2017-2018上学期八年级期中数学试题及答案
2017-2018年河北省八年级上学期期中数学试卷和答案
2017-2018学年河北省八年级(上)期中数学试卷一、选择题(共12小题,每小题2分,满分30分)1.(2.00分)在实数0.3,0,,,0.123456…中,无理数的个数是()A.2 B.3 C.4 D.52.(2.00分)命题:①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等.其中真命题有()A.1个 B.2个 C.3个 D.4个3.(2.00分)下列运算错误的是()A.B.C.D.4.(2.00分)不能判定两个三角形全等的是()A.三条边对应相等B.两条边及其夹角对应相等C.两角和一条边对应相等D.两条边和一条边所对的角对应相等5.(2.00分)下列各式中,无意义的是()A.B. C.D.6.(2.00分)下列约分中,正确的是()A.=x3B.=0C.D.7.(3.00分)在下列式子中,正确的是()A.B.﹣=﹣0.6 C.D.8.(3.00分)如图,笑笑书上的三角形被墨迹污损了一部分,但是笑笑根据所学知识画出一个与书本上完全一样的三角形,那么这两个三角形全等的依据不可能是()A.SSS B.ASA C.AAS D.SAS9.(3.00分)化简的结果是()A. B. C. D.10.(3.00分)已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对 B.3对 C.2对 D.1对11.(3.00分)满足的整数x有()个.A.0个 B.1个 C.2个 D.3个12.(3.00分)某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3.00分)25的平方根是,的算术平方根是,﹣64的立方根是.14.(3.00分)下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=.15.(3.00分)分式,当x=时分式的值为零.16.(3.00分)若x,y都是实数,且,则x+3y的立方根为.17.(3.00分)已知x=1是分式方程的根,则实数k=.18.(3.00分)已知△ABC≌△ADE,如果∠BAE=135°,∠BAD=40°,那么∠BAC=.三、解答题(共8小题,满分72分)19.(12.00分)求下列各式的平方根和算术平方根.9,14400,,,,.20.(10.00分)求下列各式的值.(1);(2);(3);(4);(5).21.(6.00分)如图,如果AB=AC,BD=CD,那么∠B和∠C相等吗?为什么?22.(6.00分)有四个实数分别为32,,,.(1)请你计算其中有理数的和.(2)若x﹣2是(1)中的和的平方,求x的值.23.(8.00分)先化简,再求值:,其中x是不等式3x+7>1的负整数解.24.(10.00分)解下列分式方程:(1)(2).25.(10.00分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?26.(10.00分)如图,四边形ABCD中,点E在边CD上,连接AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果×××,那么××).并给出证明;(2)用序号再写出三个真命题(不要求证明).2017-2018学年河北省八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分30分)1.(2.00分)在实数0.3,0,,,0.123456…中,无理数的个数是()A.2 B.3 C.4 D.5【解答】解:实数0.3,0,,,0.123456…中,无理数有:,,0.123456…,共3个.故选:B.2.(2.00分)命题:①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等.其中真命题有()A.1个 B.2个 C.3个 D.4个【解答】解:①邻补角互补,正确;②对顶角相等,正确;③被截线不平行则同旁内角不互补,故本小题错误;④两点之间线段最短,是线段的性质,正确;⑤直线是向两方无限延伸的,没有长短,故本小题错误;故选:C.3.(2.00分)下列运算错误的是()A.B.C.D.【解答】解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、=,故本选项正确;D、=﹣,故本选项错误;故选:D.4.(2.00分)不能判定两个三角形全等的是()A.三条边对应相等B.两条边及其夹角对应相等C.两角和一条边对应相等D.两条边和一条边所对的角对应相等【解答】解:A、三条边对应相等的两个三角形,可以利用SSS定理判定全等,故此选项不合题意;B、两条边及其夹角对应相等的两个三角形,可以利用SAS定理判定全等,故此选项不合题意;C、两角和一条边对应相等的两个三角形,可以利用AAS定理判定全等,故此选项不合题意;D、两条边和一条边所对的角对应相等,不能判定两个三角形全等,故此选项符合题意;故选:D.5.(2.00分)下列各式中,无意义的是()A.B. C.D.【解答】解:A、因为负数没有算术平方根,故选项错误;B、任何数都有立方根,故选项正确;C、D中底数均为正,所以有意义.因此A没有意义.故选:A.6.(2.00分)下列约分中,正确的是()A.=x3B.=0C.D.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.7.(3.00分)在下列式子中,正确的是()A.B.﹣=﹣0.6 C.D.【解答】解:∵=5,故选项A正确;∵=﹣0.6,故选项B错误;∵,故选项C错误;∵,故选项D错误;故选:A.8.(3.00分)如图,笑笑书上的三角形被墨迹污损了一部分,但是笑笑根据所学知识画出一个与书本上完全一样的三角形,那么这两个三角形全等的依据不可能是()A.SSS B.ASA C.AAS D.SAS【解答】解:根据题意,三角形的三角和它们的两边是完整的,所以可以利用SAS、ASA、AAS定理作出完全一样的三角形,不能利用SSS定理进行判定,故选:A.9.(3.00分)化简的结果是()A. B. C. D.【解答】解:==,故选:D.10.(3.00分)已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对 B.3对 C.2对 D.1对【解答】解:∵CD⊥AB,BE⊥AC,∴∠ADO=∠AEO=90°;∵∠1=∠2,AO=AO,∴△ADO≌△AEO(AAS).∴AD=AE,∵∠DAC=∠EAB,∠ADO=∠AEO,∴△ADC≌△AEB(ASA).∴AB=AC,∵∠1=∠2,AO=AO,∴△AOB≌△AOC(SAS).∴∠B=∠C,∵AD=AE,AB=AC,∴DB=EC;∵∠BOD=∠COE,∴△BOD≌△COE(AAS).故选:A.11.(3.00分)满足的整数x有()个.A.0个 B.1个 C.2个 D.3个【解答】解:∵1<3<4,9<13<16,∴1<<2,3<<4,∵,∴整数x有2,3.故选:C.12.(3.00分)某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.【解答】解:由分析可得列方程式是:=25.故选:B.二、填空题(共6小题,每小题3分,满分18分)13.(3.00分)25的平方根是±5,的算术平方根是3,﹣64的立方根是﹣4.【解答】解:∵(±5)2=25,∴25的平方根是±5.=9,9的算术平方根是3,∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故答案为:±5;3;﹣4.14.(3.00分)下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF= 27cm.【解答】解:因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm.15.(3.00分)分式,当x=﹣3时分式的值为零.【解答】解:由分子x2﹣9=0解得:x=±3.而x=3时,分母x﹣3=3﹣3=0,分式没有意义;x=﹣3时,分母x﹣3=﹣3﹣3=﹣6≠0,所以x=﹣3.故答案为﹣3.16.(3.00分)若x,y都是实数,且,则x+3y的立方根为3.【解答】解:根据题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+3y=3+3×8=27,∵33=27,∴x+3y的立方根为3.故答案为:3.17.(3.00分)已知x=1是分式方程的根,则实数k=.【解答】解:将x=1代入得,=,解得,k=.故答案为:.18.(3.00分)已知△ABC≌△ADE,如果∠BAE=135°,∠BAD=40°,那么∠BAC= 95°.【解答】解:∵∠BAE=135°,∠BAD=40°,∴∠∠DAE=∠BAE﹣∠BAD=95°,∵△ABC≌△ADE,∴∠BAC=∠DAE=95°,故答案为:95°.三、解答题(共8小题,满分72分)19.(12.00分)求下列各式的平方根和算术平方根.9,14400,,,,.【解答】解:9的平方根是±=±3,算术平方根是=3,14400的平方根是±=±120,算术平方根是=120,的平方根是±=±,算术平方根是=,5的平方根是±=±=±,算术平方根是==,的平方根是±=±,算术平方根是=,(﹣)2的平方根是±=±,算术平方根是=.20.(10.00分)求下列各式的值.(1);(2);(3);(4);(5).【解答】解:(1)=±;(2)=;(3)=﹣;(4)=0.1;(5)=7.21.(6.00分)如图,如果AB=AC,BD=CD,那么∠B和∠C相等吗?为什么?【解答】解:∠B=∠C,理由为:连接AD,如图所示:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠B=∠C.22.(6.00分)有四个实数分别为32,,,.(1)请你计算其中有理数的和.(2)若x﹣2是(1)中的和的平方,求x的值.【解答】解:(1)有理数有:32=9,=﹣2,∴其中有理数的和为9+(﹣2)=7.(2)由题意可知x﹣2=72,解得:x=51.23.(8.00分)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【解答】解:原式=•=,由3x+7>1,解得x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,∴原式=324.(10.00分)解下列分式方程:(1)(2).【解答】解:(1)两边乘(x+2)(x﹣2)得到,(x﹣2)2﹣(x2﹣4)=3x2﹣4x+4﹣x2+4=3x=,经检验:x=是分式方程的解.(2)两边乘(2x+3)(2x﹣3)得到,2x(2x+3)﹣(2x﹣3)=4x2﹣94x2+6x﹣2x+3=4x2﹣9x=﹣3,经检验:x=﹣3是分式方程的解.25.(10.00分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.26.(10.00分)如图,四边形ABCD中,点E在边CD上,连接AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果×××,那么××).并给出证明;(2)用序号再写出三个真命题(不要求证明).【解答】解:(1)如果①②③,那么④⑤;理由如下:∵AD∥BC,∴∠1=∠F,∠D=∠ECF,在△AED 和△FEC 中,,∴△AED ≌△FEC (AAS ), ∴AD=CF ,AE=FE , ∴AD +BC=CF +BC=BF , ∵∠1=∠2, ∴∠2=∠F , ∴AB=BF , ∴AD +BC=AB ; ∵AB=BF ,AE=FE , ∴∠3=∠4;(2)如果①③④,那么②⑤; 如果①②④,那么③⑤; 如果①③⑤,那么②④.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
名校2017-2018学年上学期初中八年级期中考试数学试卷带答案
2017-2018学年上学期初中八年级期中考试数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分,不需要写出解答过程,请把答案直接写在答题卡...相应位置上)1.已知△ABC中,AB=AC,∠B=70°,则∠C=.2.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.3.已知直角三角形斜边长为10cm,则它的斜边上的中线的长度等于.4.若直角三角形的两条直角边长分别为6和8,则斜边长为.5.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=40°,则∠C的度数为.Array6.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识在作业本上画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是.7.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=100°,那么∠BCD 的度数等于.8.如图,已知AB ∥CF ,E 为DF 的中点,若AB =8,CF =5,则BD =.9.如图,在Rt △ABC 中,∠C =90°,AB =8,AD 平分∠BAC ,交BC 边于点D ,若CD =2,则△ABD 的面积为.10.如图,△ABC 为等边三角形,BD ⊥AB ,BD =AB ,则∠DCB = °.11. 等腰三角形腰长10cm ,底边16cm ,则腰上的高是.12. 如图,在钝角△ABC 中,已知∠A 为钝角,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,若BD 2+CE 2=DE 2,则∠A 的度数为°.二、选择题(本大题共有6小题,每小题3分,共计18分,在每小题所有选项中,恰有一项是符合题目要求的,请将正确选项的字母写在答题卡...相应位置上) 13.在以下四个标志中,是轴对称图形的是( )DA .B .C .D .14.如图,在下列各组条件中,不能说明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E , ∠C =∠F B .AC =DF , BC =EF , ∠A =∠D C .AB =DE ,∠A =∠D , ∠B =∠E D .AB =DE , BC =EF , AC =DF 15. 如果等腰三角形两边长是9和4,那么它的周长是( ) A .13 B .17 C .22 D .17或2216.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为( )A .81B .7C .9 D.1217.如图,在△ABC 中,AD ⊥BC ,垂足为D ,若AD =4,∠B =45°,△ABC 的面积为14,则AC 边的长是( )A .5B .5.5C .6D .6.518.已知:如图在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C 、D 、E 三点在同一条直线上,连接BD 、BE .以下四个结论: ①BD =CE ; ②BD ⊥CE ; ③∠ACE +∠DBC =45°; ④BE 2=2(AD 2+AB 2), 其中结论正确的个数是( )A .1B .2C .3D .4三、解答题(本大题共9题,共计78分,请在答题卡...指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题7分)如图,点B 、E 、C 、F 在同一条直线上,∠A =∠D ,∠B =∠DEF ,BE =CF . 求证:AC =DF .20.(本题8分)已知,如图,,,垂足分别为、、,且.求证:EC AC ⊥AB CD ⊥ED CD ⊥C BD EC AC =AB DE BD =+21.(本题8分)已知:如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.22.(本题8分)如图所示的一块地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积.23. (本题8分)如图,已知△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于点D,交AB于点E,若BD=20cm.求AC的长.24. (本题8分)如图,已知△ABC的三个顶点在格点上.(1)画出△A1B1C1,使它与△ABC关于直线a对称;(2)求出△A1B1C1的面积.(3)在直线a上画出点P,使PA+PC最小.25. (本题9分)已知,如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.26. (本题10分)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)说明DC=DG;(2)若DG=13,EC=5,求DE的长.27.(本题12分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.参考答案一、填空题(每题2分)1.70°; 2.100°; 3.5cm ; 4.10 ; 5.50°; 6.ASA ;7.100°; 8.3 ; 9. 8 ; 10.15°; 11. 9.6 ; 12.135;二、选择:(每题3分)13.A 14.B 15.C 16.C 17.A 18.C三、解答题19.证明:∵BE=CF, ∴BE+EC=CF+EC,即:BC=EF.(2分)在△ABC 与△DEF 中,∠A=∠D,∠B=∠DEF,BC=EF, ∴△ABC ≌△DEF(AAS),(6分) ∴AC=DF.(7分)20.证明:由AB ⊥CD,ED ⊥CD 可得∠ABC=∠D=90°,(1分)∴∠BCA+∠A=90°①; 又∵EC ⊥AC, ∴∠BCA+∠ECD=90°②;由①②可得,∠A=∠ECD.(3分)在△ABC 与△CDE 中,∠ABC=∠D ,∠A=∠ECD ,AC=EC ,∴△ABC ≌△CDE (AAS )(6分)∴AB=DC ,BC=ED.(7分)又∵DC=CB+BD ,∴AB= ED+BD.(8分)21.证明:(方法一)∵AB=AC ,∴∠B=∠C ,(1分)又∵DE ⊥AB ,DF ⊥AC ,∴∠DEB=∠DFC=90°.(3分)在△BDE 与△CDF 中,∠B=∠C ,∠DEB=∠DFC ,BD=CD ,∴△BDE ≌△CDF (AAS )(7分)∴DE=DF.(8分)(方法二)连接AD. (1分)∵AB=AC ,BD=CD ,∴∠BAD=∠CAD (三线合一).(4分)又∵DE ⊥AB ,DF ⊥AC ,(6分)∴DE=DF.(8分) 22.解:连接AC (1分)∵∠ADC=90°,AD=4,CD=3,∴AC=5.(3分)由AB=13,BC=12可得AC 2+BC 2=AB 2,∴△ABC 是直角三角形,(5分)∴S △ABC =30,(6分)S △ACD =6, (7分)30-6=24.所以这块土地的面积为24m 2.(8分)23. 解:连接AD (1分) ∵DE 是AB 的垂直平分线, ∴BD=AD=20cm ,(3分) ∠B=∠BAD=15°,∴∠ADC=30°(5分)又由∠C=90°可知,AC=AD (7分),∴AC=10cm (8分) 24.解:(1)如图,分别作点A 、B 、C 关于直线a 的对称点A 1、B 1、C 1;顺次连接A 1、B 1、C 1所得的三角形即为所求.(3分)(2)S △A 1B 1C 1=.(6分) (3)如图,连接C 1A (或A 1C )与直线a 交于点P.(8分)25. 解:(1)如图,分别以点A 、C 为圆心,大于AC 长为半径画弧,两条弧相交于两点;作过这两点的直线,与AC 、AB 分别相交于点D 、E ,则直线DE 即为所求.(2分)(2)连接CE (3分)由(1)可得AE=CE ,(5分)∵AE=BC ,∴CE=BC ,(6分)∠CEB=∠B=2∠A.又∵∠C=120°,∴∠A+∠B=60°,(8分)3∠A=60°,∠A=20°.(9分)12321226. 解:(1)∵AD ∥BC ,DE ⊥BC ,∴∠ADE=90°,∠DAF=∠ACB ①,即△ADF 为直角三角形;(2分)又∵G 为AF 的中点,∴DG=AG ,(4分)∠DGF=2∠DAF ②.由①②可得,∠DGF=2∠ACB.又∵∠ACD=2∠ACB ,∴∠DGF=∠ACD ,(6分)∴DG=DC.(7分)(2)由(1)可知DG=DC ,∴在Rt △DEC 中,=144,(9分)∴DE=12.(10分)27.解:(1)点P 在AC 上,∵∠ACB=90°,BC=6,AB=10,∴AC=8,(1分)AP=4t ,CP=8-4t ,(2分)又∵PA=PB ,∴,(3分)t=.(4分)(2)点P 在∠BAC 的角平分线上,作PH ⊥AB ,∴PC=PH=4t-8,PB=14-4t.(5分)可证△ACP ≌△AHP. ∴AH=BC=8,∴BH=2.(6分)在Rt △BPH 中,,即,(7分)t=.(8分)(3)当①;(9分)222DE DC EC =-()()2224684t t =+-2516222BH PH BP +=()()222248144t t +-=-8312t =②;(10分) ③;(11分) ④(12分)5310t =194t =5t=。
2017-2018学年新人教版八年级上期中数学试卷及答案
2017-2018学年新人教版八年级上期中数学试卷及答案2017-2018学年新人教版八年级(上)期中数学试卷时间:120分钟分值:100分一、选择题:本大题共10小题,每小题3分,共30分。
将答案填在表格内。
1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30B.35C.40°D.50°6.一个三角形三个内角之比为1:3:5,则最小的角的度数为()A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.109.AC=A′C′,在△ABC与△A′B′C′中,已知∠A=∠A′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共8小题,每小题2分,共16分。
浙江省杭州市2017-2018学年八年级上学期期中考试数学试题(含解析)
2.下列判断正确的是(
) . B.斜边相等的两个等腰直角三角形全等 D.两个锐角对应相等的两个直角三角形全等
A.有一直角边相等的两个直角三角形全等 C.腰相等的两个等腰三角形全等 【答案】 B
【解析】 A 选项应为一直角边和斜边相等的直角三角形全等;
C 选项应有一角相等才能使两个三角形全等;
D 选项还缺少边的对应关系才能使三个三角形全等.
10.已知 △ ABC 中, AC BC , C 90 ,如图,将 △ ABC 进行折叠,使点 A 落在线段 BC 上, (包括点 B 和点 C ) ,设点 A 的落点为 D ,折痕为 EF ,当 △DEF 是等腰三角形时,点 D 可能的位 置共有( ) .
A F E C
A. 2 种 【答案】B 【解析】依题意将 ∥ ABC 折叠,使 A 落在 BC 上,落点为 D ,使 ∥ DEF 为等腰三角形, 点 D 可能的位置共有: ①点 A 与 D 点重合时, ∵ AC BC , AE DE , ∴ EF DE .
C.
5 x5 2
5 D. ≤ x ≤ 5 2
10 5, 2
又∵三角两边之和大于第三边, 有 2 x 10 2 x , ∴x ∴
10 5 , 4 2
5 x5. 2
x 1 8.已知不等式组 只有一个整数解,则 a 的取值范围一定只能为( x a
) . D. 0 a 1
故选 B .
3.已知 △ ABC 中, A A. 1:1: 2 【答案】B
1 1 B C ,则它的三条边之比为( 2 3
B. 1: 3 : 2 C. 1: 2 : 3
) . D. 1: 4 :1
1 1 【解析】已知 A B C , 2 3
最新2017-2018年八年级上期中数学试卷含解析
八年级(上)期中数学试卷一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.82.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a44.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x35.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.二、仔细填一填(每小题2分,共20分)6.两个单项式a5b2m与﹣a n b4是同类项,则m=,n=.7.2a+3(b﹣c)=,a3•a4÷a5=.8.﹣(2x2y3)2=;4x2﹣(﹣2xy)=.9.因式分解:a2﹣3a=.10.计算﹣6x(x﹣3y)=;(x﹣1)(x+1)﹣x2=.11.函数的自变量x的取值范围是.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为.当载重2kg时,弹簧长度为cm.13.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来.三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了分钟(2)乌龟在这次赛跑中的平均速度为米/分.(3)比先达到终点,你有何感想.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=;②x2﹣2y﹣8=.八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.8【考点】有理数的乘方.【分析】根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【解答】解:(﹣2)3=﹣8,故选C.2.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π【考点】单项式.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:由单项式系数的定义,单项式﹣4πr2的系数是﹣4π.故选D.3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则计算得出答案.【解答】解:A、a4•a5=a9,故此选项计算错误,不合题意;B、x8÷x2=x6,故此选项计算错误,不合题意;C、(a3)2=a6,故此选项计算错误,不合题意;D、(3a2)2=9a4,正确,符合题意.故选:D.4.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x3【考点】合并同类项.【分析】直接利用合并同类项法则分别判断得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、﹣4xy+2xy=﹣2xy,正确;C 、3y 2﹣2y 2=y 2,故此选项错误;D 、3x 2+2x ,无法合并,故此选项错误;故选:B .5.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y (cm )与燃烧时间x (小时)的函数关系用图象表示为下图中的( )A .B .C .D .【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D ,更不可能是A 、C .故选B .二、仔细填一填(每小题2分,共20分)6.两个单项式a 5b 2m 与﹣a n b 4是同类项,则m= 2 ,n= 5 .【考点】同类项.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:∵单项式a5b2m与﹣a n b4是同类项,∴2m=4,n=5.即m=2,n=5.故答案为:2;5.7.2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a7.【考点】同底数幂的除法;同底数幂的乘法.【分析】直接利用同底数幂的乘除法运算法则以及结合去括号法则计算得出答案.【解答】解:2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a12÷a5=a7.故答案为:2a+3b﹣3c,a7.8.﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.故答案为:﹣4x4y6;4x2+2xy.9.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解﹣提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).10.计算﹣6x(x﹣3y)=﹣6x2+18xy;(x﹣1)(x+1)﹣x2=﹣1.【考点】平方差公式;单项式乘多项式.【分析】根据单项式乘以多项式法则求出即可;根据平方差公式展开,再合并同类项即可.【解答】解:﹣6x(x﹣3y)=﹣6x2+18xy,(x﹣1)(x+1)﹣x2=x2﹣1﹣x2=﹣1,故答案为:﹣6x2+18xy,﹣1.11.函数的自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为L=3+0.5m.当载重2kg时,弹簧长度为4cm.【考点】函数关系式.【分析】根据题意列出函数关系式,然后将m=2代入函数关系式即可求出弹簧长度.【解答】解:由题意可知:L=3+0.5m当m=2时,L=4,故答案为:L=3+0.5m;413.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为y=2x.【考点】待定系数法求正比例函数解析式.【分析】运用待定系数法求解析式.【解答】解:设此直线的解析式是y=kx,把(1,2)代入得:k=2,即直线的解析式是:y=2x.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为10.【考点】一次函数图象上点的坐标特征.【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,从而求得OA、OB 的长,然后根据三角形面积公式即可求得△AOB的面积.【解答】解:∵直线y=5x+10交x轴于点A,交y轴于点B,∴令y=0,则x=﹣2;令x=0,则y=10;∴A(﹣2,0),B(0,10),∴OA=2,OB=10,∴△AOB的面积=×2×10=10.故答案为10.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).【考点】规律型:数字的变化类.【分析】根据给出的格式可得出:两个相邻的奇数相乘等于这两个奇数中间的偶数的平方减去1,根据此列出等式表示即可.【解答】解:∵1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…,∴规律为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).故答案为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.【考点】整式的混合运算.【分析】(1)原式去括号合并即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用积的乘方运算法则变形,再利用多项式除以单项式法则计算即可得到结果;(5)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=2x﹣6x2+2﹣6x2+6=﹣12x2+2x+8;(2)原式=﹣a6+a6﹣a6=﹣a6;(3)原式=x2+6x+9﹣x2﹣x+2=5x+11;(4)原式=(﹣8x3y2+12x2y﹣4x2)÷4x2=﹣2xy2+3y﹣1;(5)原式=×﹣20072=20072﹣1﹣20072=﹣1.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(5m+n)(5m﹣n);(2)原式=a(x2﹣2xy+y2)=a(x﹣y)2;(3)原式=x(x2﹣9)=x(x+3)(x﹣3).18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式计算,去括号合并得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=4x2﹣4x+1﹣9x2+1+5x﹣5=﹣5x2+x﹣3,当x=0时,原式=﹣3.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了40分钟(2)乌龟在这次赛跑中的平均速度为10米/分.(3)乌龟比免子先达到终点,你有何感想做事不能骄傲.【考点】函数的图象.【分析】(1)时间在增多,路程没有变化时,说明兔子在睡觉,时间为50﹣10;(2)平均速度=总路程÷总时间;(3)根据图象即可得到结论.【解答】解:(1)50﹣10=40分钟;故答案为:40;(2)500÷50=10米/分钟.故答案为:10.(3)乌龟比免子先达到终点,你有何感想:做事不能骄傲.故答案为:乌龟,免子,做事不能骄傲.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?【考点】函数的图象.【分析】(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5﹣2.5=1(千米);(3)由横坐标看出小刚在文具店停留55﹣35=20(分);(4)小强从文具店回家的平均速度是3.5÷=(千米/分).五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.【考点】正比例函数的定义.【分析】直接利用正比例函数的定义分析得出即可.【解答】解:根据题意,得:,由①,得:m=2或m=﹣2,由②,得:m≠﹣2,∴m=2,即当m=2时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?【考点】一次函数图象与系数的关系.【分析】(1)把(0,3)代入直线解析式,求出m的值即可;(2)(2,0)代入直线解析式,求出m的值即可;(3)根据函数的图象的位置列出关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵直线与y轴相交于点(0,3),∴m﹣1=3,解得m=4;(2)∵直线x轴相交于点(2,0),∴2(3m﹣1)+m﹣1=0,解得m=;(3)∵直线y=(3m﹣1)x+m﹣1图象经过一、三、四象限,∴,解得:<m<1.六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.【考点】一次函数的应用.【分析】(1)根据题意可以得到一次加满油后所行路程S与时间t的函数关系式;(2)根据一次加满油可加40升,每小时耗油5升,可以得到t的取值范围;(3)根据(1)中的函数解析式和(2)中自变量的取值范围,可以画出相应的函数图象.【解答】解:(1)由题意可得,路程S与时间t的函数关系式为:S=60t;(2)∵一次加满油可加40升,每小时耗油5升,∴5t≤40,得t≤8,∴自变量的取值范围是:0≤t≤8;(3)当t=0时,S=0;当t=1时,S=60,故这个函数的图象如右图所示.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?【考点】两条直线相交或平行问题.【分析】直接利用图象上点的坐标性质得出m的值,进而得出k的值,进而判断点P(﹣2,4)是否在直线y=kx﹣6上.【解答】解:∵直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),∴﹣4=﹣2m,解得:m=2,故﹣4=2k﹣6,解得:k=1,故y=x﹣6,当x=﹣2时,y=﹣2﹣6=﹣8,故点P(﹣2,4)不在直线y=kx﹣6上.25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.【考点】待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法把点A(﹣6,4)B(3,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;(2)根据题意作出图象即可;(3)把(9,m)代入y=2x﹣2,即可求得m的值;(4)根据三角形的面积公式即可得到结论.【解答】解:(1)设一次函数为:y=kx+b,∵一次函数的图象经过点A(﹣6,4)B(3,0),∴,解得:∴这个一次函数的表达式为y=﹣x+;(2)图象如图所示,(3)把(9,m)代入y=﹣x+,得m=﹣;=×3×4=6.(4)S△AOB八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2).【考点】因式分解﹣十字相乘法等.【分析】根据x2+(p+q)x+pq=(x+p)(x+q)容易得出答案.【解答】解:①x2+7x+10=(x+2)(x+5);故答案为:(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2);故答案为:(y﹣4)(y+2).2017年5月13日。
2017-2018学年八年级数学上学期期中考试原(含答案)
2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版第11~13章。
第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。
2017-2018学年人教版八年级上期中数学试卷(有答案)AKKPPq
2017-2018学年无为尚文学校八年级(上)期中数学试卷一、选择题(每小题3分,共42分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去3.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点4.下列图形中,不是轴对称图形的是()A.B.C.D.5.和点P(﹣3,2)关于y轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形8.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或129.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.10.如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B等于()A.60°B.70°C.80°D.90°12.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C. D.513.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°14.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP二、填空题(每小题4分,共16分)15.海南省农村公路通畅工程建设,截止2009年9月30日,累计完成投资约4 620 000 000元,数据4 620 000 000用科学记数法表示应为.16.△ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是.17.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.18.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.三、解答题(本大题共62分)19.计算:(1)(2)解方程组.20.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA的度数.22.如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A、B两点的坐标;(2)作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1两点的坐标;(3)请求出△A1B1C1的面积.23.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.2017-2018学年无为尚文学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【考点】KE:全等三角形的应用.【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.3.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点【考点】KJ:等腰三角形的判定与性质;K7:三角形内角和定理.【分析】根据∠A=36°,AB=AC,BD平分∠ABC,可得△ABD与△BCD都是等腰三角形,据此判断各选项是否正确即可.【解答】解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠C=2∠A,故(A)正确;∵BD平分∠ABC,∴∠ABD=36°,∴∠BDC=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,故(B)正确;∵∠A=∠ABD=36°,∴△ABD是等腰三角形,故(C)正确;∵BD<CD,∴AD>CD,∴D不是AC的中点,故(D)错误.故选:D4.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.和点P(﹣3,2)关于y轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:和点P(﹣3,2)关于y轴对称的点是(3,2),故选A.【点评】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.7.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.【解答】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.【点评】三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.8.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为5,这个三角形的周长是12.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.10.如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【考点】直角三角形的性质;平行线的性质.【专题】计算题.【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B等于()A.60°B.70°C.80°D.90°【考点】三角形的外角性质.【分析】直接利用三角形外角的性质得出∠A+∠B=∠ACD,进而得出答案.【解答】解:∵∠A=80°,∠ACD=150°,∠A+∠B=∠ACD,∴∠B=∠ACD﹣∠A=150°﹣80°=70°.故选:B.【点评】此题主要考查了三角形外角的性质,正确把握外角的定义是解题关键.12.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C. D.5【考点】全等三角形的判定与性质.【分析】由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=45°,AD是高,得出BD=AD是正确解答本题的关键.13.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA 后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【考点】角平分线的性质.【分析】本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.【点评】本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE是解决的关键.二、填空题(每小题4分,共16分)15.海南省农村公路通畅工程建设,截止2009年9月30日,累计完成投资约4 620 000 000元,数据4 620 000 000用科学记数法表示应为4.62×109.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.题中4 620 000 000有10位整数,所以n=10﹣1=9.【解答】解:数据4 620 000 000用科学记数法表示应为4.62×109.故答案为4.62×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.△ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是3cm<AC<13cm.【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边.三角形的两边差小于第三边.可得8cm﹣5cm<AC<8cm+5cm.【解答】解:根据三角形的三边关系可得:8cm﹣5cm<AC<8cm+5cm,即:3cm<AC<13cm,故答案为:3cm<AC<13cm.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.17.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【考点】全等三角形的判定.【专题】开放型.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为8cm.【考点】线段垂直平分线的性质.【专题】计算题.【分析】由于DE为AB的垂直平分线,根据线段垂直平分线的性质得到CD=BD,由此推出△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,即可求得△ACD的周长.【解答】解:∵DE为BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,而AC=3cm,AB=5cm,∴△ACD的周长为3+5=8cm.故答案为:8.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.三、解答题(本大题共62分)19.计算:(1)(2)解方程组.【考点】实数的运算;解二元一次方程组.【专题】计算题;实数.【分析】(1)原式利用绝对值的代数意义,算术平方根定义,以及乘法法则计算即可得到结果;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=+3+=1+3=4;(2),①+②得:2x=16,即x=8,把x=8代入①得:y=2,则方程组的解为.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.【考点】多边形内角与外角.【分析】设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=3×360°﹣180°,解得n=7.所以这个多边形的内角和为:(7﹣2)•180°=900°.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】根据三角形的内角和定理,高线、角平分线的定义进行解答即可.【解答】解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=50°,∴∠DAC=90°﹣50°=40°,∵在△ABC中,∠C=50°,∠BAC=60°,∴∠ABC=70°,∵在△ABC中,AE,BF是角平分线,∴∠EAC=∠BAC=30°,∠FBC=∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=50°+30°+35°=115°.【点评】本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.22.如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A、B两点的坐标;(2)作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1两点的坐标;(3)请求出△A1B1C1的面积.【考点】作图-轴对称变换.【分析】(1)根据图中坐标系写出点A、B两点的坐标即可;(2)首先确定A、B、C三点关于y轴对称的点,再连接即可;(3)把△A1B1C1放在一个矩形内,再利用矩形的面积减去周围多余三角形的面积即可.【解答】解:(1)A(﹣1,0)、B(﹣2,﹣2);(2)如图所示,A1(1,0)、B1(2,﹣2);(3)△A1B1C1的面积为3×2﹣2××1×2﹣×1×3=2.5.【点评】此题主要考查了作图﹣﹣轴对称变换,关键是正确确定A、B、C三点对称点的位置.23.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.【考点】全等三角形的应用.【分析】(1)由图可得,△ABC与△DEF均是直角三角形,由已知可根据HL判定两三角形全等;(2)利用(1)中全等三角形的对应角相等,不难求解.【解答】解:(1)△ABC与△DEF全等.理由如下:在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)∠ABC+∠DFE=90°,理由如下:由(1)知,Rt△ABC≌Rt△DEF,则∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.【点评】此题考查了学生对全等三角形的判定及性质的运用.做题时要注意找已知条件,根据已知选择方法.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【考点】线段垂直平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。
苏教版】2017-2018年八年级上数学期中试题及答案
苏教版】2017-2018年八年级上数学期中试题及答案2017-2018学年度第一学期期中考试八年级数学试题考试时间:120分钟满分:150分)注意事项:1.本试卷分为选择题和非选择题两个部分。
2.所有试题的答案均填写在答题纸上,答案写在试卷上无效。
3.作图必须用2B铅笔,并请加黑加粗。
一、选择题(共6小题,每小题3分,共18分)1.4的平方根为()A。
2 B。
±2 C。
±2 D。
-22.下面的图形中,是轴对称图形的是()ABCD3.下列各组数作为三角形的三边长,其中能构成直角三角形的是()A。
2,3,4 B。
3,4,5 C。
4,5,6 D。
5,6,74.已知等腰三角形的两边长分别为a、b,且a、b满足a-3+(7-b)^2=0,则此等腰三角形的底边长为()A。
3或7 B。
4 C。
7 D。
3√25.下列说法正确的是()A。
无限小数都是无理数 B。
9的立方根是3 C。
平方根等于本身的数是 D。
数轴上的每一个点都对应一个有理数6.如图,OP是∠AOB的平分线,点C、D分别在∠AOB的两边OA、OB上,添加下列条件,不能判定△POC≌△POD的选项是()A。
∠OPC=∠OPD B。
PC=PD C。
PC⊥OA,PD⊥OB D。
OC=OD二、填空题(共10小题,每小题3分,共30分)7.比较大小:-|-3|-7.(答案:-7)8.0.精确到百分位的结果是____。
(答案:21.68%)9.在Rt△ABC中,∠C=90°,D为斜边AB的中点,若AB=10cm,则CD=____cm。
(答案:5)10.在镜子中看到电子表显示的时间是9:40,电子表上实际显示的时间为____。
(答案:3:20)11.在等腰三角形ABC中,∠A=100º,则∠C=____°。
(答案:80)12.已知正数x的两个平方根是m+3和2m-15,则正数x =____。
(答案:(m-6)^2)13.如图,正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为-1。
2017-2018学年人教版八年级上期中数学试卷含答案解析
一、选择题(每小题 3 分,共 42 分)
1.下列图形中,不是轴对称图形的是( )
A.
B.
C.
D.
2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一 样形状的玻璃.那么最省事的办法是带( )
A.带①去 B.带②去 C.带③去 D.带①②去 3.如图,△ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,下列结论错误的是( )
23.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度 AC 与右边滑梯水平方向的长度 DF 相等. (1)△ABC 与△DEF 全等吗? (2)两个滑梯的倾斜角∠ABC 与∠DFE 的大小有什么关系.
第 4 页(共 17 页)
24.如图,在四边形 ABCD 中,AD∥BC,E 为 CD 的中点,连接 AE、BE,BE⊥AE,延长 AE 交 BC 的延长线于点 F.求证: (1)FC=AD; (2)AB=BC+AD.
A.
B.
C.
D.
10.如图,AB∥DF,AC⊥BC 于 C,BC 与 DF 交于点 E,若∠A=20°,则∠CEF 等于( )
A.110° B.100° C.80° D.70° 11.如图,在△ABC 中,∠A=80°,点 D 是 BC 延长线上一点,∠ACD=150°,则∠B 等于( )
A.60° B.70° C.80° D.90°
.
20.一个多边形的内角和比它的外角和的 3 倍少 180°,求这个多边形的边数和内角和.
21.如图,△ABC 中,AD 是高,AE、BF 是角平分线,它们相交于点 O,∠BAC=60°,∠C=50°, 求∠DAC 及∠BOA ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题: (1)分别写出点 A、B 两点的坐标; (2)作出△ABC 关于 y 轴对称的△A1B1C1,并分别写出点 A1、B1 两点的坐标; (3)请求出△A1B1C1 的面积.
2017-2018年湖北省孝感市汉川市八年级(上)期中数学试卷(解析版)
2017-2018学年湖北省孝感市汉川市八年级(上)期中数学试卷一、精心选一选(将唯一正确答案的代号填在题后的答题卡中10×3分=30分)1.(3分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.82.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)正五边形的外角和为()A.540°B.360°C.180° D.72°4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.5.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=3 B.x=2,y=3 C.x=﹣2,y=﹣3 D.x=2,y=﹣36.(3分)如图,△ABD≌△ACE,AB=9,AD=7,BD=8,则BE的长是()A.1 B.2 C.4 D.67.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.68.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形9.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④10.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE ⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、细心填一填(本大题共6小题,每小题3分,共18分.)11.(3分)等腰三角形的一个底角为30°,则顶角的度数是度.12.(3分)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=度.13.(3分)如图,△ABC中,AB=AC=6,BC=4.依据尺规作图的痕迹,则△EBC 的周长为.14.(3分)一个多边形的内角和等于1260°,则它的对角线的条数为.15.(3分)如图,在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣2),若△ABC是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是.16.(3分)如图,四边形ABCD沿直线l对折后重合,如果AD∥BC,则下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的是.(只填序号)三、用心做一做(本大题共8小题,满分72分).17.(8分)如图,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O,BO=CO.求证:AO平分∠BAC.18.(8分)一个多边形的内角和比四边形的外角和多720°,并且这个多边形的各内角都相等.这个多边形是几边形?它的每一个内角等于多少度?19.(8分)如图,在平面直角坐标系中,每个小正方形的边长为1,直线m上各点的横坐标都为1.请按要求分别完成下列各小题:(1)画出△ABC关于直线m对称的△A1B1C1,写出A1,B1,C1的坐标;(2)若△ABC的内部一点P(x,y),则点P关于直线m对称的点P′的坐标是多少?20.(8分)如图,在△ABC中,AB=AC.(1)利用尺规作图作边BC的高AD,垂足为D(保留作图痕迹,不写作法);(2)求证:BD=CD.21.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.22.(10分)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值;(2)求这个等腰三角形的周长.23.(10分)如图,AC∥BD,E为CD的中点,AE⊥BE.(1)求证:AE平分∠BAC;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.24.(12分)在△ABC 中,AB=AC,D是直线BC上一点,以AD为一边作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=40°,求∠DCE的度数;(2)设∠BAC=m,∠DCE=n.①如图2,当点D在线段BC上移动时(不与点B,C 重合),m与n之间有什么数量关系?请说明理由.②如图3,当点D在线段CB的延长线上移动时,m与n之间有什么数量关系.(直接写出结论)2017-2018学年湖北省孝感市汉川市八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(将唯一正确答案的代号填在题后的答题卡中10×3分=30分)1.(3分)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)正五边形的外角和为()A.540°B.360°C.180° D.72°【解答】解:任意多边形的外角和都是360°,故正五边形的外角和为360°.故选:B.4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.5.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=3 B.x=2,y=3 C.x=﹣2,y=﹣3 D.x=2,y=﹣3【解答】解:∵点A(x,3)与点B(2,y)关于x轴对称,∴x=2,y=﹣3.故选:D.6.(3分)如图,△ABD≌△ACE,AB=9,AD=7,BD=8,则BE的长是()A.1 B.2 C.4 D.6【解答】解:∵△ABD≌△ACE,∴AE=AD=7,∵AB=9,∴BE=AB﹣AE=9﹣7=2,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S=AB•DE=×10•DE=15,△ABD解得DE=3.故选:A.8.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形【解答】解;在A中,两个三角形满足的是SSA,不能判定两个三角形全等;在B中,两个三角形满足ASA,能判定两个三角形全等;在C中,两个三角形满足SSS,能判定两个三角形全等;在D中,两个三角形满足HL,能判定两个三角形全等;∴不能判断两个三角形全等的是A,故选:A.9.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【解答】解:选②AD=BE;③AF=BF,不能证明△ADF与△BEF全等,所以不能证明∠1=∠2,故不能判定△ABC是等腰三角形.故选:C.10.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE ⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.二、细心填一填(本大题共6小题,每小题3分,共18分.)11.(3分)等腰三角形的一个底角为30°,则顶角的度数是120度.【解答】解:因为其底角为30°,所以顶角=180°﹣30°×2=120°.故填120.12.(3分)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=70度.【解答】解:∵∠A=40°,∴△ABC的∠B和∠C的外角和为:180°﹣∠1+180°﹣∠2=360°﹣(∠1+∠2)=360°﹣(180°﹣40°)=360°﹣140°=220°.由于CD、BD的平分线交于点D,则∠4+∠5=×220°=110°,根据三角形内角和定理,∠D=180°﹣110°=70°.13.(3分)如图,△ABC中,AB=AC=6,BC=4.依据尺规作图的痕迹,则△EBC 的周长为10.【解答】解:∵AB=AC=6,DE垂直平分AB,∴AE=BE,△EBC的周长=BC+BC+EC=BC+AE+EC=BC+AC=4+6=10,故答案为10.14.(3分)一个多边形的内角和等于1260°,则它的对角线的条数为27.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=1260°,解得n=9,此多边形的边数为9.则它的对角线的条数为:=27条.故答案为27.15.(3分)如图,在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣2),若△ABC是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是(3,﹣2)或(﹣3,2).【解答】解:分两种情况:①当A为顶角顶点时,根据题意得:等腰三角形的对称轴为x=1,∵点B的坐标为(﹣1,﹣2),∴点C的坐标为(3,﹣2);②当B为顶角顶点时,根据题意得:等腰三角形的对称轴为x=﹣1,∵点A的坐标为(1,2),∴点C的坐标为(﹣3,2).综上所述:C点的坐标为(3,﹣2)或(﹣3,2).故答案为:(3,﹣2)或(﹣3,2).16.(3分)如图,四边形ABCD沿直线l对折后重合,如果AD∥BC,则下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的是①②④.(只填序号)【解答】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;∴③AC⊥BD,错误;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.故答案为:①②④三、用心做一做(本大题共8小题,满分72分).17.(8分)如图,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O,BO=CO.求证:AO平分∠BAC.【解答】证明:∵CD⊥AB于D,BE⊥AC于E,∴∠ODB=∠DEC=90°.在△DBO和△CEO中,∴△DBO≌△CEO.∴OD=OE.∵OD⊥AB,OE⊥AC,OD=OE,∴AO平分∠BAC.18.(8分)一个多边形的内角和比四边形的外角和多720°,并且这个多边形的各内角都相等.这个多边形是几边形?它的每一个内角等于多少度?【解答】解:设这个多边形边数为n,则(n﹣2)•180=360+720,解得n=8,∴这个多边形是八边形,∵这个多边形的每个内角都相等,∴它每一个内角的度数为1080°÷8=135°.19.(8分)如图,在平面直角坐标系中,每个小正方形的边长为1,直线m上各点的横坐标都为1.请按要求分别完成下列各小题:(1)画出△ABC关于直线m对称的△A1B1C1,写出A1,B1,C1的坐标;(2)若△ABC的内部一点P(x,y),则点P关于直线m对称的点P′的坐标是多少?【解答】解:(1)如图所示:△A1B1C1,即为所求,A1(3,3),B1(6,5),C1(6,1);(2)∵△ABC的内部一点P(x,y),设点P关于直线m对称的点P′的横坐标为:a,则=1,故a=2﹣x,∴点P关于直线m对称的点P′的坐标是(2﹣x,y).20.(8分)如图,在△ABC中,AB=AC.(1)利用尺规作图作边BC的高AD,垂足为D(保留作图痕迹,不写作法);(2)求证:BD=CD.【解答】解:(1)如图线段AD即为所求.(2)∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADB和Rt△ADC中,,∴Rt△ADB≌Rt△ADC.∴BD=DC.21.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.22.(10分)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值;(2)求这个等腰三角形的周长.【解答】解:(1)②×3+①得:10a=50,解得a=5.∴b=3.(2)当a为腰时,三角形的周长为5+5+3=13,当b为腰时,三角形的周长=3+3+5=11.23.(10分)如图,AC∥BD,E为CD的中点,AE⊥BE.(1)求证:AE平分∠BAC;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.【解答】解:(1)如图所示,延长AE交BD的延长线于F,∵AC∥BD,∴∠CAE=∠DFE,∵E为CD的中点,∴CE=DE,在△CAE和△DFE中,,∴△CAE≌△DFE(AAS),∴AC=DF,AE=FE,∵AE⊥BE,∴∠AEB=∠FEB=90°,在△AEB和△FEB中,,∴△AEB≌△FEB(SAS),∴∠BAE=∠F,∴∠CAE=∠BAE,∴AE平分∠BAC.(2)线段AB、AC、BD的数量关系为:AB=BD+AC.证明:由(1)可得,△AEB≌△FEB,∴AB=BF,即AB=BD+DF,由(1)可得,DF=AC,∴AB=BD+AC.24.(12分)在△ABC 中,AB=AC,D是直线BC上一点,以AD为一边作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=40°,求∠DCE的度数;(2)设∠BAC=m,∠DCE=n.①如图2,当点D在线段BC上移动时(不与点B,C 重合),m与n之间有什么数量关系?请说明理由.②如图3,当点D在线段CB的延长线上移动时,m与n之间有什么数量关系.(直接写出结论)【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠B,∵AB=AC,∠BAC=40°,∴∠ACE=∠B=70°,∴∠DCE=180°﹣70°﹣70°=40°;(2)①m+n=180°,理由:∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=∠ACB+∠B,∵∠BAC+∠B+∠ACB=180°,∴∠BAC+∠BCE=180°,即m+n=180°;②m=n,理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC 中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即m=n.。
2017-2018学年山东省德州五中八年级(上)期中数学试卷(解析版)
2017-2018 学年山东省德州五中八年级(上)期中数学试卷一、选择题(每题4 分,共48 分)1.(4 分)下列图形中不是轴对称图形的是()A.B.C.D.2.(4分)三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(4 分)等腰三角形的两边长分别为4cm 和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm 或20cm4.(4 分)如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8 厘米,AB=10 厘米,则△EBC 的周长为()厘米.A.16 B.18 C.26 D.285.(4 分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.76.(4 分)已知:如图,AD 是△ABC 的角平分线,且AB:AC=3:2,则△ABD 与△ACD 的面积之比为()A.3:2 B.9:4 C.2:3 D.4:97.(4 分)△ABC 中,∠ABC 与∠ACB 的平分线相交于I,且∠BIC=130°,则∠A 的度数是()A.40° B.50° C.65°D.80°8.(4 分)如图∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.540°B.550° C.650° D.180°9.(4 分)如图,在△ABC 和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′ B.∠A=∠A′ C.AC=A′C′D.∠C=∠C′10.(4 分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3 等于()A.90° B.120° C.150°D.180°11.(4 分)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若A E=2,当EF+CF 取得最小值时,则∠ECF 的度数为()A.15° B.22.5° C.30° D.45°12.(4 分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON 上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7 的边长为()A.6 B.12 C.32 D.64二、填空题(每题4 分,共24 分)13.(4 分)从长度为2cm,3cm,4cm,5cm 四条线段中任意取三条组成三角形,则组成三角形的个数为.14.(4 分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.15.(4 分)如图,点P 是∠AOB 外一点,点M、N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在线段MN 的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR 的长为.16.(4 分)点P(3a+6,3﹣a)关于x 轴的对称点在第四象限内,则a 的取值范围为.17.(4 分)在△ABC 中AB=AC,中线BD 将△ABC 的周长分为12cm 和15cm,则三角形底边长.18.(4 分)如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作正△ABC 和正△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、解答题:(共78 分)19.(8 分)已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.20.(10 分)如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 对称的对称的△A1B1C1;(2)在直线DE 上画出点P,使△PAC 周长最小.21.(10 分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.22.(12 分)如图,O 为码头,A、B 两个灯塔与码头O 的距离相等,OA,OB 为海岸线,一轮船P 离开码头,计划沿∠AOB 的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P 始终保持与灯塔A、B 的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.23.(12 分)如图,已知△ABC 中,AB>AC,BE、CF 都是△ABC 的高,P 是BE 上一点且BP=AC,Q 是CF 延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ 的形状.24.(12 分)在△ABC 中,∠ACB=90°,AC=BC,直线MN 经过点C,且AD⊥MN 于D,BE⊥MN 于E.(1)当直线MN 绕点C 旋转到图1 的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN 绕点C 旋转到图2 的位置时,直接写出DE、AD、BE 的关系为:(3)当直线MN 绕点C 旋转到图3 的位置时,试问DE、AD、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.25.(14 分)如图,已知△ABC 中,AB=AC=10cm,BC=8cm,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?2017-2018 学年山东省德州五中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4 分,共48 分)1.(4 分)下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:根据轴对称图形的概念可知:A,B,D 是轴对称图形,C 不是轴对称图形,故选:C.2.(4分)三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.3.(4 分)等腰三角形的两边长分别为4cm 和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm 或20cm【解答】解:等腰三角形的两边长分别为4cm 和8cm,当腰长是4cm 时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm 不满足三角形的三边关系;当腰长是8cm 时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.4.(4 分)如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8 厘米,AB=10 厘米,则△EBC 的周长为()厘米.A.16 B.18 C.26 D.28【解答】解:∵DE 是△ABC 中AC 边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC 的周长=BC+BE+CE=10 厘米+8 厘米=18 厘米,故选:B.5.(4 分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.7【解答】解:设该多边形的边数为n则:(n﹣2)•180°=900°,解得:n=7.故选:D.6.(4 分)已知:如图,AD 是△ABC 的角平分线,且AB:AC=3:2,则△ABD 与△ACD 的面积之比为()A.3:2 B.9:4 C.2:3 D.4:9【解答】解:过点D 作DE⊥AB 于E,DF⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(AB•DE):(AC•DF)=AB:AC=3:2.故选:A.7.(4 分)△ABC 中,∠ABC 与∠ACB 的平分线相交于I,且∠BIC=130°,则∠A 的度数是()A.40° B.50° C.65°D.80°【解答】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°﹣∠BIC=180°﹣130°=50°,∵BE、CF 是△ABC 的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°﹣100°=80°.故选:D.8.(4 分)如图∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.540°B.550° C.650° D.180°【解答】解:如图,∠6+∠7=∠8+∠9,由五边形内角和定理得:∠1+∠2+∠3+∠8+∠9+∠4+∠5=540°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.故选:A.9.(4 分)如图,在△ABC 和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′ B.∠A=∠A′C.AC=A′C′ D.∠C=∠C′【解答】解:A、若添加BC=BˊCˊ,可利用SAS 进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA 进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS 进行全等的判定,故本选项错误;故选:C.10.(4 分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+ ∠3 等于()A.90° B.120° C.150°D.180°【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.11.(4 分)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE=2,当EF+CF 取得最小值时,则∠ECF 的度数为()A.15° B.22.5° C.30° D.45°【解答】解:过E 作EM∥BC,交AD 于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E 和M 关于AD 对称,连接CM 交AD 于F,连接EF,则此时EF+CF 的值最小,∵△ABC 是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF= ∠ACB=30°,故选:C.12.(4 分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON 上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1 ,则△A6B6A7 的边长为()A.6 B.12 C.32 D.64【解答】解:∵△A1B1A2 是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3 、△A3B3A4 是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(每题4 分,共24 分)13.(4 分)从长度为2cm,3cm,4cm,5cm 四条线段中任意取三条组成三角形,则组成三角形的个数为 3 个.【解答】解:任意三条线段组合有:2cm,3cm,4cm;2cm,3cm,5cm;2cm,4cm,5cm;3cm,4cm,5cm.根据三角形的三边关系,可知2cm,3cm,5cm 不能组成三角形.故答案为:3 个14.(4 分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入 1 号球袋.【解答】解:如图,该球最后将落入1 号球袋.15.(4 分)如图,点P 是∠AOB 外一点,点M、N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在线段MN 的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR 的长为4.5cm .【解答】解:由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.16.(4 分)点P(3a+6,3﹣a)关于x 轴的对称点在第四象限内,则a 的取值范围为﹣2<a<3 .【解答】解:∵P 关于x 轴的对称点在第四象限内,∴点P 位于第一象限.∴3a+6>0①,3﹣a>0②.解不等式①得:a>﹣2,解不等式②得:a<3,所以a 的取值范围是:﹣2<a<3.故答案为:﹣2<a<3.17.(4 分)在△ABC 中AB=AC,中线BD 将△ABC 的周长分为12cm 和15cm,则三角形底边长 11cm 或7cm .【解答】解:如图,∵DB 为△ABC 的中线,∴AD=CD.设AD=CD=x,则AB=2x,当x+2x=12,解得x=4,BC+x=15,解得BC=11,此时△ABC 的底边长为11cm;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC 的底边长为7cm.故答案为11cm 或7cm.18.(4 分)如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作正△ABC 和正△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有①②③⑤.(把你认为正确的序号都填上)【解答】解:①∵正△ABC 和正△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.三、解答题:(共78 分)19.(8 分)已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.【解答】解:设此多边形的边数为n,则:(n﹣2)•180=1440+360,解得:n=12.答:这个多边形的边数为12.20.(10 分)如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 对称的对称的△A1B1C1;(2)在直线DE 上画出点P,使△PAC 周长最小.【解答】解:(1)如图所示:从△ABC 各顶点向DE 引垂线并延长相同的长度,找到对应点,顺次连接即可得△A1B1C1;(2)如图所示:利用轴对称图形的性质可得点C 关于直线DE 的对称点C1,连接C1A,交直线DE 于点P 点,P 即为所求,此时△PAC 的周长最小.21.(10 分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【解答】证明:∵AB∥DE,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC 和△DEF 中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.22.(12 分)如图,O 为码头,A、B 两个灯塔与码头O 的距离相等,OA,OB 为海岸线,一轮船P 离开码头,计划沿∠AOB 的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P 始终保持与灯塔A、B 的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【解答】解:(1)如图所示:OC 即为所求.(2)没有偏离预定航行,理由如下:在△AOP 与△BOP 中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C 在∠AOB 的平分线上.23.(12 分)如图,已知△ABC 中,AB>AC,BE、CF 都是△ABC 的高,P 是BE 上一点且BP=AC,Q 是CF 延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ 的形状.【解答】解:△APQ 是等腰直角三角形.∵BE、CF 都是△ABC 的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)∴∠1=∠2 又∵AC=BP,CQ=AB,在△ACQ 和△PBA 中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ 是等腰直角三角形24.(12 分)在△ABC 中,∠ACB=90°,AC=BC,直线MN 经过点C,且AD⊥MN 于D,BE⊥MN 于E.(1)当直线MN 绕点C 旋转到图1 的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN 绕点C 旋转到图2 的位置时,直接写出DE、AD、BE 的关系为:DE=AD﹣BE(3)当直线MN 绕点C 旋转到图3 的位置时,试问DE、AD、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN 于D,BE⊥MN 于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC 和△CEB 中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)DE=AD﹣BE,在△ADC 和△CEB 中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;故答案为:DE=AD﹣BE(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.25.(14 分)如图,已知△ABC 中,AB=AC=10cm,BC=8cm,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【解答】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D 为AB 的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD 和△CQP 中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q 运动的时间s,∴cm/s;(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得x=3x+2×10,解得.∴点P 共运动了×3=80cm.△ABC 周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB 的长度,∴点P、点Q 在AB 边上相遇,∴经过s 点P 与点Q 第一次在边AB 上相遇.。
2017-2018学年八年级上数学期中试卷及答案(浙教版)
2017-2018学年第一学期期中检测八年级数学一、选择题(每小题2分,共20分) 1.下列语句是命题的是( ) A .作直线AB 的垂线 B .在线段AB 上取点CC .同旁内角互补D .垂线段最短吗?2.下列轴对称图形中,只有两条对称轴的图形是( )3. 根据下列条件判断,以a,b,c 为边的三角形不是直角三角形的是 ( )A. a=32, b=42, c=52B. a=30, b=40, c=45C. a=1, b=2, c=3D. a :b :c=5:12:134.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm5.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠C OD '''=∠DOC ,需要证明△C O D '''≌△DOC,则这两个三角形全等班级 ____________ 姓名 ___________ 学号 ___________┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆密┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆封┆┆┆┆┆┆┆┆┆┆┆┆┆┆线┆┆┆┆┆┆┆┆┆的依据是()A.SSS B.SAS C.AAS D.ASA6.等腰三角形一腰上的高与另一腰的夹角为30o,则顶角的度数为()(A)60o.(B)120o.(C)60o或150o.(D)60o或120o.7. △ABC的两边AB和AC的垂直平分线分别交BC于D,E,若边BC长为8cm,则△ADE的周长是()A.8cm B. 16cm C. 4cm D. 不能确定8. 如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .120°C .160°D .180° 9. 如图,把纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则与之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A. B.C.D. 10.如图,在△ABC 中,∠A=52°,∠ABC 与∠ACB 的角平分线交于D1, ∠ABD1与∠ACD1的角平分线交于点D2,依次类推,∠ABD4与∠ACD4 的角平分线交于点D5,则∠BD5C 的度数是( )A .56° B. 60° C. 68 D.二、填空题(每小题3分,共30分)11.写出定理“线段垂直平分线上的点到线段两端的距离相等”的逆定理__________________.第9题第8题第16题第17题DCOBA12.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是 __________________.13.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 __________14.如图,若//AB CD ,EF 与AB CD 、分别相交于点E F 、,EP 与EFD ∠的平分线相交于点P ,且60EFD ∠=,EP FP BEP ⊥∠=,则 度.15.已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为16、如图,已知AB 是Rt △ABC 和Rt △ABD 的斜边,O 是AB 的中点,其中OC 是2cm ,则OD=_____________。
2017-2018学年八年级(上)期中数学试卷(含解析)
2017-2018学年八年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<06.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣28.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是,到y轴距离是.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.。
2017-2018年山西省太原市八年级(上)期中数学试卷
2017-2018学年山西省太原市八年级(上)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)实数的相反数是()A.﹣B.C.﹣D.2.(3分)下列各组数中,能作为直角三角形三边长的是()A.4,5,6 B.5,7,12 C.1,1,D.1,,33.(3分)下列计算正确的是()A.=±3 B.=﹣2 C.=﹣3D.+=4.(3分)如图是用雷达探测器测得的六个目标A、B、C、D、E、F,其中,目标E、F的位置表示为E(300°,3),F(210°,5),按照此方法表示目标A、B、C、D的位置,不正确的是()A.A(30°,4)B.B(90°,2)C.C(120°,6)D.D(240°,4)5.(3分)一次函数y=﹣2x﹣5的图象经过坐标系的()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限6.(3分)下列实数中的无理数为()A.0.5B.C.()2D.7.(3分)已知平面直角坐标系中点A的坐标为(﹣4,3),则下列结论正确的是()A.点A到x轴的距离为4B.点A到y轴的距离为3C.点A到原点的距离为5D.点A关于x轴对称的点的坐标为(4,﹣3)8.(3分)若点A(1,a)和点B(4,b)在直线y=﹣2x+m上,则a与b的大小关系是()A.a>b B.a<b C.a=b D.与m的值有关9.(3分)如图,数轴上的A、B、C、D四点对应的数分别是﹣3,﹣2,﹣1,2,其中与表示﹣的点距离最近的点是()A.点A B.点B C.点C D.点D10.(3分)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A.20cm B.2cm C.(12+2)cm D.18cm二、填空题:共5小题,每小题2分,共10分,把答案写在题中横线上.11.(2分)计算(﹣1)(+1)的结果为.12.(2分)已知正比例函数y=kx的图象经过点P(3,6),则k的值等于.13.(2分)已知等边三角形的边长为2cm,则它的高为cm.14.(2分)比较大小:.(填“>”、“<”或“=”)15.(2分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB,BC,AC为边在AB同侧作正方形ABMN,正方形ACDE和正方形BCFG,其中线段DE经过点N,CF与BM交于点P,CD与MN交于点Q,图中阴影部分的面积为.三、解答题:共8小题,共60分,解答应写出文字说明、演算步骤或推理过程.16.(12分)计算:(1)+3;(2)+;(3)(2+)2;(4)+10﹣+.17.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣3,2),B(﹣1,4),C(0,2).(1)在如图的平面直角坐标系中画出△ABC关于y轴对称的△A1B1C1,并直接写出A1,B1,C1的坐标;(2)若将△ABC三个顶点的纵坐标分别乘﹣1,横坐标不变,将所得的三个点用线段段顺次连接,得到的三角形与△ABC的位置关系是.18.(4分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)之间的关系为h=4.9t2,如图,有一个物体从78.4m高的建筑物上自由下落,到达地面需要多长时间?19.(5分)已知一次函数y=x+2的图象与x轴相交于点A,与y轴相交于点B.(1)求点A,B的坐标,并在如图的坐标系中画出函数y=x+2的图象;(2)若点C(2,m)在函数y=x+2的图象上,求点C到x轴的距离.20.(6分)如图,某小区的两个喷泉A,B位于小路AC的同侧,两个喷泉的距离AB的长为250m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC 上,供水点M到AB的距离MN的长为120m,BM的长为150m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)直接写出喷泉B到小路AC的最短距离.21.(6分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=;方案二:y2=.(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到个文具盒(直接回答即可).22.(8分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB=,BC=,AC=;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.23.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2017-2018学年山西省太原市八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)实数的相反数是()A.﹣B.C.﹣D.【分析】直接利用实数的性质和相反数的定义分析得出答案.【解答】解:实数的相反数是:﹣.故选:A.【点评】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.(3分)下列各组数中,能作为直角三角形三边长的是()A.4,5,6 B.5,7,12 C.1,1,D.1,,3【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵52+42≠62,∴此组数据能不作为直角三角形的三边长,故本选项错误;B、∵72+52≠122,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵12+12=()2,∴此组数据能作为直角三角形的三边长,故本选项正确;D、∵12+()2≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;故选:C.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.(3分)下列计算正确的是()A.=±3 B.=﹣2 C.=﹣3D.+=【分析】根据平方根与立方根的定义即可求出答案.【解答】解:(A)原式=3,故A错误;(B)原式=﹣2,故B正确;(C)原式==﹣3,故C错误;(D)与不是同类二次根式,故D错误;故选:B.【点评】本题考查立方根与平方根,解题的关键是熟练运用立方根与平方根的定义,本题属于基础题型.4.(3分)如图是用雷达探测器测得的六个目标A、B、C、D、E、F,其中,目标E、F的位置表示为E(300°,3),F(210°,5),按照此方法表示目标A、B、C、D的位置,不正确的是()A.A(30°,4)B.B(90°,2)C.C(120°,6)D.D(240°,4)【分析】根据度数表示横坐标,圆圈数表示纵坐标,可得答案.【解答】解:由图可得,A(30°,5),故A选项错误;B(90°,2),C(120°,6),D(240°,4),故B,C,D选项都正确;故选:A.【点评】本题考查了坐标确定位置,利用度数表示横坐标,圆圈数表示纵坐标是解题关键.5.(3分)一次函数y=﹣2x﹣5的图象经过坐标系的()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【分析】根据一次函数的图象的性质解答即可.【解答】解:一次函数y=﹣2x﹣5的图象经过坐标系的第二、三、四象限,故选:C.【点评】本题考查一次函数的图象的性质,关键是根据一次函数的图象的性质解答.6.(3分)下列实数中的无理数为()A.0.5B.C.()2D.【分析】根据无理数的定义求解即可.【解答】解:0.5,,()2是有理数,是无理数,故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.7.(3分)已知平面直角坐标系中点A的坐标为(﹣4,3),则下列结论正确的是()A.点A到x轴的距离为4B.点A到y轴的距离为3C.点A到原点的距离为5D.点A关于x轴对称的点的坐标为(4,﹣3)【分析】根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,以及“关于x轴对称的点,横坐标相同,纵坐标互为相反数”对各选项分析判断即可得解.【解答】解:A、点A(﹣4,3)到x轴的距离为3,故本选项错误;B、点A(﹣4,3)到y轴的距离为4,故本选项错误;C、点A(﹣4,3)到原点的距离为=5,故本选项正确;D、点A(﹣4,3)关于x轴对称的点的坐标为(﹣4,﹣3),故本选项错误.故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.8.(3分)若点A(1,a)和点B(4,b)在直线y=﹣2x+m上,则a与b的大小关系是()A.a>b B.a<b C.a=b D.与m的值有关【分析】把点的坐标分别代入函数解析式,可用m分别表示出a和b,比较其大小即可.【解答】解:∵点A(1,a)和点B(4,b)在直线y=﹣2x+m上,∴a=﹣2+m,b=﹣8+m,∵﹣2+m>﹣8+m,∴a>b,故选:A.【点评】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.9.(3分)如图,数轴上的A、B、C、D四点对应的数分别是﹣3,﹣2,﹣1,2,其中与表示﹣的点距离最近的点是()A.点A B.点B C.点C D.点D【分析】﹣≈﹣1.732,找到与﹣的差的绝对值最小的点即为所求.【解答】解:∵|﹣3﹣(﹣)|≈1.268,|﹣2﹣(﹣)|≈0.268,|﹣1﹣(﹣)|≈0.732,|2﹣(﹣)|≈3.732,其中0.268最小,∴其中与表示﹣的点距离最近的点是B.故选:B.【点评】考查了实数与数轴,利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.10.(3分)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A.20cm B.2cm C.(12+2)cm D.18cm【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【解答】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN===2.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故选:A.【点评】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.二、填空题:共5小题,每小题2分,共10分,把答案写在题中横线上.11.(2分)计算(﹣1)(+1)的结果为2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=3﹣1=2,故答案为:2【点评】本题考查二次根式的混合运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.(2分)已知正比例函数y=kx的图象经过点P(3,6),则k的值等于2.【分析】根据正比例函数y=kx的图象经过点P(3,6),可以求得k的值.【解答】解:∵正比例函数y=kx的图象经过点P(3,6),∴6=3k,解得,k=2,故答案为:2.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,求出k的值,利用一次函数的性质解答.13.(2分)已知等边三角形的边长为2cm,则它的高为cm.【分析】根据等边三角形的性质:三线合一,利用勾股定理可求解高.【解答】解:根据等边三角形:三线合一,所以它的高为:=cm.【点评】考查等边三角形的性质及勾股定理,较为简单.14.(2分)比较大小:>.(填“>”、“<”或“=”)【分析】通分后做差,借助于平方差公式即可求出9﹣4>0,进而即可得出>.【解答】解:∵=,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.故答案为:>.【点评】本题考查了实数大小比较,利用做差法找出﹣>0是解题的关键.15.(2分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB,BC,AC为边在AB同侧作正方形ABMN,正方形ACDE和正方形BCFG,其中线段DE经过点N,CF与BM交于点P,CD与MN交于点Q,图中阴影部分的面积为13.【分析】首先证明△MBQ≌△BAP,推出S△MBQ=S△BAP,推出S△ABC=S四边形QCPM,可得S阴=S正方形ABMN﹣2S△ABC,由此计算即可.【解答】解:如图,∵四边形ABCD是正方形,∴∠ABP=∠M=∠ACB=90°,AB=BM,∴∠ABC+∠CAB=90°,∠ABC+∠MBQ=90°,∴∠MBQ=∠BAP,∴△MBQ≌△BAP,∴S△MBQ=S△BAP,∴S△ABC=S四边形QCPM,∴S阴=S正方形ABMN﹣2S△ABC=25﹣12=13,故答案为13.【点评】本题考查正方形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题填空题中的压轴题.三、解答题:共8小题,共60分,解答应写出文字说明、演算步骤或推理过程.16.(12分)计算:(1)+3;(2)+;(3)(2+)2;(4)+10﹣+.【分析】(1)先把化为最简二次根式,然后合并即可;(2)根据二次根式的除法法则运算;(3)利用完全平方公式计算;(4)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=2+3=5;(2)原式=﹣+=3﹣+=3;(3)原式=12+12+6=18+12;(4)原式=3+2﹣2+=+3.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣3,2),B(﹣1,4),C(0,2).(1)在如图的平面直角坐标系中画出△ABC关于y轴对称的△A1B1C1,并直接写出A1,B1,C1的坐标;(2)若将△ABC三个顶点的纵坐标分别乘﹣1,横坐标不变,将所得的三个点用线段段顺次连接,得到的三角形与△ABC的位置关系是关于x轴对称.【分析】(1)直接利用关于y轴对称点的性质得出对应点位置进而得出答案;(2)直接得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求,A1(3,2),B1(1,4),C1(0,2);(2)如图所示:△A2B2C2与△ABC关于x轴对称.故答案为:关于x轴对称.【点评】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.18.(4分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)之间的关系为h=4.9t2,如图,有一个物体从78.4m高的建筑物上自由下落,到达地面需要多长时间?【分析】根据题意列出方程,根据算术平方根的概念解方程即可.【解答】解:由题意得4.9t2=78.4,则t2=16,∴t=±=±4,∴t=4,答:到达地面需要4s.【点评】本题考查的是算术平方根的计算,掌握算术平方根的概念是解题的关键.19.(5分)已知一次函数y=x+2的图象与x轴相交于点A,与y轴相交于点B.(1)求点A,B的坐标,并在如图的坐标系中画出函数y=x+2的图象;(2)若点C(2,m)在函数y=x+2的图象上,求点C到x轴的距离.【分析】(1)分别令y=0和x=0,则可求得A、B的坐标,利用两点法即可画出函数图象;(2)把点C的坐标代入函数解析式可求得m的值,则可求得点C到x轴的距离.【解答】解:(1)在y=x+2中,令y=0可求得x=﹣4,令x=0可得y=2,∴A(﹣4,0),B(0,2),其图象如图所示;(2)∵点C(2,m)在函数y=x+2的图象上,∴m=×2+2=3,∴点C到x轴的距离为3.【点评】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.20.(6分)如图,某小区的两个喷泉A,B位于小路AC的同侧,两个喷泉的距离AB的长为250m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC 上,供水点M到AB的距离MN的长为120m,BM的长为150m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)直接写出喷泉B到小路AC的最短距离.【分析】(1)根据勾股定理解答即可;(2)根据勾股定理的逆定理和垂线段解答即可.【解答】解:(1)在Rt△MNB中,BN=m,∴AN=AB﹣BN=250﹣90=160m,在Rt△AMN中,AM=m,∴供水点M到喷泉A,B需要铺设的管道总长=200+150=350m;(2)∵AB=250m,AM=200m,BM=150m,∴AB2=BM2+AM2,∴△ABM是直角三角形,∴BM⊥AC,∴喷泉B到小路AC的最短距离是BM=150m.【点评】此题考查勾股定理的应用,关键是根据勾股定理、逆定理和垂线段解答.21.(6分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=10x+150;方案二:y2=9x+180.(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒(直接回答即可).【分析】(1)根据方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,即可得出两种优惠方案中y与x之间的关系式;(2)将x=20分别代入(1)中解析式,通过计算比较两种方案中哪种更省钱即可;(3)根据购买时,顾客只能选用其中的一种方案,所以分别求出y≤540时两种方案中x的最大整数值,比较即可得到答案.【解答】解:(1)由题意,可得y1=40×5+10(x﹣5)=10x+150,y2=(40×5+10x)×0.9=9x+180.故答案为10x+150,9x+180;(2)当x=20时,y1=10×20+150=350,y2=9×20+180=360,可看出方案一省钱;(3)如果10x+150≤540,那么x≤39,如果9x+180≤540,那么x≤40,所以学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒.故答案为40.【点评】本题考查了一次函数的应用、一元一次不等式的应用,解题的关键是:(1)根据数量关系列出函数解析式;(2)根据y1,y2间的关系列出不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出函数关系式(方程或不等式)是关键.22.(8分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB=5,BC=,AC=;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=8,BC=4,AC=4;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择A题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.。
2017-2018新人教版八年级上期中试卷及答案
ABCDA B D C M N2017-2018学年度上期期中教学质量检测 八年级数学试题(本试卷120分 考试时间100分钟)一、选择题(每小题3分,满分24分)下列各小题均有四个答案,其中只有一个是正确的1.下列平面图形中,不是轴对称图形的是 ( )2.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm 3.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A. 12 B. 12或15 C. 15 D. 15或184.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A.∠M=∠NB.AM=CNC.AB=CDD.AM ∥CN 5.一个多边形的内角和等于1080°,这个多边形的边数是( ) A .9 B .8 C .7 D .6 6.下列说法中,错误的是 ( )A.一个三角形的三个内角中,至少有一个角不大于600B.有一个外角是锐角的三角形是钝角三角形C.锐角三角形中,两个角的和小于直角D.直角三角形中有一个外角等于和它相邻的内角7. AD 是△ABC 的角平分线,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F•,则下列结论不一定正确的是( )A .DE=DFB .BD=CDC .AE=AFD .∠ADE=∠ADF8.如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么, 有下列说法: ①△EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定座号:________A B CD相等 ③折叠后得到的图形是轴对称图形 ④△EBA 和△EDC 一定是全等三角形 其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =________,∠C =________ 10.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______. 11. 在△ABC 中,∠C=90°,BC=16cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.12. 如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_____ 个。
2017-2018学年甘肃省兰州市市区片八年级(上)期中数学试卷(含答案)
2017-2018学年甘肃省兰州市市区片八年级(上)期中数学试卷一、选择题(共15小题,每小题4分,满分60分)1.(4分)下面说法不正确的是()A.6是36的平方根B.36的平方根是6C.216的立方根是6D.﹣6是﹣216的立方根2.(4分)平面直角坐标系内有一点A(a,b),若ab=0,则点A的位置在()A.原点B.x轴上C.y轴上D.坐标轴上3.(4分)点M到x轴的距离为3,到y的距离为4,则点M的坐标为()A.(3,4)B.(4,3)C.(4,3),(﹣4,3)D.(4,3),(﹣4,3)(﹣4,﹣3),(4,﹣3)4.(4分)如果点A(a、b)在第三象限,则点B(﹣a+1,3b﹣5)关于原点的对称点是()A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)点P(﹣1,3)关于原点中心对称的点的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3)D.(3,﹣1)6.(4分)长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A.1个B.2个C.3个D.4个7.(4分)对于任意实数,点P(x,x2﹣2x)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限8.(4分)在平面直角坐标系中,下列各点在第四象限的是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)9.(4分)点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)10.(4分)下列各式正确的是()A.2+=2B.+=C.÷=3D.=±2 11.(4分)对任意实数x,点P(x,x2﹣2x)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限12.(4分)有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2B.﹣3C.+3D.+413.(4分)下列各组数中是勾股数的是()A.0.3,0.4,0.5B.8,15,16C.6a,8a,10a D.7,24,2514.(4分)如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)15.(4分)已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1B.1C.2D.3二、填空题(共5小题,每小题4分,满分20分)16.(4分)一个正数的平方根别为x﹣2和2x+5,则这个正数为.17.(4分)有一个长为12cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是.18.(4分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为.19.(4分)观察下列各式:=2;=3;=4,……请你将发现的规律用含自然数n(n≥1)的等式表示出来.20.(4分)已知两条线段的长分别为5cm、12cm,当第三条线段长为时,这三条线段可以构成一个直角三角形.三、画图题(7分)21.(7分)在平行四边形ABCD中,BC边上的高AE=3,AD=5,∠ABE为45°,若以点E为原点,BC所在直线为x轴,AE所在直线为y轴,请:(1)建立平面直角坐标系,并画出图形;(2)分别求出平行四边形ABCD四个顶点的坐标.四、计算题(每小题15分,共15分.)22.(15分)计算:(1)(﹣3)2(2)﹣|1﹣|(3)|﹣2|﹣()0五、解答题(共计48分)23.(7分)已知:2a+1的平方根是±3,2a﹣b+2的平方根是±4,求a2+b的值.24.(7分)已知点A(a﹣1,5)和点B(2,b﹣1)关于x轴对称,求(a+b)2003的值.25.(10分)如图,△ABC在直角坐标系中.(1)请求△ABC三边的长;(2)求出S△ABC.26.(12分)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD 于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.27.(12分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积.2017-2018学年甘肃省兰州市市区片八年级(上)期中数学试卷参考答案与试题解析一、选择题(共15小题,每小题4分,满分60分)1.(4分)下面说法不正确的是()A.6是36的平方根B.36的平方根是6C.216的立方根是6D.﹣6是﹣216的立方根【分析】根据平方根及立方根的定义,结合各选项即可作出判断.【解答】解;A、6是36的平方根,故本选项说法正确,不符合题意;B、36的平方根是±6,故本选项说法错误,符合题意;C、216的立方根是6,故本选项说法正确,不符合题意;D、﹣6是﹣216的立方根,故本选项说法正确,不符合题意.故选:B.【点评】本题考查立方根及平方根的知识,属于基础题,注意一个数的立方根有一个它和这个数正负一致,一个正数的平方根有两个,它们互为相反数.2.(4分)平面直角坐标系内有一点A(a,b),若ab=0,则点A的位置在()A.原点B.x轴上C.y轴上D.坐标轴上【分析】根据有理数的乘法,可得a,b的值,根据坐标轴的特点,可得答案.【解答】解:由ab=0,得a=0或b=0.点A的位置在坐标轴上,故选:D.【点评】本题考查了点的坐标,利用坐标轴的特点是解题关键.3.(4分)点M到x轴的距离为3,到y的距离为4,则点M的坐标为()A.(3,4)B.(4,3)C.(4,3),(﹣4,3)D.(4,3),(﹣4,3)(﹣4,﹣3),(4,﹣3)【分析】点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.根据所给的条件可判断出点M的坐标的可能值.【解答】解:∵点M到x轴的距离为3,到y的距离为4,∴它的横坐标是±4,纵坐标是±3,∴点M的坐标为(4,3),(﹣4,3)(﹣4,﹣3),(4,﹣3).故选:D.【点评】本题主要考查了点的坐标的几何意义,横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.4.(4分)如果点A(a、b)在第三象限,则点B(﹣a+1,3b﹣5)关于原点的对称点是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】此题首先明确两个点关于原点对称,则横、纵坐标都是互为相反数;然后能够根据点所在的位置判断点的坐标符号,根据坐标符号得到字母的取值范围.【解答】解:∵点B(﹣a+1,3b﹣5)关于原点的对称点是(a﹣1,5﹣3b).又∵点A在第三象限即a<0,b<0.∴a﹣1<0,5﹣3b>0,∴(a﹣1,5﹣3b)是第二象限的点.故选:B.【点评】本题考查了坐标平面内的点坐标的符号,同时考查了关于原点对称的两点坐标之间的关系.5.(4分)点P(﹣1,3)关于原点中心对称的点的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3)D.(3,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:根据中心对称的性质,得点P(﹣1,3)关于中心对称的点的坐标为(1,﹣3).故选:B.【点评】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.6.(4分)长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A.1个B.2个C.3个D.4个【分析】分别求出5个数字的平方,看哪两个的平方和等于第三个数的平方,从而可判断能构成直角三角形.【解答】解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故选:B.【点评】本题考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.7.(4分)对于任意实数,点P(x,x2﹣2x)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分x是正数和负数两种情况判断出点P的纵坐标的正负情况,然后根据各象限内点的坐标特征解答.【解答】解:x是正数时,x2﹣2x=(x﹣1)2﹣1可以是正数也可以是负数,此时,点P可以在第一象限,也可以在第四象限;x是负数时,x2>0,﹣2x>0,所以,x2﹣2x>0,所以,点P一点在第二象限,不在第三象限,综上所述,点P一定不在第三象限.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),本题难点在于分情况讨论.8.(4分)在平面直角坐标系中,下列各点在第四象限的是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得故选:B.【点评】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.9.(4分)点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)【分析】根据x轴上点的纵坐标为0列式求出m,然后解答即可.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,解得m=﹣1,所以,m+3=﹣1+3=2,所以,点P的坐标为(2,0).故选:B.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.10.(4分)下列各式正确的是()A.2+=2B.+=C.÷=3D.=±2【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式不能合并,错误;C、原式===3,正确;D、原式=2,错误.故选:C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(4分)对任意实数x,点P(x,x2﹣2x)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点在平面直角坐标系中各个象限坐标的符号特点解答即可,注意分情况讨论.【解答】解:(1)当0<x<2时,x>0,x2﹣2x=x(x﹣2)<0,故点P在第四象限;(2)当x>2时,x>0,x2﹣2x=x(x﹣2)>0,故点P在第一象限;(3)当x<0时,x2﹣2x>0,点P在第二象限.故选:C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.(4分)有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2B.﹣3C.+3D.+4【分析】实际克数最接近标准克数的是绝对值最小的那个数.【解答】解:A、+2的绝对值是2;B、﹣3的绝对值是3;C、+3的绝对值是3;D、+4的绝对值是4.A选项的绝对值最小.故选:A.【点评】本题主要考查正负数的绝对值的大小比较.13.(4分)下列各组数中是勾股数的是()A.0.3,0.4,0.5B.8,15,16C.6a,8a,10a D.7,24,25【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、0.3,0.4,0.5不是正整数,不是勾股数,故选项错误;B、82+152≠162,不能构成直角三角形,故选项错误;C、6a,8a,10a不一定是正整数,不一定是勾股数,故选项错误;D、72+242=252,能构成直角三角形,是整数,故选项正确.故选:D.【点评】此题主要考查了勾股数,及勾股定理的逆定理,关键是掌握勾股数:满足a2+b2=c2的三个正整数,称为勾股数.14.(4分)如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)【分析】根据点的坐标的定义结合图形对各选项分析判断即可得解.【解答】解:A、(0,4)→(0,0)→(4,0)都能到达,故本选项错误;B、(0,4)→(4,4)→(4,0)都能到达,故本选项错误;C、(3,4)→(4,2)不都能到达,故本选项正确;D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到达,故本选项错误.故选:C.【点评】本题考查了坐标确定位置,熟练掌握点的坐标的定义并准确识图是解题的关键.15.(4分)已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1B.1C.2D.3【分析】根据关于x轴对称点的坐标的特点,可以得到点A的坐标与点B的坐标的关系.【解答】解:∵A(a,2013)与点B(2014,b)关于x轴对称,∴a=2014,b=﹣2013∴a+b=1,故选:B.【点评】此题主要考查了关于x、y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.二、填空题(共5小题,每小题4分,满分20分)16.(4分)一个正数的平方根别为x﹣2和2x+5,则这个正数为9.【分析】根据平方根的定义可得一个正数的平方根互为相反数,则有x﹣2+2x+5=0,解得x=﹣1,再根据平方根的定义得到这个正数为(x﹣2)2=(﹣1﹣2)2=9.【解答】解:∵一个正数的平方根别为x﹣2和2x+5,∴x﹣2+2x+5=0,∴x=﹣1,∴这个正数为(x﹣2)2=(﹣1﹣2)2=9.故答案为9.【点评】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记做±(a≥0).17.(4分)有一个长为12cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是13cm.【分析】本题根据题目中所给的信息,可以构造出直角三角形,再利用勾股定理解答即可.【解答】解:铅笔的长为==13cm.故答案为:13cm.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.18.(4分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.【解答】解:AC===,则AM=,∵A点表示﹣1,∴M点表示﹣1,故答案为:﹣1.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.19.(4分)观察下列各式:=2;=3;=4,……请你将发现的规律用含自然数n(n≥1)的等式表示出来.【分析】根据题目中的式子的特点,可以得到第n个式子,从而可以解答本题.【解答】解:由题目中的式子可得,第n个式子为:,故答案为:.【点评】本题考查二次函数的性质与化简,解答本题的关键是明确题意,发现题目中数字的变化规律.20.(4分)已知两条线段的长分别为5cm、12cm,当第三条线段长为13cm或cm时,这三条线段可以构成一个直角三角形.【分析】已知直角三角形的二边求第三边时,一定区分所求边是直角三角形斜边和直角边两种情况下的结果.【解答】解:根据勾股定理,当12cm为直角边时,第三条线段长为=13cm;当12cm为斜边时,第三条线段长为==cm.故答案为:13cm或cm.【点评】本题考查了勾股定理的逆定理,注意要分两种情况讨论.三、画图题(7分)21.(7分)在平行四边形ABCD中,BC边上的高AE=3,AD=5,∠ABE为45°,若以点E为原点,BC所在直线为x轴,AE所在直线为y轴,请:(1)建立平面直角坐标系,并画出图形;(2)分别求出平行四边形ABCD四个顶点的坐标.【分析】(1)首先以点E为原点,BC所在直线为x轴,AE所在直线为y轴建立平面直角坐标系,再根据已知条件中的数据画图即可;(2)过点D作DF⊥EC于点F,由已知条件易证△AEB为等腰直角三角形,所以BE的长可知,再分别求出CE,DF的长即可得到平行四边形ABCD四个顶点的坐标.【解答】解:(1)如图所示:(2)∵AE=3,∴点A的坐标为(0,3),∵AE⊥BE,∠ABE=45°,∴△AEB为等腰直角三角形,∴AE=BE=3,∴点B的坐标为(﹣3,0),∵四边形ABCD是平行四边形,∴AD=BC=5,∴CE=2,∴点C的坐标为(2,0),过点D作DF⊥EC于点F,则DE=AE=3,AD=EF=5,∴点D的坐标为(5,3).【点评】本题考查了平行四边形的性质、等腰直角三角形的判断和性质以及考查坐标与图形的性质等知识点,正确作出图形的辅助线是解题的关键.四、计算题(每小题15分,共15分.)22.(15分)计算:(1)(﹣3)2(2)﹣|1﹣|(3)|﹣2|﹣()0【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接利用二次根式以及立方根的性质分别化简得出答案;(3)直接利用绝对值以及零指数幂的性质、二次根式的性质分别化简得出答案.【解答】解:(1)原式=9﹣9+3=3;(2)原式=﹣1﹣2+2﹣(﹣1)=﹣;(3)原式=2﹣1+=3﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.五、解答题(共计48分)23.(7分)已知:2a+1的平方根是±3,2a﹣b+2的平方根是±4,求a2+b的值.【分析】先根据2a+1的平方根为±3,2a﹣b+2的平方根为±4求出a和b的值,代入代数式,即可解答.【解答】解:∵2a+1的平方根为±3,∴2a+1=9,解得:a=4;∵2a﹣b+2的平方根为±4,∴2a﹣b+2=16,即8﹣b+2=16,解得:b=﹣6,∴a2+b=16+(﹣6)=10.【点评】本题考查的是平方根的定义,熟知一个数的平方根有两个,这两个数互为相反数是解答此题的关键.24.(7分)已知点A(a﹣1,5)和点B(2,b﹣1)关于x轴对称,求(a+b)2003的值.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得a,b的值,再根据负数的奇数次幂是负数,可得答案.【解答】解:由点A(a﹣1,5)和点B(2,b﹣1)关于x轴对称,得a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,则(a+b)2003=(﹣1)2003=﹣1.【点评】考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.25.(10分)如图,△ABC在直角坐标系中.(1)请求△ABC三边的长;(2)求出S△ABC.【分析】(1)根据各点所在象限的符号和距坐标轴的距离可得各点的坐标;(2)S△ABC=边长为4,5的长方形的面积减去直角边长为2,4的直角三角形的面积,减去直角边长为3,5的直角三角形的面积,减去边长为1,3的直角三角形面积.【解答】解:(1)∵A(﹣1,﹣1),C(4,2),B(1,3),∴AC=,AB=2,BC=;(2)S△ABC=4×5﹣×2×4﹣3×2﹣×3×4=7.【点评】本题考查了图形与性质,解决本题的关键是格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.26.(12分)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD 于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.【分析】(1)由折叠可知,∠CBD=∠EBD,再由AD∥BC,得到∠CBD=∠EDB,即可得到∠EBD=∠EDB,于是得到BE=DE,等腰三角形即可证明;(2)设DE=x,则BE=x,AE=8﹣x,在Rt△ABE中,由勾股定理求出x的值,再由三角形的面积公式求出面积的值.【解答】解:(1)△BDE是等腰三角形.由折叠可知,∠CBD=∠EBD,∵AD∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE,即△BDE是等腰三角形;(2)设DE=x,则BE=x,AE=8﹣x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8﹣x)2=x2,解得:x=5,所以S△BDE=DE×AB=×5×4=10.【点评】本题主要考查翻折变换的知识点,解答本题的关键是熟练掌握等腰三角形的判定与勾股定理的知识,此题难度不大.27.(12分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积.【分析】(1)分两种情形画出图形,即可解决问题;(2)根据三角形的面积公式计算即可;【解答】解:(1)∵A(﹣1,0),AB=3,∴B(2,0),B′(﹣4,0),△ABC,△AB′C如图所示;S△ABC=×3×4=6.【点评】本题考查三角形的面积、坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。