却机原抽风口之间的风门调节,保证中部抽风口的废气温度达到350℃左右,为减轻废气对AQC锅炉的磨损,在锅炉前设置了沉降室。

水泥窑第一代纯低温余热发电技术

水泥窑第一代纯低温余热发电技术

水泥窑第一代纯低温余热发电技术核心提示:第一代余热发电技术填补了我国水泥行业的空白,为我国发展这项技术奠定了基础并积累了宝贵的经验,相当于上世纪九十年代初的新型干法窑水平,投资、发电能力、运行的稳定性等都存在一定的问题。

一、水泥窑第一代纯低温余热发电技术的定义及特征1.水泥窑第一代纯低温余热发电技术:在不影响水泥熟料产量、质量,不降低水泥窑运转率,不改变水泥生产工艺流程、设备,不增加熟料电耗和热耗的前提下,采用0.69MPa~1.27MPa—280℃~340℃蒸汽将水泥窑窑尾预热器排出的350℃以下废气余热、窑头熟料冷却机排出的350℃以下废气余热转化为电能的技术。

第一代纯低温余热发电技术除上述定义外还同时具有如下两个或两个以上的特征:1)冷却机仅设一个用于发电的抽废气口;2)汽轮机主蒸汽温度不可调整,随水泥窑废气温度的变化而变化;3)窑头余热锅炉、窑尾余热锅炉给水系统为串联系统;4)采用额外消耗化学药品或电能的锅炉给水除氧系统。

二、水泥窑第一代纯低温余热发电技术的构成1.技术要点利用水泥窑窑尾预热器排出的350℃以下废气设置一台窑尾预热器余热锅炉(简称SP锅炉)、利用水泥窑窑头熟料冷却机排出的350℃以下废气设置一台熟料冷却机废气余热锅炉(简称AQC炉)、为余热锅炉生产的蒸汽配置蒸汽轮机、发电系统主蒸汽参数为0.69~1.27MPa—280~340℃、每吨熟料余热发电能力为3140kJ/kg熟料——28~32kwh。

2.热力系统构成模式水泥窑第一代余热发电技术热力系统构成模式主要有如下三种:其一:单压不补汽式中低温发电技术。

其二:复合闪蒸补汽中低温发电技术。

其三:多压补汽式中低温发电技术。

3.技术特点上述三种模式没有本质的区别,共同的特点:其一、将窑头熟料冷却机排出的350℃总废气分为两个部分自冷却机中抽出,其中:在冷却中部设一个抽废气口抽出400℃以下废气,将这部分废气余热用于发电;在冷却机尾部设一个抽废气口抽出120℃以下废气,这部分废气直接排放。

水泥厂中低温纯余热发电技术及其应用

水泥厂中低温纯余热发电技术及其应用
降低能源消耗成本。
环保减排
减少温室气体和其他污染物的 排放,减轻对环境的压力,符 合绿色低碳的发展趋势。
提高能源利用效率
将原本被浪费的余热转化为电 能,提高了能源的利用效率。
增加经济效益
通过回收利用余热,为企业创 造额外的经济效益,提高市场
竞争力。
技术挑战
技术成熟度
尽管技术上可行,但该技术在实际应用中的 成熟度有待进一步提高。
发电技术。
纯余热发电技术通常采用热电转 换、热光转换等新型能源转换技
术,将余热直接转换为电能。
纯余热发电技术具有高效、环保、 节能等优点,是未来能源利用的
重要方向之一。
03
水泥厂中低温余热发电技术应用
余热发电技术在水泥厂中的应用
水泥厂余热资源丰富
经济效益显著
水泥生产过程中产生大量余热,这些 余热可用于发电,降低能源消耗。
技术发展前景广阔
随着环保要求的提高和能源结构的调整,纯余热 发电技术在水泥厂中的应用前景十分广阔。
3
促进产业升级
纯余热发电技术的应用有助于水泥产业升级,提 高能源利用效率,推动行业绿色发展。
04
水泥厂中低温纯余热发电技术优势与
挑战
技术优势
高效节能
利用水泥厂排放的余热进行发 电,减少对新鲜燃料的依赖,
02
水泥厂中低温余热发电技术原理
余热发电技术概述
余热发电技术是指利用工业生产过程中产生的余热,通过热能转换和发电技术,将 其转化为电能的技术。
余热发电技术具有高效、环保、节能等优点,是工业节能减排的重要手段之一。
余热发电技术可根据不同的工业领域和生产工艺,采用不同的热能转换方式和发电 技术。
中低温余热发电技术原理

水泥厂中低温纯余热发电技术及其应用

水泥厂中低温纯余热发电技术及其应用

+
+3 "
经济评价及投资分析
纯余热发电系统完全是利用水泥生产过程中 8 ") 余热发电系统运行费用少, 仅消耗部分水和
产生的余热来发电, 因此投资这种项目可带来好处 少量药品,增加少量管理人员,每度电成本 )3 ). 元 左右, 在不增加水泥烧成热耗的情况下, 每吨熟料可 增加 !- * +)569 的电力,因此可节约大量电力费 用, 降低水泥产品成本, 提高企业的经济效益; 8 !) 对电力紧张的地区, 可以缓解因供电不足影 响生产的矛盾, 发电自给率可达 !) * ()4 ; 8 ( ) 余热发电项目的建设用地可利用厂区空 地,不需另外征地。项目的实施不会影响正常的水
!" 中国水泥
!""# 年 $ 月号
技 术 与 装 备 版 !"#$%&’&() * "+,-./"%!
综合起来考虑, 尽可能将高温废气提供给余热锅炉, 而将余热锅炉的排气送给原料磨,这样余热锅炉可 以利用较大的温差生产蒸汽, 回收的热 焓高, 锅炉的 受热面小, 耗钢量小, 产汽的压力等级相对较高, 有 利于提高整个系统的效率。我们曾对某厂窑尾的余 热回收作过比较见表 ! 。
应 用 研 究
!""# 年 $ 月号
中国水泥 !"
应 用 研 究
为窑尾锅炉通常称 #$ 炉, " 台为窑头锅炉通常称 %&’ 炉。 #$ 炉设置在最后一级预热器和窑尾主排风机 之间。废气温度一般在 ()) * +)), 之间, 含尘量高, 一般为标准状况下 -) * .)/ 0 1 ,废气的负压较大。
(
要求锅炉的换热原件不易积灰,受热面布置便于清 灰, 且锅炉的密封性能要好。 采取的布置形式一般根 据工厂的场地、 粉尘的堆积特性等条件确定。 宁国水 卧式锅炉的特点是 泥厂的 #$ 炉就选用的卧式锅炉。 烟气在炉中水平流动, 受热面是蛇形光管, 竖直布置 上端固定在构架上, 下端为自由端, 并焊有振打装置 之连杆, 特殊设计的振打装置对受热面定期振打, 加 之蛇形管为竖直悬吊在构架上,可使受热面保持干 净无灰, 从而保证了很高的传热效果。 由于工作介质 在蛇形管内上下流动,无法利用其重度差进行自然 循环, 所以采用强制循环。 锅炉下部用一内置式拉链 机将灰输送至锅炉的一端经一锁风喂料机输出。又 立 如台湾的花莲水泥厂的 #$ 炉则采用的立式锅炉。 式锅炉的特点是烟气在炉中垂直流动,受热面也采 用蛇形光管, 但水平布置, 分组采用特殊的挂件悬挂 在构架上,分组设置振打装置,从上至下逐组振打, 也能满足清灰的要求,但这种布置方式比起竖管的 清灰干净程度略差,所以在受热面的设置上要考虑 上述因素。 以确保锅炉的高效率。 但立式锅炉占地面 积小, 布置方便。 冷却机的废气虽然含尘量不大,标准状况下约 但磨蚀性大。所以 %&’ 炉的设置分前 ") * !)/ 0 1( , 置式和后置式两种。 前置式即 %&’ 设在冷却机与电 收尘器之间,这种设置一般还需加预收尘装置以减 因此系统阻力增 轻粉尘对 %&’ 炉内的换热管磨蚀, 加较多, 但可以利用图 (、 图 + 流程。后置式即 %&’ 设在电收尘和窑头排风机之间,粉尘对换热管磨耗 小,且系统阻力增加不大,但电收尘必须密封性能 热损失小。 窑头粉尘为熟料颗粒, 粘附 好 2 漏风量小, 性不强,所以 %&’ 炉的结灰不严重,一般均选为立 式锅炉。由于窑头的废气温度低, 气量大, 且对锅炉 的排气无特殊要求, 应尽可能地回收余热。 为了增大 换热面积, 强化换热效果, %&’ 炉的换热管应采用螺 旋翅片管或蟹形针管等能显著增加换热面积而又耐

纯低温水泥窑余热发电技术

纯低温水泥窑余热发电技术

纯低温水泥窑余热发电技术随着能源需求的不断增长和环境保护意识的提高,利用工业生产过程中产生的废热进行发电成为了一种重要的节能减排手段。

纯低温水泥窑余热发电技术就是一种利用水泥窑尾烟余热发电的技术,该技术可以有效地回收和利用水泥窑废热,提高能源利用效率,降低环境污染。

纯低温水泥窑余热发电技术的基本原理是通过水泥窑尾烟中的余热来加热工作介质,驱动汽轮机发电。

在水泥生产过程中,水泥窑是一个重要的热能消耗设备,其尾烟中含有大量高温废热。

传统的废热利用方式主要是通过余热锅炉回收烟气中的热能,但是由于烟气温度较高,很难直接回收和利用。

纯低温水泥窑余热发电技术的关键是降低工作介质的汽轮机的进汽温度,以适应水泥窑尾烟的低温特点。

一般来说,水泥窑尾烟的温度在200℃-300℃之间,低于传统发电厂中汽轮机的进汽温度。

为了解决这个问题,纯低温水泥窑余热发电技术采用了一种特殊的工作介质,即有机朗肯循环工质。

有机朗肯循环工质是一种适用于低温热源的工作介质,其蒸汽在较低的温度下就可以达到较高的压力,从而驱动汽轮机发电。

利用有机朗肯循环工质,纯低温水泥窑余热发电技术可以在较低温度下实现高效发电。

同时,有机朗肯循环工质具有较好的工作稳定性和热传导性能,能够适应水泥窑尾烟的特殊工作环境。

纯低温水泥窑余热发电技术的优势主要体现在以下几个方面:1. 节能减排:利用水泥窑废热发电可以有效地回收和利用废热资源,实现能源的高效利用。

同时,该技术可以减少水泥生产过程中的二氧化碳等污染物的排放,降低环境污染。

2. 经济效益:纯低温水泥窑余热发电技术可以将水泥生产过程中的废热转化为电能,实现了能源的自给自足。

通过发电销售,可以带来可观的经济效益。

3. 应用广泛:纯低温水泥窑余热发电技术具有较好的适应性,可以适用于不同规模的水泥生产线。

同时,该技术还可以与其他余热发电技术相结合,实现多能互补发电。

4. 环保可持续:纯低温水泥窑余热发电技术可以有效地降低水泥生产过程中的能耗和污染物排放,为可持续发展做出贡献。

水泥窑余热发电技术

水泥窑余热发电技术

目录水泥窑纯低温余热发电技术及发展目标水泥余热发电项目CDM的监测及相关要求水泥窑第一代、第二代纯低温余热发电技术的定义及特征水泥窑第一代、第二代纯低温余热发电技术的构成几个主要问题的研究余热电站对水泥窑的影响关于水泥窑纯低温余热发电技术的发展目标对于余热发电量的监测CDM项目监测管理组织机构设置监测设备安装要求及保证办法数据管理系统水泥窑纯低温余热发电技术及发展目标水泥窑第一代、第二代纯低温余热发电技术的定义及特征水泥窑第一代、第二代纯低温余热发电技术的构成几个主要问题的研究余热电站对水泥窑的影响关于水泥窑纯低温余热发电技术的发展目标水泥窑第一代纯低温余热发电技术的定义及特征定义:水泥窑第一代纯低温余热发电技术是指在不影响水泥熟料产量、质量,不降低水泥窑运转率,不改变水泥生产工艺流程、设备,不增加熟料电耗和热耗的前提下,采用0.69~1.27MPa-280~330℃蒸汽将新型干法水泥窑窑尾预热器排出的废气余热、窑头熟料冷却机排出的废气余热转化为电能的技术。

特征:1)冷却机仅设一个用于发电的抽废气口;2)汽轮机主蒸汽温度不可调整,随水泥窑废气温度的变化而变化。

水泥窑第二代纯低温余热发电技术的定义及特征在不影响水泥熟料产量、质量,不降低水泥窑运转率,不改变水泥生产工艺流程、设备,不增加熟料电耗和热耗的前提下,采用1.57~3.43MPa-340~435℃蒸汽将水泥窑窑尾预热器排出的废气余热、窑头熟料冷却机排出的废气余热转化为电能的技术。

定义:两个或两个以上用于发电的抽废气口设置独立过热器汽机主蒸汽温度参数不随废气温度变化独立的蒸汽过热器,提高电站运转率和稳定性出口废气温度可调整装置可满足不同季节、湿度物料烘干需求循环风特征:水泥窑纯低温余热发电技术及发展目标水泥窑第一代、第二代纯低温余热发电技术的定义及特征水泥窑第一代、第二代纯低温余热发电技术的构成几个主要问题的研究余热电站对水泥窑的影响关于水泥窑纯低温余热发电技术的发展目标水泥窑第一代纯低温余热发电技术的构成技术要点热力系统构成模式(1)单压不补汽式纯低温余热发电技术热力系统热力系统构成模式(2)复合闪蒸补汽纯低温余热发电技术热力系统热力系统构成模式(3)双压补汽式纯低温余热发电技术热力系统上述三种模式共同的特点:1)将窑头熟料冷却机排出的总废气分为两个部分自冷却机中抽出。

水泥窑余热发电(五篇)

水泥窑余热发电(五篇)

水泥窑余热发电(五篇)第一篇:水泥窑余热发电水泥窑余热发电水泥厂余热资源的特点是流量大、品位低。

在宁国水泥厂4000t /d生产线上,预热器(PH)和冷却机(AQC)出口废气流量和温度分别为258550Nm3/h、340℃和306600Nm3/h、238℃,其中部分预热器废气用来烘干燃煤和原料。

针对上述特点,热力系统采用减速式两点混气式汽轮机,利用参数较低的主蒸汽和闪蒸汽的饱和蒸汽发电;根据余热资源的工艺状况设置两台余热锅炉,保证能够充分利用余热资源;应用热水闪蒸技术,设置一台高压闪蒸器和一台低压闪蒸器,闪蒸出的饱和蒸汽混入汽轮机做功;对现有AQC进行废气二次循环改造。

由于PH出口废气还要用于烘干原料,因此未设省煤器,只设蒸发器和过热器。

加强系统密封。

系统采用先进的DCS集散控制系统进行操作控制,具有功能齐全、自动控制、操作简便等特点。

工艺流程图(见图31)工艺流程两台高效余热锅炉,AQC锅炉和PH锅炉将水泥生产过程中随废气排放到大气中的热能吸收,产生压力为25Kg/cm2、温度为335℃-350℃、蒸发量为31.1t/h的过热蒸汽及二级低压饱和蒸汽并进入汽轮机,进行能量转换,拖动发电机向电网输送电力。

PH锅炉为强制循环、烟气流向为水平、管程流向为垂直、管列形式为循排、传热管为光管、除灰装置为振打系统;AQC锅炉为自然循环、烟气自上而下、管程流向为水平、管列形式为错排、传热管为螺旋翅管、除灰装置为吹灰器。

运转状况及效果该项目设计指标为发电机组装机容量6480kw,按吨熟料发电量33.07KWh/T,发电机组相对水泥窑的运转率为90%计算,设计年发电量4087万KWh。

从1998年3月至1999年3月,平均吨熟料发电量为34.24KWh/T(设计值为33.07KWh/T)发电机组相对水泥窑的运转率达到90.45%,实现系统安全、稳定、高效运行。

截止到1999年3月底累计发电4800万KWh,各项经济指标均达到并超过了设计水平,实现产值2160万元,实现金热发电投产当年达产达标。

水泥余热发电

水泥余热发电

水泥余热发电一、水泥窑纯低温余热发电背景随着水泥熟料煅烧技术的发展,发达国家水泥工业节能技术水平发展很快,低温余热在水泥生产过程中被回收利用,水泥熟料热能利用率已有较大的提高。

但我国由于节能技术、装备水平的限制和节能意识影响,在窑炉工业企业中仍有大量的中、低温废气余热资源未被充分利用,能源浪费现象仍然十分突出。

新型干法水泥熟料生产企业中由窑头熟料冷却机和窑尾预热器排出的350℃左右废气,其热能大约为水泥熟料烧成系统热耗量的35%,低温余热发电技术的应用,可将排放到大气中占熟料烧成系统热耗35%的废气余热进行回收,使水泥企业能源利用率提高到95%以上。

项目的经济效益十分可观。

发电模拟图我国是世界水泥生产和消费的大国,近年来新型干法水泥生产发展迅速,技术、设备、管理等方面日渐成熟。

目前国内已建成运行了大量2000t/d以上熟料生产线,新型干法生产线与其他窑型相比在热耗方面有显著的降低,但新型干法水泥生产对电能的消耗和依赖依然强劲,因此,新型干法水泥总量的增长对水泥工业用电总量的增长起到了推动作用,一定程度上加剧了电能的供应紧张局面。

而目前国内运行的新型干法水泥熟料生产线采用余热发电技术来节能降耗的企业极少,再者,国内由于经济潜力增长加剧了电力短缺的矛盾,刺激了煤电项目的增长,一方面煤电的发展会加速煤炭这种有限资源的开采、消耗,另一方面煤电生产产生大量的CO2等温室气体,加剧了对大气的环境污染。

因此在水泥业发展余热发电项目是行业及国家经济发展的必然。

此外,为了提高企业的市场竞争力,扩大产品的盈利空间,国内的许多水泥生产企业在建设熟料生产线的同时,也纷纷规划实施余热发电项目。

随着世界经济快速发展、新型节能技术的推广应用,充分利用有限的资源和发展水泥窑余热发电项目已经成为水泥业发展的一种趋势,也完全符合国家产业政策。

截至2009年,全国新型干法熟料生产线为934条,熟料产能7.6亿吨, 预计到2010年全国新型干法熟料生产线为1080条左右,熟料生产能力为8.6亿吨左右。

纯低温余热发电技术

纯低温余热发电技术
在熟料冷却机与窑头收尘器之间设一台AQC锅炉,由废气管道连接。为保证锅炉正常产汽量,需对冷却机进行改造,从冷却机中部(原煤磨抽风处)引出管道,抽出350℃左右的废气送至沉降室,滤去大颗粒粉尘后再由管道引向AQC锅炉。从冷却机中部抽风的目的是提高进入AQC余热锅炉的废气温度,提高整个系统的循环效率。
出AQC锅炉的废气进入原有的窑头收尘器收尘后,由原有窑头排风机排放,冷却机剩余的低温余风仍由原路进窑头收尘器。原余风管路系统可做为锅炉的旁通烟道,当锅炉故障或水泥生产不正常时可关闭去AQC锅炉的阀门,气流可不经锅炉而由此旁路系统直接排至窑头收尘器。在冷却机原余风管路上、新设的去锅炉管路上和出锅炉管路上均增设电动百叶阀门,以实现对气流的控制和切换。锅炉和沉降室的烟气总阻力控制小于1000Pa,使改造后的气体流量和压力在窑头排风机的能力允许范围之内。
第四阶段为2005年以后。由于水泥窑纯低温余热发电技术和装备已日臻成熟,国家产业政策明确规定不允许上带补燃炉的余热发电系统,而纯低温余热发电的概念是相对于带补燃炉余热发电技术而命名的,随着带补燃炉余热发电技术被取缔,纯低温余热发电技术被更名为水泥窑低温余热发电技术。自此,水泥余热发电进入了蓬勃发展阶段。
为了同时满足发电与原、燃料烘干的需要,窑尾SP锅炉一般均采用立式锅炉,布置在窑尾预热器后的高温风机之上。窑尾在最上一级(C1级)预热器至窑尾高温风机的下行管道上引出废气管道与SP锅炉相连,锅炉出口烟气温度控制在220℃左右,送到窑尾高温风机进风口的管道上,以满足下道工序烘干原料和燃料的需要。烘干原料和燃料后的废气由原废气处理系统的收尘器净化后排入大气。控制锅炉的烟气阻力≤1000Pa,使系统的阻力在窑尾高温风机的能力允许范围之内。在原预热器出口至高温风机的烟道引出管道、原下行管道以及锅炉出口管道上均增设电动百叶阀门,对气流进行控制和切换,原下行管道可做为锅炉的旁通烟道。当需要提高烘干原料和燃料的烟气温度时,可适当调节下行烟道调节阀,让锅炉出口的低温烟气和C1级出口直接下行的高温烟气混合,提高进窑尾风机(原料磨)的烟温,其调节范围从220℃或更低直至C1级出口温度(即烟气一点不通过SP锅炉),而且SP炉的进口烟道阀和旁路烟道阀,正常设计在窑控制室操作,窑操作可随时根据具体情况调整,既满足了水泥生产的稳定运行,又保证了SP炉的安全。通过旁通烟道的调节作用还可使水泥生产及余热锅炉的运行均达到理想的运行工况。

水泥窑发电

水泥窑发电

水泥回转窑纯低温余热发电技术介绍水泥生产过程需要消耗大量的能源(煤或油)和天然矿物,而这些资源是不可再生的,所以这就制约了水泥工业的可持续发展,如何降低水泥生产过程中原燃料的消耗是保证水泥工业可持续发展的最有效措施。

采用余热发电技术将这部分热量回收是一种非常有效的办法。

下面就纯低温余热发电系统作一介绍。

1、水泥余热发电的主要加热设备水泥余热发电的主要加热设备为窑头锅炉和窑尾锅炉。

1.1 窑头锅炉即AQC余热锅炉它是利用窑头冷却机产生的废气热量将水加热成饱和水或蒸汽的锅炉,为立式布置,自然循环。

由于冷却机废气中粉尘为熟料颗粒,粉尘粘附性不强,所以不设置清灰装置。

换热管采用螺旋翅片管,大大增加了换热面积,使得锅炉体积大幅下降,降低了投资成本。

在AQC余热锅炉前端设置了高效沉降室,大大减轻了废气对AQC余热锅炉的磨损。

1.2 窑尾锅炉分两种:即PH锅炉和SP锅炉PH余热锅炉采用卧式布置,强制循环,带汽包,设蒸发器和过热器,烟气在管外水平流动,受热面为蛇形光管,设置机械振打装置来解决废气的粉尘附着问题。

烟气出口烟气进口强制循环泵PH锅炉布置简图SP余热锅炉为立式布置,机械振打,自然循环,整个锅炉的振打形式为连续式,清灰较为均匀,同时设计有合理的灰斗,避免了因清灰原因造成废气中含尘浓度突然增大而引起风机跳停,该锅炉最具特点的地方是采用自然循环方式,省掉了二台强制循环热水泵,降低了运行成本,提高了系统可靠性。

立式的结构形式,在节约了占地面积的同时,也方便了废气管道的布置。

2、国内已普遍采用的几种热力循环系统目前,我国水泥工业纯低温余热发电技术,其热力系统的构成主要有如下三种模式:2.1 单压(无补汽)系统SP锅炉和AQC锅炉生产相同或相近参数的主蒸汽(相对较低的压力和温度),两者混合后进入单级进汽式汽轮机,属单压不补汽型。

工艺流程:给水经给水泵进入AQC余热锅炉低温段的省煤器加热后,一部分进入AQC 锅炉,另一部分进入SP锅炉,在两个锅炉内分别进行循环加热成参数相同或相近的过热蒸汽,混合后进入汽轮机作功发电。

水泥窑纯低温余热发电技术特点

水泥窑纯低温余热发电技术特点

浅析水泥窑纯低温余热发电技术特点摘要:本文将对水泥窑纯低温余热发电技术的特点进行浅析,主要讨论了水泥窑窑内余热资源的利用,技术的应用及其优缺点。

以传统的热能发电技术为基础,水泥窑纯低温余热发电技术能够大大降低发电成本,更有效地利用热能资源,保护环境。

总之,水泥窑纯低温余热发电技术是一种有效的、可靠的发电技术,值得购买及使用。

关键词:水泥窑,纯低温余热发电技术,余热资源正文:随着工业生产的发展,发电技术的升级也推动了工厂热能利用的有效发展。

在传统的热能发电技术的基础上,水泥窑纯低温余热发电技术应运而生。

它利用窑内产生的余热,通过换热器和余热发电机将热能转化为电能,被广泛用于工业生产中。

水泥窑纯低温余热发电技术具有3个主要特点:1. 热能利用率高:水泥窑纯低温余热发电技术把熔下的熔铝吸收的热量有效转化为电能,具有较高的热能利用率。

2. 发电成本低:这种技术不需要外来能源,只需要利用窑内产生的余热,可以节省与外来能源的开支,降低发电成本。

3. 环境友好:水泥窑纯低温余热发电技术可以有效地利用热能资源,减少对环境的污染。

总之,水泥窑纯低温余热发电技术具有发电成本低、热能利用率高、环境友好等优点,在工业生产中有着重要作用。

然而,也存在一些缺点,例如发电效率低,余热发电机处理过程繁琐、容易出现故障等缺点,因此在运用时要注意问题,及早发现和纠正缺陷。

总的来说,水泥窑纯低温余热发电技术是一种有效的、可靠的发电技术,值得购买及使用。

在工业生产中,水泥窑纯低温余热发电技术的应用一直受到广泛关注。

它可以大大降低发电成本,提高发电效率,保护环境,更有效地利用热能资源,减少能源消耗。

然而,在运用水泥窑纯低温余热发电技术时也应注意一些问题,如合理设计、窑头温度控制、余热发电机处理过程及窑内烟气排放控制等。

为此,应采取适当措施来保证水泥窑纯低温余热发电技术的安全运行。

首先,在设计阶段应当严格遵守相关标准,合理配置系统组成部分,提高水泥窑纯低温余热发电技术的可靠性。

水泥工业纯低温余热发电技术及其效益分析

水泥工业纯低温余热发电技术及其效益分析

水泥工业纯低温余热发电技术及其效益分析水泥工业是我国能源消耗最大的行业之一,同时也是排放大量CO2的行业。

在水泥生产过程中,熟料的制备需要大量的煤炭或其他化石能源,并且会产生大量烟尘、氢氧化钙蒸汽以及高温余热等有害物质。

传统的水泥生产工艺中,高温余热并没有被有效地利用,导致能源浪费和环境污染的问题日益凸显。

因此,开发水泥工业纯低温余热发电技术具有重要的意义。

纯低温余热发电技术是指在较低温度下,通过对水泥生产过程中的余热进行回收利用,将其转化为电能的技术。

该技术的核心是热力循环工艺,通过热交换和蒸汽发电装置,将热能转化为机械能,进而驱动发电机产生电能。

水泥工业的纯低温余热主要来自两个方面:一是熟料冷却的过程中,熟料从窑头到窑尾的过程中会释放很多的热量;二是分解炉中石灰石分解产生的高温石灰比较少,而未反应的石灰和石灰须在窑中长距离高温、长寿命的保温层耐火砖参与烧结时,会释放很多的热量。

纯低温余热发电技术的效益分析主要包括经济效益和环境效益两个方面。

从经济效益来看,纯低温余热发电技术可以将水泥工业中原本浪费的热能转化为电能,减少了水泥企业的能源消耗。

这不仅可以降低企业的生产成本,提高企业的竞争力,还可以通过售电获取额外的经济收益。

此外,该技术还可以提高水泥工业的能源利用效率,降低水泥生产的碳排放,符合国家的节能减排政策。

从环境效益来看,纯低温余热发电技术可以有效减少水泥工业的大气污染和温室气体排放。

水泥工业是我国重要的大气污染源和温室气体排放源之一,通过利用纯低温余热发电技术,可以减少煤炭的使用量,降低煤炭燃烧所产生的大气污染物和CO2的排放。

此外,该技术还可以减少石灰石的制备过程中产生的氧化钙蒸汽,降低对大气的污染。

总的来说,水泥工业纯低温余热发电技术的应用具有巨大的经济效益和环境效益。

通过将水泥生产过程中原本浪费的热能转化为电能,可以提高水泥企业的能源利用效率,降低生产成本,增加经济收益,同时减少温室气体排放,改善环境质量,符合可持续发展的要求。

水泥窑纯低温余热发电技术

水泥窑纯低温余热发电技术

水泥窑纯低温余热发电技术一、所属行业:建材行业二、技术名称:水泥窑纯低温余热发电技术三、适用范围:大中型水泥窑余热的回收和利用四、技术内容:1.技术原理利用水泥窑低于350℃的废气的余热生产0.8~2.5MPa的低压蒸汽,推动汽轮机做功发电。

2.关键技术热力系统配置,以及相关主机设备效率的提高。

3.工艺流程窑头和窑尾余热锅炉生产的主蒸汽及低压蒸汽,进入汽轮机作功,做功后的蒸汽被冷却凝结成水并除氧,之后由给水泵再输送给窑头和窑尾余热锅炉再生产蒸汽。

汽轮机做功带动发电机发电,最后电量输送到工厂总降压站。

五、主要技术指标:1.与该节能技术相关生产环节的能耗现状:水泥生产中:热耗:3000~3400kJ/t.cl;电耗:95~110kWh/t.cl。

2.主要技术指标:具有约32~40kWh/t.cl的余热发电能力。

六、技术应用情况:该技术获得国家专利,已经有60多座电站投入运行,正在设计和施工的有100多座,目前行业内的推广比例约为8.5%。

七、典型用户及投资效益:典型用户浙江煤山众盛水泥厂,北京水泥厂有限责任公司等。

(1)某5000t/d级水泥生产线,窑头窑尾具有不能被水泥生产系统利用的中低温废气,节能技改投资额5600万元,余热电站建设规模9MW,建设期1年,节能量22000吨标煤/年,水泥厂可少购电:1.2亿kWh/年,投资回收期2.5-3.0年。

(2)某25000t/d级水泥生产线,窑头窑尾具有不能被水泥生产系统利用的中低温废气,节能技改投资额2850万元,余热电站建设规模4.5MW,建设期1年,节能量11000吨标煤/年,水泥厂可少购电:0.6亿kWh/年,投资回收期2.7-3.2年。

八、推广前景和节能潜力:全国生产能力≥1000t/d的新型干法生产线均可应用此技术。

“十一五”期间,该技术在行业内的普及率预计能达到40%,需总投入80亿元,可节能300万吨标煤。

九、推广措施及建议:1.从国家层面上制定强制性法规提倡水泥窑余热电站的建设;2.从国家层面上制定鼓励性政策及切实可行的鼓励性措施;3.从国家层面上制定统一的余热电站并网的政策及要求,解决电力系统对水泥窑余热电站并网壁垒的问题。

水泥企业余热发电技术介绍

水泥企业余热发电技术介绍

2.4废气余热品为的界定
对于热能-动力转换设备------蒸汽轮机而言,国内 标准的中小型汽轮机按进汽参数分为: 高压高温机组,进汽压力大于3.43Mpa进汽温度为 435-555℃; 中压中温(及次中压中温)机组,进汽压力为 2.45-3.43Mpa进汽温度为340-435℃; 低压低温机组, 进汽压力小于2.45Mpa进汽温度为 280-340℃。
39 2335.62
0.9019 11893.25
3.33 422.82
超高压 18
550 100000
1000 2507.49 1734.18
753.54 629.41
100 150.39 4556.14 5939.1
17.61 535
0.82 0.007
39 2229.65
0.8579 12457.07
通过分析以上过程可知:
循环热效率=1-(h1-h2)/(h1-h4) 所以在消耗同样热量的条件下多发电的措施有如下几点:
A 提高进汽温度 B 提高进汽压力 C 降低汽轮机排汽压力
什么叫“冷端损失”?
火电厂在运行时,用高压水泵把水打进锅炉,再逐步加热,使 水变为蒸汽,继续加热,变为过热蒸汽,再经过管道和阀门进入 汽轮机做功。蒸汽经过汽轮机多级叶片做功后,压力和温度在逐 渐降低,经过最后一级叶片做功后,其蒸汽压力已不足半个大气 压,温度也降到了几十摄氏度,但此时仍为“气态”。这时如果 再把它打入锅炉进行加热,消耗能源太大,在经济上不划算。只 有想方设法把它再变成水后打入锅炉,才划算。如何把这些低温 低压的蒸汽再变成水呢?只有采用冷却方法,同样压力温度的蒸 汽变成水,会释放出大量热,即为潜在热,1千克水要释放约6 00大卡热量,再通过水冷或空冷把这些热带走,这些被带走的 热就是火电厂的“冷端损失”。

水泥纯低温余热发电技术分析

水泥纯低温余热发电技术分析
舀固口圈
建筑节能
水泥纯低 温余热发 电技术分析
张沁 慧 何 雪梅 安徽 合肥
2 3 O 0 0 O 合肥 水 泥 研 究 设 计 院
摘要: 纯低 温 水 泥窑 余 热发 电技 术 是直 接 利用 窑 头 窑尾 排 放 的 中低 温 废 气进 行余 热 回收发 电, 无需 消耗 燃 料 , 发 电 的过 程 不 产 生任 何污 染 , 是 一种 经济 效 益可 观 、 清 洁环保 、 符 合 国家清 洁 节 能产 业政 策 的绿色 发 电技 术 , 具 有十 分广 阔 的发展 空 间与 前景 。 关键词 : 水泥; 余 热 利用 ; 中低 温余 热发 电; 非常 规余 热发 电 系统
1 、 中低 温 余热 发 电技 术
随着新型干法水泥煅烧技术的发展 , 我国的水泥生产技术 、 装 备、 管理 日
渐成熟, 目前 国内 已建 成并 运行 了大 量2 0 0 0 t / d 以上 熟料 生 产线 。新 型干法 生
( 4 )  ̄ j t c E~ r 质 的声 速低 , 在 叶片 轮周 速 度很 低 时就 能 获得 有 利 的空 气 动力 特性 , 在常 规转 速 下就 具有 较 高 的轮 机 效率 。
电站 的投 运一 直 很好 。
的蒸发温度要高出数倍。高温导热油在3 0 0  ̄ C 的条件下仍不气化而保持常压,
油 代替 传 统 的水 蒸 汽热 载体 , 就 能 以低 压管 道 系统 代 替高 压 管道 系 统 。可 降
线上 得到 成功 的应用 , 取得 了很 好 的成 果 , 如 鲁南 水 泥厂 、 玻璃 河 水 泥厂 余 热 此 时饱 和压 力 的水 蒸汽 已高 达 8 . 5 M P a 。因此在 中 、 高 温传 热 的条件 下 , 用导 热 使 运 行 的安 全性 和 可靠 性得 到 保 障 。此外 导 热 油还 具 有传 热 带 补燃 锅 炉 的余 热 发 电系 统 的装 机 容 量可 以通 过 调整 补 燃 锅 炉 的容 量 低 管 道 的投 资, 来 达 到所 需 的 功率 , 设 备 可 以采 用 标 准 系列 产 品 , 技 术 成 熟 可靠 , 该 发 电系 统 均 匀 , 热 稳 定性 好 以及优 良的导 热特 性 。例如 在 1 0 0 ℃时 , 饱 和 水蒸 汽 的导热 系 不受 余 热供 应 的制 约, 避 免 了生 产线 负荷 波 动对 机组 稳 定运 行 的影 响 , 可延 长 数 为 0 . 0 2 3 7 W/ ( m . ℃) ,而 Mo b i h h e r m 6 0 5 #导 热 油 在 1 0 0 o C时 的 导 热 系 数 为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泥回转窑纯低温余热发电技术和经验介绍
来源:更新日期:2007-3-23 【字体:小大】水泥生产过程需要消耗大量的能源(煤或油)和天然
矿物,而这些资源是不可再生的,所以这就制约了水泥工业的可持续发展,如何降低水泥生产过程中原燃料的消耗是保证水泥工业可持续发展的最有效措施。

水泥熟料煅烧过程需要较高的煅烧温度,消耗大量的天然矿石能源—煤炭(或油)。

以目前先进的新型干法水泥窑为例,其单位熟料烧成热耗在2 900—3300kj/kg,以年产熟料50万吨规模计,每年消耗原煤约6.5万,但同时约占熟料烧成热耗30%左右的大量350℃左右的废气从窑尾和窑头收尘器排入大气。

采用余热发电技术将这部分热量回收是一种非常有效的办法,由于废气温度较低,对装备和技术的要求较高,采用纯低温余热发电国内尚未有非常成熟和成功的技术和工程,宁国水泥厂纯低温余热发电是引进日本的技术和装备。

目前国内新型干法窑主要采用的是带补燃炉的余热发电技术,但这种技术和国家有关政策有冲突,使这种技术的利用受到限制。

日产1050吨(实际1350吨)φ3.5×88m四级旋风预热器窑(SP窑)采用纯低温余热发电技术进行技术改造,项目由天津水泥设计研究院设计,于2003年5月建成投产,项目装机容量2.5MW,设计发电能力1800kw/h,全部采用国产设备和技术,经过半年左右的运行,主要设备和整个系统都运转正常,各项技术经济指标达到设计要求。

下面就纯低温余热发电系统作一介绍。

1 热力系统
系统主机为两台余热锅炉(窑头AQC锅炉和窑尾SP锅炉)和一套补汽凝汽式汽轮发电机组,装机容量为2.5MW,设计发电能力为1800kw/h。

余热来源SP(窑尾预热器):废气流量95000Nm3/h,温度390℃(实际360℃);AQC(冷却机):废气流量40000Nm3/h,温度350℃。

冷却机中部设置抽风口作为AQC锅炉的取风口,通过与冷却机原抽风口之间的风门调节,保证中部抽风口的废气温度达到350℃左右,为减轻废气对AQC锅炉的磨损,在锅炉前设置了沉降室。

AQC省煤器出水分三路:一路进入AQC高压汽包,一路
进入AQC低压汽包,另一路进SP锅炉汽包。

AQC锅炉产生的蒸气分为二路,一路由锅炉Ⅰ段产生的1.6Mpa-300℃主蒸气和SP锅炉产生的主蒸气混合后进汽轮机主进汽口,另一路由锅炉Ⅱ段产生的0.25Mpa-150℃低压蒸气进入汽轮机补汽口。

SP锅炉汽包进水由AQC省煤器供给,当AQC锅炉未投用时也可由锅炉给水泵直接供给而独立运行,SP锅炉产生1. 6Mpa-300℃主蒸气。

两台锅炉都设计有旁路系统,当锅炉停用时水泥生产系统可正常运行。

汽轮机为补汽凝汽式汽轮机,设计能力2.5MW,原机型为3MW的抽汽凝汽式汽轮机,将原抽汽口改为补汽口。

通过半年运行,该汽轮机运行可靠,对蒸汽质量适应范围大,操作较方便,缺点是补汽较难。

锅炉给水中的溶解氧是造成热力设备和管道腐蚀的主要原因,为防止和减轻氧腐蚀,必须对锅炉给水进行除氧处理。

目前锅炉给水的除氧方式有热力除氧、真空除氧。

可根据系统蒸气温度和压力较低的情况,采用真空除氧方式。

真空除氧是利用抽真空的方法,使水在常温下呈沸腾状态,除去水中溶解氧,其关键是在除氧器内形成和保持真空状态,所以除了利用真空泵将真空除氧器抽为真空外,系统的密闭性非常重要。

当补充新鲜软水时以及锅炉给水中含氧量超标时,除氧器才投入使用,所以系统运行成本较低,根据目前情况真空除氧器的运行费用约1.0元/小时。

2 锅炉
SP、AQC两台余热锅炉是水泥窑纯低温余热发电系统中最重要的设备,锅炉是否能稳定正常运行直接影响到项目的最终效果。

SP锅炉的设计较有特点,为立式、机械振打、自然循环。

换热管为蛇形光管,上端固定在框架上,下端呈自由状态,振打装置通过连杆对换热管定期振打,整个锅炉的振打形式为连续式,所以清灰较为均匀,同时灰斗设计合理,避免了因清灰原因而造成废气中含尘浓度过大而引起风机跳停,影响生产。

该锅炉最具特点的地方是采用自然循环方式,省掉了二台强制循环热水泵,降低了运行成本,提高了系统可靠性。

SP锅炉目前运行状态稳定,锅炉阻力小于800Pa,废气进口温度350—360℃,出口温度230℃左右,基本达到设计目标。

AQC锅炉为立式、自然循环。

冷却机废气中粉尘粘附性不强,所以不设置振打装置,同时换热管采用螺旋翅管,大大增加了换热面积,锅炉体积大幅下降,降低了投资成本。

为减少漏风,AQC锅炉没有设计出灰装置,在风管底部粉尘形
成一定自然堆积后,粉尘随废气一起进入电收尘。

半年来AQ C锅炉运行状态较好,锅炉阻力小于700Pa,废气进口温度在380℃左右,废气出口温度在90℃左右,达到设计目标。

3 与原生产系统的结合
在原水泥生产系统中接入余热发电系统,对水泥生产系统的影响主要在以下几个方面:
(1)由于余热锅炉的接入,气体流程的系统阻力增加,排风机能力是否适用。

由于废气通过余热锅炉后气体温度和含尘浓度降低,排风机的抽风量得以增加,加上水泥厂原设计一般都有一定富裕能力,所以不用更换排风机。

(2)窑尾SP锅炉清灰会引起气体含尘浓度变化而导致窑尾排风机工况突变,甚至风机因气体含尘浓度过高而过载跳停。

(3)窑尾SP锅炉废气出口温度应根据生料磨工艺及入磨原料水份来确定。

4 经济分析
项目总投资1500万元,设计发电能力1800KW/h,目前实际发电能力大于1800KW/h,以年发电7000小时计,每年发电量为1260×104kwh,扣除10%(实际8%)电站自用电,减少外购电1134×104kwh,电站运行成本约0.06元/kwh,外购平均电价0.48元/kwh(不含税),每年可为企业节约电费476万元,实际运行中通过电站运行调整用电系统功率因素并使现有供配电系统损耗减少,还可节约电费,所以根据此计算三年左右就可收回项目投入。

水泥窑纯低温余热发电项目由于将废气中热能转化为电能,减少了能源消耗,废气通过余热锅炉降低了废气排放温度,减轻了对环境的热污染,具有显著的环保节能效果,所以水泥窑纯低温余热发电项目具有较好的经济效益和社会效益。

相关文档
最新文档