电液伺服跑偏控制系统设计说明
电液伺服控制系统的设计

电液伺服控制系统的设计与仿真引言电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。
随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。
随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。
因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。
1 液压系统动态特性研究概述随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。
因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。
1.1 液压系统动态特性简述液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。
在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。
系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。
液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。
数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。
先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。
该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。
电液数字伺服系统设计(1)

电液数字伺服系统设计(1)
电液伺服阀是一个独立的液压元件,可以与液压缸匹配成数控液压缸,也可以与液压马达匹配成数控液压马达。
在工作时,由数字控制系统来控制步进电机的运转状态,步进电机的负载是细而短的芯轴,转动惯量很小,而系统的输出功率和行程由与之匹配的液压缸或液压马达的尺寸和所使用的液压决定,可在较大范围内灵活选择,能实现各种速度、各种行程的多种控制。
1 电液伺服阀与液压缸匹配使用
电液伺服阀与液压缸匹配使用如图56所示。
当有电脉冲输入步进电机1时,步进电机根据指令顺时针或逆时针旋转,联轴节2带动芯轴3随步进电机转动。
反馈螺母5不能轴向移动,芯轴3便产生轴向位移,带动阀杆4轴向位移,打开油缸的进、回油通道a、b,油压推动活塞杆6轴向位移,方向与阀杆4相反。
由于活塞杆6不能转动,活塞杆6轴向位移迫使活塞杆6中心的反馈螺杆旋转,带动阀的反馈螺母5产生角位移,旋向与步进电机旋向相同,使芯轴3产生反向轴向位移。
当位移量使阀杆4关闭油缸的进回油通道,活塞杆6就停止移动,油缸完成了一次脉冲动作。
油缸移动的速度和位移量由计算机程序控制,步进电机的步距角、芯轴3螺距和油缸反馈螺杆的导程,决定芯轴3和活塞杆6的脉冲当量,不同匹配可获得不同的脉冲当量。
图56 液压缸结构图
1-步进电机,2-联轴节,3-芯轴,4-阀杆,5-反馈螺母,6-活塞杆,a、b-进、回油通道。
电液位置控制系统设计

电液伺服位置控制系统的设计与分析一、系统的设计要求设有一数控机床工作台的位置需要连接控制,进行电液位置控制系统设计。
其技术要求为:指令速度信号输入时引起的速度误差为: ev =5mm 干扰输入引起的位置误差为: epf = 0.2mm 给定设计参数为: 工作台质量 m =1000 kg 最大加速度 a max =1m/s 2 最大行程 S =50 cm 最大速度 v=8cm/s 工作台最大摩擦力 Ff =2000N最大切削力 Fc =500 N 供油压力ps =6.3MPa 反馈传感器增益Kf =1V /cm二、系统的分析图1为某数控机床工作台位置伺服系统的系统方框原理图。
由于系统的控制功率较小、工作台行程较大,所以采用阀控液压马达系统。
用液压马达驱动,通过滚珠丝杠装置把旋转运动变为直线运动。
图1 系统方框图三、工作台负载分析工作台负载主要由切削力c F 、摩擦力f F 和惯性力a F 三部分组成。
假定系统在所有负载都存在的条件下工作,则总负载力为:max L c f a F F F F =++=3500N (1)四、动力元件参数选择(1) 工作台由液压马达经减速器和滚珠丝杠驱动。
根据力矩平衡方程,减速器输入轴力矩L T :/2L L T F t i π= (2)其中:t 为丝杠导程;i 为减速器传动比 液压马达最大转速max n 为:max max /n iv t = (3)其中:max v 为工作台的最大运动速度。
液压马达所需排量m Q 为6322/510m m L L Q D T p m ππ-===⨯ (4)其中:L p 为液压马达负载压力,一般取L p =23sp ,s p 为液压系统压力,m D 为液压马达弧度排量。
根据条件:i =2,t =1.2×210-m/r ,s p =63×105Pa 由式(2)、式(4)计算得:m D =0.8×610-3m /rad 所以,液压马达负载流量L q 为:536.6710/L q m s -=⨯ (5)伺服阀压降v p 为:max v s L p p p =- (6)考虑泄漏等影响,L q 增大15%, 4.6/min L q L =。
电液伺服系统及其控制文档

电液系统及其控制1概述1.1电液控制系统工作原理及组成一.工作原理电液控制系统又称电液伺服系统,是以电气信号为输入,以液压信号为输出,电气检测传感器元件为反馈构成闭环控制系统.由于是电气和液压相结合,因而系统可发挥两者的优点.电气信号便于测量转换放大处理校正,电气检测传感器元件便于检测各种物理量,且快速和多样性;液压信号输出功率大速度快,执行元件具有惯性小等优点.所以结合起来的电液控制系统具有控制精度高,响应速度快,信号处理灵活,输出功率大,结构紧凑,重量轻等优点.输入电气信号通常有电位器,电子放大器,PLC控制器和计算机等. 电气检测传感器元件通常有位置传感器,压力传感器, 速度传感器,编码器等元件. 输出是以液压动力执行元件(油缸和马达)和伺服元件组成的反馈控制系统.如图所示:在此系统中,输出量(位移,力,速度等)通过反馈传感器(位移传感器,力传感器,速度传感器等)能自动地快速地准确地反映其变化.并与原先的给定的给定量进行比较,再放大输入给伺服阀,改变其阀芯位移,从而控制输出的压力和流量,驱动执行元件运动,直至输人量与输出量一致为止.举例:1.阀控式电液位置控制伺服系统(如上图)图中所示为双电位器电液位置控制伺服系统的工作原理图.该系统控制工作台的位置,使其按指令电位器给定的规律变化.系统由指令电位器, 反馈电位器,电子放大器,电液伺服阀,液压缸和工作台组成.其工作原理如下:指令电位器将位置指令xi转换成指令电压ur,被控制的工作台位置xp由反馈电位器检测转换成反馈电压ui.两个线性电位器接成桥式电路,从而得到偏差电压ue=ur-uf.当工作台位置xp与指令位置xi一致时,电桥输出偏差电压ue=0,此时伺服放大器输出电流为零, 电液伺服阀处于零位,没有流量输出,工作台不动.当指令电位器位置发生变化,如向右移动一个位移Oxi,在工作台位置发生变化之前, 电桥输出偏差电压ue=KOx,偏差电压经伺服放大器放大后变为电流信号去控制电液伺服阀, 电液伺服阀输出压力油到液压缸,推动工作台右移.随着工作台的移动, 电桥输出偏差电压逐渐减小,当工作台移动Oxp等于指令电位器位移Oxi时, 电桥输出偏差电压为零, 工作台停止移动.反之亦然.系统的工作原理方块图如下:2.泵控式电液速度控制伺服系统该系统的液压动力执行元件由变量泵和液压马达组成,变量泵既是液压能源又是液压控制元件.由于操纵变量机构所需要的力较大,通常采用一个小功率的液压放大装置作为变量控制机构.如图所示为一泵控式电液速度控制伺服系统的原理图.图中所示系统采用阀控式电液位置控制机构作为泵的变量控制机构. 液压马达的输出速度由测速发电机检测,转换为反馈电压信号uf,与输入指令电压信号ur相比较,得出偏差电压信号ue=ur-uf,作为变量控制机构的输入信号.当速度指令为ur0时, 负载以某个给定的转速w0工作,测速机输出反馈电压uf0,则偏差电压ue0=ur0-uf0,这个偏差电压对应于一定的液压缸位置,从而对应于一定的泵流量输出,此流量为保持负载转速w0所需的流量.如果负载变化或其它原因引起转速变化时,则uf 不等于uf0,假如w大于w0,即uf大于uf0,则ue=ur0-uf小于ue0,使液压缸输出位移减小,使泵输出流量减小,液压马达转速自动下调至给定值.反之,如果转速下降,则uf小于uf0,则ue=ur0-uf大于ue0,使液压缸输出位移增大,使泵输出流量增大,液压马达转速自动回升至给定值.结论: 速度指令一定时, 液压马达转速保持恒定;速度指令变化时, 液压马达转速也相应变化.系统的工作原理方块图如下:二.电液伺服控制系统组成1.输入元件---其功用是给出输入信号加于系统的输入端.可以是机械的,电气的等如靠模,电位器,计算机等.2.反馈测量元件---测量系统输出并转换为反馈信号.如各类传感器(位置传感器,压力传感器,速度传感器等).3.比较元件---将输入信号与反馈信号进行比较,给出偏差信号.4.放大转换元件---将偏差信号放大,转换成液压信号.妲伺服放大器,电液伺服阀等.5.执行元件---产生调节动作加于控制对象上,如液压缸和液压马达等.6.控制对象---被控制的设备等,即负载.7.液压能源装置及各种校正装置等.1.2电液伺服控制的分类电液伺服控制系统可按不同的原则分类,基本上有五大类.一.按被控对象的物理量名称分类1.位置伺服控制系统主要是控制被控对象的位置精度的伺服控制系统,妲机床工作台的位置,板带轧机的板厚,振动试验台等系统.2.速度伺服控制系统主要是控制被控对象的速度精度的伺服控制系统,如原动机的调速,雷达天线的速度控制等.3.力伺服控制系统以力为被调量的伺服控制系统,如材料试验机,轧机张力控制系统等.二.按执行元件的控制方式分类1.阀控式伺服控制系统利用伺服阀控制的伺服控制系统称为阀控式伺服控制系统.它又可分为阀控缸系统和阀控马达系统两种.其优点是响应速度快,控制精度高,结构简单.缺点是效率低.2.容积式伺服控制系统利用变量泵或变量马达控制的伺服控制系统称为容积式伺服控制系统.它又可分伺服变量泵系统和伺服变量马达系统.三.按系统输入信号的变化规律分类1. 定值控制系统当系统输入信号为定值时称为定值控制系统.它的任务是将系统的实际输出量保持在希望值上.2. 程序控制系统当系统输入信号为按预先给定的规律变化时称为程序控制系统..3. 伺服控制系统伺服控制系统又称随动系统,其输入信号是时间的未知函数,而输出量能够准确快速地复现输入量的变化规律.四.按信号的方式分类1.模拟信号控制系统系统中全部信号都是连续的模拟量的系统称之.2.数字信号控制系统系统中全部信号都是数字量的系统称之.3. 数字-模拟混合控制系统系统中部分信号是数字量部分信号是模拟量的系统称之.五.按信号传递介质的形式分类1.机液伺服控制系统输入信号给定,反馈测量和比较均用机械构件实现的系统称之.2.电液伺服控制系统用液压动力元件,偏差信号的检测校正和初始放大等均用电气电子元件实现的系统称之.1.3电液伺服控制的优缺点一. 电液伺服控制的优点1.液压元件功率-重量比和力矩-惯量比(力-质量比)大,因而结构紧凑,体积小,重量轻,用于中大型功率系统优点更明显.比较举例:电气元件:最小尺寸取决于有效磁通密度,而有效磁通密度又受磁性材料的磁饱和限制;功率损耗产生的发热量散发又比较困难.因此功率-重量比和力矩-惯量比小,结构尺寸大.液压元件:功率损耗产生的发热量由油带到散热器去散热,其最小尺寸取决于最大工作压力,而工作压力可以很高(通常可达32MPa),因而元件尺寸小,重量轻, 功率-重量比和力矩-惯量比大.同功率:液压泵重量/电动机重量=10%-20%液压泵尺寸/电动机尺寸=12%-13%液压马达功率重量比=10倍相当容量的电动机液压马达力矩-惯量比=10-20倍电动机2.液压动力元件快速性好,系统响应快.加速能力强,能高速起动和制动.3.液压伺服系统抗负载的刚度大.二. 电液伺服控制的缺点1.液压元件抗污染能力差,对工作介质清洁度要求高.工作介质随温度变化而变化,对系统性能有影响.2. 液压元件制造精度高,成本高,且若元件的密封制造使用不当,易外漏,造成环境污染.3.液压能源传输不如电气系统方便2 电液伺服阀电液伺服阀是电液伺服系统中的主要元件,它既是电液转换元件,又是功率放大元件.它能够把微小的电信号转换成大功率的液压能(流量和压力),是电液伺服控制系统的核心和关键.电液伺服阀的输入信号是由电气元件来完成的,由它再转换成液压流量和压力,输出给执行机构,实现对执行机构各物理量的控制.2.1电液伺服阀的组成与分类一.组成电液伺服阀通常由力矩马达,液压放大器,反馈机构三部分组成.以下图的两级中力反馈式电液伺服阀为例,简单介绍如下:图中上半部为力矩马达,下半部为液压放大器(由四通滑阀组成的液压放大器), 反馈机构则由反馈杆11组成.它们的作用分别是:1.力矩马达(力马达)将输入的电信号转换成力矩或力控制液压放大器运动.2.液压放大器控制液压能源流向执行机构的流量和压力.3.反馈机构使伺服阀输出的流量和压力获得与输入信号相应的特性.二.分类电液伺服阀的种类很多,按不同的结构和机能常有以下几种分类:1.按输出量的控制功能分有:电液流量伺服阀---主要控制输出的液流流量特性,即在额定输入信号范围内,具有线性流量控制特性.电液压力伺服阀---在额定输入信号范围内,具有线性压力控制特性.电液压力-流量伺服阀---在额定输入信号范围内,具有线性压力-流量控制特性.2.按液压放大器的级数分有:单级伺服阀---只有一级放大元件.结构简单,价格低廉,但输出力和力矩小,输出流量小,对负载变化敏感.用于低压小流量和负载变化不大的场合.两级伺服阀---有两级放大元件.它克服了单级伺服阀的缺点,是最常用的型式.三级伺服阀---由一个两级伺服阀作前置级,控制第三级功率滑阀.通常只用于大流量(200L/min)以上的场合.3.按第一级阀的结构分有:滑阀---第一级阀的结构是滑阀.此类阀流量和压力增益高,输出流量大,对油清洁度要求较低.但加工复杂,分辨率低,响应慢,滞环较大,阀芯受力大.喷咀挡板--- 第一级阀的结构是喷咀挡板. 此类阀灵敏,动态响应快,线性度好.但对油清洁度要求高,挡板受力小,驱动功率小.射流管--- 第一级阀的结构是射流管阀. 此类阀抗污染强,但动态响应慢,受油温响应大.4.按反馈形式分有:滑阀位置反馈---利用滑阀的位置反馈的阀,常用的有直接位置反馈,机械位置反馈,位置电反馈,位置力反馈等.直接位置反馈---阀芯位移通过反馈杆与挡板相连,构成滑阀位移力反馈.常用于两级伺服阀.机械位置反馈---将功率级滑阀的位移通过机械机构反馈到前置级.位置电反馈---将功率级滑阀的位移通过位移传感器反馈到伺服阀的放大器输入端,实现功率级滑阀阀芯定位.2.2 力矩马达力矩马达是将电信号转换成机械运动的一种电气-机械转换.一.力矩马达工作原理利用电磁原理,由永久磁铁(或激磁线圈)产生极化磁场,而电信号通过控制线圈产生控制磁场,两个磁场相互作用,产生与控制信号成比例并能反映控制信号的极性的力或力矩,使其运动部分产生直线位移或角位移的机械运动.二.力矩马达分类1. 根据运动形式分1) 角位移马达--力马达,可移动件是直角位移.2) 直线位移马达—力马达,可移动件是直线位移.2.按可动件结构分1)动铁式---可动件是衔铁.2)动圈式---可动件是控制线圈.3.按极化磁场产生的方式分1)永磁式---利用永久磁铁建立极化磁通.2)非极磁式---无专门的极磁线圈,两个控制线圈差动连接,利用常值电流产生极化磁通.3)固定电流极磁式---利用固定电流通过极磁线圈建立极化磁场.三.力矩马达要求1.能产生足够的输出力和行程,且要求体积小,重量轻.2.动态性能好,响应速度快.3.直线性好,死区小,灵敏度高,磁滞小.4.抗震,抗冲击,不受环境温度和压力影响.四.典型力矩马达1. 永磁动铁式力矩马达1)组成下图所示为一种常用的永磁动铁式力矩马达工作原理图,它由永久磁铁(2),上下导磁体(3,5),衔铁(4),弹簧管(1),控制线圈(两个控制线圈套在衔铁上).2)工作原理永久磁铁将上下导磁体磁化,一个为N极, 一个为S极.无信号电流时,即两个控制线圈的电流i1=i2,衔铁在上下导磁体的中间位置,由于力矩马达结构是对称的, 永久磁铁在四个工作气隙中所产生的极化磁通是一样的,使衔铁两端所受的电磁吸力相同,力矩马达无力矩输出.当有信号电流通过控制线圈时,线圈产生控制磁通(其大小和方向取决于信号电流的大小和方向).假设i1>i2,如上图所示,在气隙1,3中控制磁通与极化磁通方向相同,而在气隙2,4中控制磁通与极化磁通方向相反,因此气隙1,3中其控制磁通与永久磁铁磁通合成大于气隙2,4中控制磁通与极化磁通的合成,于是衔铁上产生顺时针方向的电磁力矩,使衔铁绕弹簧管转动中心顺时针方向转动.当弹簧管变形产生的反力矩与电磁力矩相平衡时,衔铁停止转动.如果信号电流反向,则电磁力矩也反向,衔铁向反方向转动.电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例.因此调节信号电流便可调节电磁力矩的大小,也就调节衔铁的转角大小.2.永磁动圈式马达1)组成永久磁铁,可动线圈,对中弹簧等.2)工作原理图所示为一种常见的结构原理图图中,永久磁铁在工作气隙中形成极化磁通,当控制信号电流加到线圈上时,线圈就会受到电磁力的作用克服弹簧力和负载力而运动.线圈的位移与控制电流成比例.因此输入信号电流就会得到电磁力,且呈正比关系,具有线性特性.3.动铁式力矩马达与动圈式力马达比较动铁式力矩马达动圈式力马达磁滞大磁滞小工作行程小工作行程大输出力矩大,弹簧刚度大,. 输出力矩小,固有频率低.固有频率高同功率体积小, 价格高同功率体积大,价格低五.力矩马达的数学模型(电磁力矩计算)1) 永磁动铁式力矩马达的数学模型(电磁力矩计算)电磁力矩是由于控制线圈输入电流,在衔铁产生了控制磁通而形成的.因此需先求出力矩马达的控制电流.通过力矩马达的磁路分析可求出电磁力矩的计算公式.a.力矩马达的控制电流参看永磁动铁式力矩马达的工作原理图,在其工作时, 两个控制线圈由一个放大器供电,其常值电压Eb在每个控制线圈中产生的常值电流I0大小相等方向相反.当放大器有输入电压时,两个控制线圈的电流分别为:I1= I0+iI2= I0-i式中i1 i2--- 每个控制线圈中的电流;I0---每个控制线圈中的常值电流i---每个控制线圈中的信号电流;两个控制线圈的差动电流为Δi=i1-i2=2I=i c(1)I c ---输入马达的控制电流b. 衔铁中产生的控制磁通根据力矩马达的磁路原理图,应用磁路的基尔霍夫第二定律可得气隙的合成磁通, 继而应用磁路的基尔霍夫第一定律求出衔铁磁通:φa=φ1-φ2=2φgθ(a/Lg)+Δi(Nc/ Rg)式中φa ---衔铁磁通;φg ---衔铁在中位时气隙的极化磁通;θ---衔铁转角; a ---衔铁转动中心到磁极面中心的距离;Lg ---衔铁在中位时每个气隙的长度;Rg ---工作气隙的磁阻;NcΔi---永久磁铁产生的控制磁动势;c. 作用在衔铁上的电磁力矩根据马克斯威尔公式计算衔铁在磁场中所受的电磁吸力,可得由控制磁通和极化磁通相互作用在衔铁上产生的电磁力矩简化式为Td=KtΔi+Kmθ式中Td ---作用在衔铁上的电磁力矩;Kt---力矩马达的中位电磁力矩系数;Km---力矩马达的中位磁弹簧刚度;从式中可看出,在衔铁中产生的控制磁通以及由此产生的电磁力矩比例于差动电流.2) 永磁动圈式力马达的数学模型(电磁力矩计算)参见永磁动圈式力马达的工作原理图,力矩马达的可动线圈悬置于工作气隙中,永久磁铁在工作气隙中形成极化磁通,当控制电流加到线圈上时,线圈就会受到电磁力的作用而运动.其运运动方向和电流方向按左手定则判断.线圈上的电磁力克服弹簧力和负载力,产生一个与控制电流成比例的位移.由于电流方向与磁通方向垂直,根据载流导体在均匀磁场中所受的电磁力公式,可得力马达线圈所受的电磁力:F=BgлDNcic=Ktic式中F---线圈所受的电磁力;K t---电磁力系数F=BgлDNcN c---控制线圈的匝数.B g---工作气隙中的磁感应强度;D---线圈的平均直径;I c---通过线圈的控制电流.结论: 永磁动圈式力马达的电磁力与控制电流成正比,具有线性特性.2.3 液压放大元件电液伺服阀另一个组成部分是液压放大器,它是一种以机械运动来控制流体动力的元件.它将力矩马达(或力马达)输出的机械运动(转角或位移)转换为液压信号(液体的流量和压力)输出,并进行了功率放大.液压放大元件是伺服系统中的一种主要控制元件,其静动态特性对系统的性能影响很大.且结构简单,单位体积输出功率大,工作可靠和动态性能好.一.液压放大元件的种类液压放大元件有滑阀,喷咀挡板阀和射流管阀等.二.滑阀滑阀是靠节流原理工作的.它借助于阀芯与阀套间的相对运动改变节流口面积的大小,对流体流量或压力进行控制.滑阀结构形式多,控制性能好,在电液系统中应用最广泛.1.滑阀的结构及分类(1)按进出阀的通道数划分它与液压方向阀的通道数一样,有四通阀,三通阀和二通阀.四通阀有一个进油口,一个回油口,两个控制口.可用来控制双作用液压缸或马达.如图a所示.三通阀有一个进油口,一个回油口,一个控制口.只可用来控制差动液压缸.如图b所示.图b 三通阀图c 二通阀二通阀一个进油口,只有一个可变节流口,须和一个固定节流孔配合使用,才能用来控制差动液压缸. 如图c所示.(2)按滑阀的工作边数划分a.四边滑阀--与上对应四通阀有四个可控的节流口,又称四边滑阀,控制性能最好.如上图a所示.b. 双边滑阀--三通阀有两个可控的节流口,又称双边滑阀, 控制性能居中. 如上图b所示.c. 单边滑阀--单边滑阀只有一个可控的节流口, 控制性能最差.(3)按滑阀的预开口型式划分按滑阀阀芯在中位时,阀芯凸肩与阀套槽宽的几何尺寸关系划分有:a.正开口--阀芯凸肩与阀套槽宽的几何尺寸是负重叠的(即阀芯凸肩宽度大于阀套槽宽),参见图a.b.零开口--阀芯凸肩与阀套槽宽的几何尺寸是零重叠的(即阀芯凸肩宽度等于阀套槽宽),参见图b.c.负开口--阀芯凸肩与阀套槽宽的几何尺寸是正重叠的(即阀芯凸肩宽度小于阀套槽宽),参见图c.图a 正开口图b 零开口图c 负开口.阀的预开口形式对其性能,特别是零位附近特性影响很大.如下图所示:零开口阀具有线性流量增益特性,性能比较好.负开口阀由于流量增益特性有死区,将引起稳态误差,有时还可能引起游隙,从而产生稳定性问题.正开口在正开口区内外的流量增益变化大,压力灵敏度低,零位泄漏量大.图不同开口形式的流量特性1-零开口2-正开口3-负开口2.滑阀静态特性滑阀静态特性是指稳态情况下,阀的负载流量qL, 负载压力pL和滑阀的位移xv三者之间的关系,即qL=f(pL, xv).它表示滑阀的工作能力和性能,对系统的静动态特性计算有重大意义.阀的静态特性可用方程(压力-流量方程),曲线或特性参数(阀的系数)表示.(1) 滑阀静态特性a.压力-流量方程滑阀的控制流量可由滑阀节流口流量公式表示,其流量是阀芯位移和节流口的压降的函数.为了使问题简化,在推导压力-流量方程时,作了以下假设:a)液压能源是理想的恒压源,供油压力Ps为常数,回油压力P0为零.b)忽略管道和阀腔内的压力损失.c)假定液体是不可压缩的.d)假定阀各节流口流量系数相等.e)阀的窗口都是匹配和对称的.根据节流口流量公式,以四边滑阀为例,可推导出压力-流量方程:负载流量为QL=CdA2√1/ρ(ps - pL)- CdA1√1/ρ(ps + pL)式中Cd-为流量系数,ρ-为油密度, (ρ=870Kg/m3)A1- 为节流口1的面积;A2-为节流口2的面积;ps –为恒压油源压力pL-为负载压力,pL=p1-p2.供油流量为Qs=CdA2√1/ρ(ps - pL)+ CdA1√1/ρ(ps + pL)b.滑阀的静态特性曲线a)流量特性曲线阀的流量特性是指负载压降等于常数时, 负载流量与阀芯位移之间的关系,其图形表示即为流量特性曲线. 负载压降为0时的流量特性称空载流量特性.相应的曲线为空载流量特性曲线,如图a所示.图a 空载流量特性曲线图图b 压力特性曲线b)压力特性曲线阀的压力特性是指负载压降等于常数时, 负载压降与阀芯位移之间的关系,其图形表示即为压力特性曲线.通常所指的压力特性是指负载流量为0时的压力特性,相应的曲线为压力特性曲线,如图b所示.c)压力-流量特性曲线阀的压力-流量特性曲线是指阀芯位移一定时, 负载流量与负载压降之间关系的图形. 如下图所示为理想零开口四边滑阀的压力-流量特性曲线族.它全面描述了阀的稳态特性,并可获得阀的全部性能参数.阀在最大位移下的压力-流量特性曲线可以表示阀的工作能力和规格.当负载所需的压力和流量能被阀在最大位移下的压力-流量特性曲线所包围时,阀就能满足负载的要求阀的压力-流量特性曲线(2)零开口四边滑阀的静态特性a. 理想零开口四边滑阀的静态特性理想零开口滑阀是指径向间隙为零,工作边锐利的滑阀,如图所示.由于径向间隙为零,工作边锐利,因而在讨论静态特性时可不考虑它们的影响.且认为节流阀口为矩形,其面积A=W xv, (W-面积梯度xv-阀芯位移).a)理想零开口四边滑阀的压力-流量方程 理想零开口四边滑阀的压力-流量方程:QL=Cd W xv -(1)b)压力-流量曲线根据无因次压力-流量方程绘制压力-流量曲线如下图所示.因阀窗口是匹配且对称的,所以压力-流量曲线对称于原点.当阀在正常工作状态是按图中Ⅰ,Ⅲ象限曲线.只有在瞬态情况下,才会处于Ⅱ,Ⅳ象限曲线.⎪⎪⎭⎫ ⎝⎛-Lv v s p p χχρ1。
MATLAB电液位置伺服控制系统设计及仿真教案资料

M A T L A B电液位置伺服控制系统设计及仿真数控机床工作台电液位置伺服控制系统设计及仿真姓名:雷小舟专业:机械电子工程子方向:机电一体化武汉工程大学机电液一体化实验室位置伺服系统是一种自动控制系统。
因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。
若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。
1 位置伺服系统组成元件及工作原理数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。
根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。
系统物理模型如图1所示。
图1 数控机床工作台位置伺服系统物理模型系统方框图如图2所示。
图2 数控机床工作台位置伺服系统方框图数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。
位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。
数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。
反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。
因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。
2数控工作台的数学模型 2.1 工作台负载分析工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为:a f c L F F F F ++=2.2液压执行机构数学模型工作台由液压马达经减速器和滚珠丝杠驱动。
电液伺服系统的设计与实现

电液伺服系统的设计与实现随着科技的不断发展,机械设备的功能和性能要求也越来越高。
而在众多机械设备中,电液伺服系统以其优良的性能和高效的工作模式,已经成为了广泛应用的设备之一。
本文将就电液伺服系统的设计和实现进行讨论,以期提高其性能和工作效率。
一、电液伺服系统的组成电液伺服系统是由3个部分组成的:电子控制单元、电液传动系统和执行机构。
1. 电子控制单元电子控制单元包括控制器和信号处理器,控制器是整个系统的核心。
它可以接收来自传感器的反馈信息,根据内部程序计算出控制信号,并输出到执行机构,实现对执行机构的精确控制。
2. 电液传动系统电液传动系统是整个电液伺服系统的动力源,它包括电液转换器、电动机、泵、油箱、阀门等组成。
电动机通过传动装置,驱动泵产生压力液体,液体经过阀门进入执行机构,实现机械臂等动作。
3. 执行机构执行机构是电液伺服系统的输出节点,它通过接收液压驱动,转换为机械运动。
在典型的电液伺服系统中,执行机构通常包括液压缸、液压马达、液压单元等。
二、电液伺服系统的优点1. 精度高因为电液伺服系统可以接收来自传感器的反馈信息,根据内部程序计算出控制信号,并输出到执行机构,实现对执行机构的精确控制,所以其控制精度很高,可以满足高精密度机械设备的要求。
2. 动态性能好电液伺服系统的调节速度快,反应灵敏。
它不仅可以适应于各种工况的需要,而且可以根据需要进行控制和调节。
相比之下,其他传动系统难以满足这些要求。
3. 可扩展性强电液伺服系统的结构比较清晰,它根据要求可以进行功能扩展。
同时,它也可以与其他的控制系统进行集成,如PLC、CAN总线等。
三、电液伺服系统的设计电液伺服系统的设计必须根据所需的实际应用来进行,下面简单介绍了一些设计方法。
1. 系统参数计算电液伺服系统的设计一定要进行系统参数计算,以确保正确的系统工作。
主要包括负载惯性、运动速度、加速度、油液流量、泵、马达的型号、离合器等参数的计算。
2. 控制系统设计控制系统设计是电液伺服系统设计的核心问题。
带钢跑偏电液伺服控制系统的PID控制器设计

此 伺服 控制 系统 的单 位阶跃 输 入作 用下 的时 域动 态指 标: 超调量 Mp5 上升 时间t O 调整 时间 05 。 < %, r . S, <5 < . S
21 系统 mp trEn ie rn n gn e i ga dAp l a in , 0 2, 8 7 : 3 — 3 . p i to s 2 1 4 ( ) 2 52 7 c
Ab t a t h t e t a d lo e e e t c l y r u i e v o to y tm o te t p d v ai n i s b ih d t o t l sr c :T e mah ma i lmo e f t l cr a - d a l s r o c n r ls se f r se lsr e i o se t l e o c n o c h i h c i t a s r se ls e i t n a d t ep ro m a c d x si me d m an a ea ay e t AT te t d v ai , np o n e f r n e i e e t o i r n lz dwi M h n n i h LAB. n e t n l I c n o lra d f z y Co v n i a D o t l u z o P r e n s l a a t e P D o t l rae d sg e O t a ep ro a c fte s se c n a h e e t ed sg q ie e t . h i lt n o ef d p v I c n r l r e i n d S tt e f r n eo y t m a c iv e i n r u rm n s T esmu a i f - i o e h h m h h e o h t t d h ws h t u z  ̄ d p v I o t s t e wo me o ss o t a f z y s l a a f eP D c n r l y tm t a o v n o a P D c n r l a b t r r p r y a c n a i z t n h e i o s e h nc n e t n l I o t h s e e p o e t n mi a d s b l a o . i o t yd t ii
电液伺服跑偏控制系统设计概要

前言随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。
本文正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。
本文首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。
然后在明确设计要求的情况下,对设计任务进行分析。
通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。
接着本文对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。
接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递函数,绘制了系统方块图,得出系统的各个参数。
然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。
最后利用了先进电脑仿真技术MATLAB对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响,本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。
由于作者水平有限,论文中难免出现点差错,恳请读者指正。
1 绪论液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。
在这种系统中,输出量(位移、速度、力等能够自动地、快速而准确地复现输入量的变化规律。
与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。
液压伺服控制系统是以液体压力能为动力的机械量(位移、速度和力自动控制系统。
按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系统两种。
机液伺服系统的典型实例是飞机、汽车和工程机械主离合器操纵装置上常用的液压助力器,机床上液压仿形刀架和汽车与工程机械上的液压动力转向机构等。
电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。
5电液伺服控制系统分析与设计

1 稳定性 开环Bode图
只考虑液压缸和负载的动态特性时,系统稳定; 考虑反馈传感器、放大器、伺服阀相位滞后,系 统可能会不稳定。 稳定性受负载刚度影响。
谐振处的幅值
负载刚度减小,谐振幅值增大,稳定性变坏。
2 快速性
穿越频率
穿越频率随负载刚度变化。
负载刚度较小,频宽提高受负载刚度限制; 力控制系统中,负载变化。通过校正提高快速 性。
b K v nc h
1 Kv nc h 2 h
幅值频宽:幅频特性下降至-3dB对应的频率范围。
频宽近似等于闭环惯
性环节转角频率
ωb
系统开环穿越频率 ωc≈ ωb 因此频宽为ωc 对应I型系统 ωc ≈Kv
因此由开环Bode图可直接看出系统的快速性,开环
K v 2 hh
实测结果:
阀控缸液压阻尼比 通常在0.1~0.2左右
h
稳定性判据可写为
Kv (0.2 ~ 0.4)h
系统稳定后,还要求有一定的稳定裕度。 幅值裕度Kg≥6~12dB 相位裕度γ≥30~60°
例:若不考虑外干扰力,已知:
h 200rad / s
k v 20 1/s
h
s s 3 2 nc 2 1 2 s s 1 nc b nc
x p ( s) x pi ( s )
G s 3 1 G s s
2 h
1
2 h
Kv s2 s Kv
h
s s 3 2 nc 2 1 2 s s 1 nc b nc
带钢卷取机跑偏电液控制系统原理
伺服液压缸
电液位置伺服控制系统实验讲解

s2
2 0.866 14.726
s
1
Ki减小为40
Ki变小,ωc=1.53<2.78, ωh=14.8不变,Kg=24.5>19.1
增大Kd1
正常参数
C(s)
2.107
R(s)
s
1
17.0782
s2
2 0.747 17.078
s
1
Kd1变大为35
Kd1变大,ωc=2.1<2.78, ωh=17.1>14.8 ,Kg=21.8>19.1
2)阀控缸微分方程
负载流量线性化方程
qL Kq xV Kc pL
流量连续性方程
qL
AP
dxP dt
CtP pL
Vt
4e
dpL dt
忽略阀腔和管道总容积,油液的压缩性影响忽略
qL
AP
dxP dt
CtP
pL
液压缸活塞的动力学平衡方程
F
AP pL
mt
d 2xP dt 2
BP
r0,ml 为输入信号在线性范 围内的最大值
阶跃输入2.5
阶跃输入5
阶跃输入9
阶跃输入12
系统开环传递函数
C(s)
KV
R(s)
s
1
h2
s2
2h h
s
1
KV
Ki K d1
KV
Ki Kd1
73.746 26.022
2.834
h
K d1 a
代入系数得到 h
减小Kd1
正常参数
风电机组试验台五自由度电液伺服控制系统设计

风电机组试验台五自由度电液伺服控制系统设计目录一、项目概述 (2)1. 项目背景与意义 (2)2. 研究目的及内容 (4)二、风电机组试验台设计基础 (5)1. 风电机组基本构造 (6)2. 试验台设计要求与标准 (7)三、五自由度电液伺服控制系统原理 (8)1. 电液伺服系统概述 (9)2. 五自由度控制系统原理 (11)四、系统设计方案 (12)1. 系统整体架构设计 (14)2. 控制器设计 (16)3. 液压系统设计 (17)五、电液伺服控制系统硬件选型与配置 (18)1. 传感器与变送器选型 (20)2. 伺服阀与液压泵选择 (21)3. 控制柜配置及功能介绍 (22)六、软件设计及功能实现 (23)1. 控制算法选择及优化 (24)2. 人机交互界面设计 (25)七、系统调试与性能评估方法 (27)八、安全保护措施及建议改进的方面说明与分析参考改进思路如下.28一、项目概述随着全球对可再生能源的关注度不断提高,风电作为一种清洁、可持续的能源形式,已经成为全球能源结构的重要组成部分。
为了提高风电机组的性能和可靠性,降低运行成本,各国纷纷加大对风电技术的研发投入。
五自由度电液伺服控制系统在风电机组中的应用具有重要意义,它可以实现对风轮转速、偏航角度、俯仰角度等参数的精确控制,从而提高风电机组的发电效率和稳定性。
本项目旨在设计一种高效、稳定的五自由度电液伺服控制系统,以满足风电机组的实际需求。
通过对现有技术的分析和研究,我们将采用先进的电液伺服控制技术和高性能的传感器,构建一个具有高精度、高速度、高稳定性的控制系统。
我们还将对控制系统进行仿真和实验验证,以确保其在实际应用中的可行性和可靠性。
本项目的研究成果将为风电行业的发展提供有力支持,有助于推动我国风电产业的技术进步和市场竞争力。
通过本项目的实施,我们期望能够为国内外风电领域的研究者和工程师提供一个有价值的参考和借鉴,为我国风电产业的发展做出贡献。
电液位置伺服控制系统设计方法

液压马达的最大转速为
所以负载流量为
此时伺服阀的压降为
考虑到泄漏等影响,将 增大15%,取 =3.4L/min。根据 和 ,查得额定流量为6L/min的阀可以满足要求,该阀额定电流为
5.选择位移传感器增益 ,放大器增益 确定
(三)计算系统的动态品质
1.确定各组成元件的传递函数,画出系统的方块图
电液位置伺服控制系统设计方法
电液位置伺服控制系统设计方法
电液位置伺服控制系统设计方法
电液位置伺服系统是最基本和最常用的一种液压伺服系统,如机床工作台的位置、板带轧机的板厚、带材跑偏控制、飞机和船舶的舵机控制、雷达和火炮控制系统以及振动试验台等。在其它物理量的控制系统中,如速度控制和力控制等系统中,也常有位置控制小回路作为大回路中的一个环节
2.绘制系统开环伯德图并根据稳定性确定开环增益
由方块图5绘制 =1时的开环伯德图,见图6.。然后将图中零分贝线下移至 ,使相位欲量 ,此时增益欲量 ,穿越频率 ,开环增益 1/S
由方块图5得开环增益
1/s=504 1/s
所以放大器增益为
3.求闭环系统的频宽
由图6所示的开环伯德图,通过尼克尔斯图可以求得系统的闭环伯德图,如下图7所示
(一)组成控制系统原理图
由于系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。系统方块原理如图1
(二)由静态计算确定动力元件参数,选择位移传感器和伺服放大器
1.绘制负载轨迹图
负载力由切削力 ,摩擦力 和惯性力 三部分组成。摩擦力具有“下降”特性,为了பைடு நூலகம்化,可认为与速度无关,是定值,取最大值 = 1500N惯性力按最大加速度考虑
电液位置伺服系统主要是用于解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量对给定量的及时和准确跟踪,并要具有足够的控制精度。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。它由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂。因此,电液伺服控制系统的设计及仿真受到越来越多的重视。
电液位置伺服控制系统设计

“速度”误差 ev 1mm (指令为“速度”输入,即斜坡输入);
频带宽度 f3dB 10Hz 。
3 仿真实验
3.1 仿真实验参数 仿真实验已知参数见如下: Fc 400N ; Ff 1600N ; vmax 0.08m / s ; amax 1.2m / s2 ; mt 800kg ;
感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信 号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信 号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流 量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马 达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工 作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。
为: K f
Uf xp
式中:U f 为反馈电压信号; xp 为工作台位移。
根据以上确定的传递函数,可绘制出数控机床工作台位置伺服系统的模型如图 3 所示。 图 3 见草稿。 故系统的开环传递函数为:
GsH s
Kv
s
s2 2
sv
2 sv sv
s
1
s2 h2
2h h
s
1
式中:开环增益系数 Kv 为: Kv Ka K sv K s K f / Dm
图 1 数控机床工作台位置伺服系统物理模型 系统方框图如图 2 所示。
图 2 数控机床工作台位置伺服系统方框图 数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象 的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控 制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快 速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传
电液伺服控制系统的设计

电液伺服控制系统的设计————————————————————————————————作者:————————————————————————————————日期:2电液伺服控制系统的设计与仿真引言电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。
随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。
随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。
因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。
1 液压系统动态特性研究概述随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。
因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。
1.1 液压系统动态特性简述液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。
在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。
系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。
液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。
数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。
先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。
电液位置伺服控制系统设计方法

电液位置伺服控制系统设计方法本文将介绍电液位置伺服控制系统设计的方法,并针对其中的几个关键环节进行详细说明。
一、系统建模几何方法是通过几何分析来建立系统的几何关系方程,例如通过机械结构的分析来推导出负载移动和油液角位移的关系。
物理方法是通过物理定律和原理来建立系统的动态方程,例如利用牛顿第二定律和液压力学原理来推导出系统的动态方程。
数学方法是通过系统的输入和输出响应数据来建立系统的数学模型,例如通过实验数据拟合出系统的传递函数或状态空间模型。
二、控制策略选择在电液位置伺服控制系统中,常用的控制策略包括PID控制、模糊控制和自适应控制等。
PID控制是最常用的控制策略之一,通过调节比例、积分和微分三个控制参数来实现位置控制。
PID控制具有简单、稳定的特点,适用于许多工业领域。
模糊控制是一种基于模糊逻辑的控制策略,能够处理非线性、模糊的系统。
模糊控制通过建立模糊规则和模糊推理机制来实现控制。
自适应控制是一种根据系统状态和参数变化进行自动调节的控制策略。
自适应控制能够实时调节控制参数,以适应系统的变化。
根据具体的系统动态特性和控制性能要求,选择适合的控制策略。
三、控制器设计根据选定的控制策略,设计合适的控制器参数,例如PID控制中的比例、积分和微分参数。
控制器参数的选择通常通过试验和调整得到,常用的方法包括试探法、经验法和优化算法。
试探法是最常用的方法,通过对控制器参数进行调整,观察系统的响应,找到最佳的控制参数。
经验法是通过工程经验来选择控制器参数,常用的经验法包括Ziegler-Nichols 方法和Chien-Hrones-Reswick 方法等。
优化算法是一种通过优化方法来寻找最优控制参数的方法,例如遗传算法、粒子群算法等。
四、系统仿真和调试在设计完成后,应进行系统仿真和调试,以验证系统的性能和稳定性。
系统仿真可以通过利用系统的数学模型,使用仿真软件(如Matlab/Simulink)进行。
仿真可以帮助设计人员评估系统的性能,并对控制器参数进行进一步调整。
最新液压系统设计(跑偏)

跑偏控制系统设计为防止如带钢、皮带等卷绕过程会产生跑偏问题,就必须进行跑偏控制,也即边沿位置控制。
设备控制系统的组成和原理如下图所示。
图1 原理图该系统的工作原理是:系统的光电检测器由光源与光电二组成,同卷筒刚性连接,当被控边沿(如带钢)等正常运行,光电管接受一半光照,其电阻值为R当被控边沿偏离检测器中央时,光电管接受的光照发生变化.电阻值随之变化,因而破坏了以光电管电阻为一臂的电桥平衡,输出一偏差信号电压,此电压信号经放大器放大后产生差动电流△I输入到电一液伺服阀,产生正比于输入信号的流量,控制液压缸拖动卷筒,使其向纠偏的力向运动,直到跑偏位移为零,使卷筒处于中心位置。
由于检测器与卷筒起移动,形成了直接位置反馈。
1.设计要求和给定参数(1)带材最大速度:v m=2.2×102 m/s;(2)最大钢卷重力:G1=147000N其他部件移动重力G2=196000N;故负载质量M:(G1+G2)/9. 8=35000kg;(3)工作行程:L=150mm;(4)对控制系统的要求最大调节速度:V m=2 .2x10-2 m/s:系统频宽:w b>20rad/s最大加速度: a m=0. 47×l0-2m/s2。
系统最大误差e p≤±2×10 -3m2.控制方案拟定根据工作要求,决定采用电液伺服阀和液压缸控制方案,如图1所示。
系统的职能方框图如图2所示。
图2 职能方块图3根据主要设计参数确定主要装置1油源采用压力补偿变量泵,为保护伺服阀,应采取措施,防止油液污染,根据工作要求,油源压力取为P s=4MPa。
2)确定动力元件尺寸参数(1)负载:总负载力F L=F a+F f=Ma m+G f=19145N(2)确定执行元件——液压缸参数通常把负载压力取为P L=p s=2 6MPa由于P L=F L/A p,所以A p=F L/p L=0.72x10-2m2根据工作需要,该装置的负载压力,主要满足拖动力即可,负载压力不要太大,可把负载压力取得更小些.即把作用面积取为A p=F L/p L=1. 68x10-2m2则P L= F L/ A p =2. 02MPa≤2p s/3=2.6MPa,合理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言随着20世纪自动化技术的巨大进步,自动控制理论得到不断地发展和完善。
本文正是针对设计任务,通过设计方案的分析比较之后,选择电液控制系统来设计此次任务。
本文首先介绍了液压控制的一些基本概念,对研究对象和任务作出了整体的介绍,并简述了液压控制技术的发展史。
然后在明确设计要求的情况下,对设计任务进行分析。
通过机液伺服跑偏控制系统和电液伺服跑偏控制系统的分析对比,最终选择了电液伺服跑偏控制系统的设计方案,从而进入本课题研究要点。
接着本文对电液伺服跑偏控制系统做了具体的设计,先是对电液伺服机构进行了分析,得出了电液伺服系统的数学模型,进而分析了其特点。
接着又对系统做了静、动态计算及分析,确定了供油压力,选取了伺服阀,并求取了各元件的传递函数,绘制了系统方块图,得出系统的各个参数。
然后还要对系统进行校正,得到更为优良的设计参数,使系统更加完善,以进一步提高系统的性能。
最后利用了先进电脑仿真技术MATLAB对所做的系统进行仿真,通过改变系统的各个参数进行分析、比较,从而可看出系统的各个参数对系统的响应速度和稳定性的影响,本论文在王慧老师的悉心教导之下,通过研读各著作期刊,经过多次的修改。
由于作者水平有限,论文中难免出现点差错,恳请读者指正。
1 绪论液压伺服控制系统是以液压动力元件作驱动装置所组成的反馈控制系统。
在这种系统中,输出量(位移、速度、力等)能够自动地、快速而准确地复现输入量的变化规律。
与此同时,还对输入信号进行功率放大,因此也是一个功率放大装置。
液压伺服控制系统是以液体压力能为动力的机械量(位移、速度和力)自动控制系统。
按系统中实现信号传输和控制方式不同分为机液伺服系统和电液伺服系统两种。
机液伺服系统的典型实例是飞机、汽车和工程机械主离合器操纵装置上常用的液压助力器,机床上液压仿形刀架和汽车与工程机械上的液压动力转向机构等。
电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。
按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。
电液位置伺服控制系统适合于负载惯性大的高速、大功率对象的控制,它已在飞行器的姿态控制、飞机发动机的转速控制、雷达天线的方位控制、机器人关节控制、带材跑偏、力控制、材料试验机和加载装置等中得到应用。
1.1 液压伺服控制系统的组成液压伺服控制系统不管多么复杂,都是由以下一些基本元件组成的,如图1-1所示:图1-1 电液伺服控制系统Fig.1-1 electro-hydraulic servo system1)输入元件——也称指令元件,它给出输入信号(指令信号)加于系统的输入端。
该元件可以是机械的、电气的、气动的等。
如靠模、指令电位器或计算机等。
2)反馈测量元件——测量系统的输出并转换为反馈信号。
这类元件也是多种形式的。
各种传感器常作为反馈测量元件。
如测速机、阀套,以及其它类型传感器。
3)比较元件——相当于偏差检测器,它的输出等于系统输入和反馈信号之差,如加法器、阀芯与阀套组件等。
4)液压放大与转换元件——接受偏差信号,通过放大、转换与运算(电液、机液、气液转换),产生所需要的液压控制信号(流量、压力),控制执行机构的运动,如放大器、伺服阀、滑阀等。
5)液压执行元件——产生调节动作加于控制对象上,实现调节任务。
如液压缸和液压马达等。
6)控制对象——被控制的机器设备或物体,即负载。
此外,系统中还可能有各种校正装置,以及不包含在控制回路的能源设备和其它辅助装置等。
液压控制元件、执行元件和负载在系统中是密切相关的,把三者的组合称之为液压动力机构。
凡包含有液压动力机构的反馈控制系统统称为液压控制系统。
1.2 液压伺服控制的分类液压伺服控制系统可按下列不同的原则进行分类,每一种分类的方法都代表系统一定的特点。
1.2.1按系统输入信号的变化规律分类液压伺服控制系统按输入信号的变化规律不同可分为:定值控制系统、程序控制系统和伺服控制系统。
1) 定值控制系统——当系统输入信号为定值时,称为定值控制系统。
对定值控制系统,基本任务是提高系统的抗干扰性,将系统的实际输出量保持在希望值上。
2) 程序控制系统——当系统的输入信号按预先给定的规律变化时,称为程序控制系统。
输入量总在频繁的变化,系统的输出量能够以一定的准确度跟随输入量的变化而变化。
3) 伺服控制系统——也称随动系统,其输入信号是时间的未知函数,而输入量能够准确、快速地复现输入量的变化规律。
对伺服系统来说,能否获得快速响应往往是它的主要矛盾。
1.2.2按被控物理量的名称分类1) 位置伺服控制系统;2) 速度伺服控制系统;3) 加速度伺服控制系统;3) 力控制系统;4) 其它物理量的控制系统;1.2.3 按液压动力元件的控制方式分类1) 节流式控制(阀控式)系统——用伺服阀按节流原理来控制流入执行机构的流量或压力的系统。
2) 容积式控制(变量泵控制或变量马达控制)系统——利用伺服变量泵或变量马达改变排量的办法控制流入执行机构的流量和压力系统。
又可分为伺服变量泵系统和伺服变量马达系统两种。
1.2.4 按信号传递介质的形式分类1) 机械液压伺服系统;2) 电气液压伺服系统;3) 气动液压伺服系统;除以上几种分类方法外,还可将系统分为数字控制系统和连续时间控制系统,线性或非线性控制系统等。
1.3 液压伺服控制的优缺点1.3.1 液压伺服控制的优点液压伺服系统与其它类型的伺服系统相比,具有以下的优点:1) 液压元件的功率—重量比和力矩—惯量比大, 功率传递密度高, 可组成结构紧凑、体积小、重量轻、加速性好的伺服系统。
对于中、大功率的伺服系统,这一优点尤为突出。
2) 液压动力元件快速性好,系统响应快。
由于液压动力元件的力矩—惯量比(或力—质量比)大,所以加速能力强,能高速起动、制动与反向。
3) 液压伺服系统抗负载的刚度大,即输出位移受负载变化的影响小,定位准确,控制精度高。
4) 液压执行元件速度快, 在伺服控制中采用液压执行元件可以使回路增益提高、频宽高。
5) 液压控制系统可以实现频繁的带载起动和制动, 可以方便地实现正反向直线或回转运动和动力控制, 调速围广、低速稳定性好、能量贮存和动力传输方便。
此外,液压伺服控制系统还有一些优点。
如液压元件的润滑性好,液压元件寿命长(与气动相比);调速围宽、低速稳定性好;借助油管动力传输比较方便;借助蓄能器,能量储存比较方便;液压执行元件有直线位移式和旋转式两种,增加它的适应性;过载保护容易;解决系统温升问题比较方便;易于采取节能措施等1.3.2 液压伺服控制的缺点液压控制系统因有上述突出优点,使它获得广泛的应用。
但它还存在不少缺点,因而又使它的应用受到某些限制。
其主要缺点有:1) 液压元件,特别是精密的液压控制元件(如电液伺服阀)抗污染能力差,对工作油液的清洁度要求高。
污染的油液会使阀磨损而降低其性能,甚至被堵塞而不能正常工作。
这是液压伺服系统发生故障的主要原因。
因此液压伺服系统必须采用精过滤器。
2) 油液的体积弹性模量随油温和混入油中的空气含量而变化。
油液的黏度也随油温的变化而变化。
因此油温的变化对系统的性能有很大的影响。
3) 当液压元件的密封装置设计、制造或使用维护不当时,容易引起漏油,污染环境。
采用石油基液压油,在某些场合有引起火灾的危险。
采用抗燃液压油可使这种危险减小。
4) 液压元件加工精度要求高,成本高,价格贵。
5) 液压能源的获得、储存和远距离输送不如电气系统方便。
1.4 电液伺服控制系统的发展概况电液伺服控制技术最先产生于美国的 MIT,后因其响应快、精度高,很快在工业界得到了普及。
电液伺服系统是一种以液压动力元件作为执行机构,根据负反馈原理,使系统的输出跟踪给定信号的控制系统。
它不仅能自动、准确、快速地复现输入信号的变化规律,而且可对输入量进行变换与放大。
作为控制领域的一个重要研究对象,电液伺服系统的设计理论和方法一直受到控制学科的指导和启发,经历了从线性到非线性智能控制的发展历程。
自从20世纪50年代麻省理工学院开始研究电液伺服系统的控制至以后的几十年中,电液伺服控制设计基本上是采用基于工作点附近的增量线性化模型对系统进行综合与分析。
PID 控制也因其控制律简单和易于理解,受到工程界的普遍欢迎。
然而,随着人们对控制品质要求的不断提高,电液伺服系统中 PID 控制的地位发生了动摇。
这主要是由电液伺服系统的特性所决定的。
首先,电液伺服系统是一个严重不确定非线性系统,环境和任务复杂,普遍存在参数变化、外干扰和交叉耦合干扰;其次,电液伺服系统对频带和跟踪精度都有很高的要求。
如航空航天领域的系统频宽可达 100Hz,已接近甚至超过液压动力机构的固有频率;另外,在高精度快速跟踪条件下,电液伺服系统中的非线性作用已不容忽视。
因此,可以说电液伺服系统是一类典型的未知不确定非线性系统。
这类系统扰动大、工作围宽、时变参量多、难以精确建模。
这些特点对系统的稳定性、动态特性和精度都将产生严重的影响,特别是控制精度受负载特性的影响而难以预测。
例如,在材料试验机上,一般的动态加载多采用 PID方式,对不同的试件,必须更改不同的PID参数,尤其是在材料变形的塑性区域,PID控制更加难以满足人们日益精细的控制要求。
70年代末至80年代初,计算机技术的发展为电子技术和液压技术的结合奠定了基础。
随后计算机控制在电液伺服系统中得到应用,使复杂控制策略的实现成为可能。
自适应控制的引入在一定程度上提高了系统的鲁棒性和控制精度,并在解决许多工程问题上发挥了积极的作用。
但在大扰动或系统存在严重不确定性时,自适应算法将趋向复杂,造成实现上的困难。
此外,它对非线性因素的处理能力也不尽人意。
近年来,控制学科的发展推动了电液伺服系统智能控制的研究。
对非对称缸系统,国早期在WE试验机上有过研究;国外也进行了非对称缸系统建模和 Robust控制的研究,如使用双函数边界法,将阀口流量、缸体运动的非线性用线性不确定方程来描述,将非线性问题转化为参数摄动问题进行处理。
此外,模糊控制、神经网络控制等非线性控制技术也都在电液伺服系统中取得了一席用武之地。
尤其是在模糊控制方面,经过多年的研究与实践,已由最初的技术应用研究,逐步形成了系统化的模糊控制设计理论和方法,并在电液伺服系统中取得成功的应用。
由此可见,电液伺服系统非线性智能控制研究的前景是十分广阔的。
然而,目前仍存在许多问题。
比如,应用方面的非线性系统理论的不完备,对诸如控制策略设计、稳定性分析以及非线性和智能控制理论方法在实际应用中存在的局限性缺乏有针对性的研究等。
此外,值得指出的是,虽然电液伺服系统中的非线性因素会对控制系统的设计产生一定的影响,但是这些非线性因素的影响在多数条件下远不如负载干扰的影响大。