含参数的一元二次不等式的解法详细版.ppt
合集下载
一元二次不等式及其解法精选教学PPT课件
0
的解集.
一元二次方程 ax2 bx c 0(a 0) 的解实
际上就是二次函数 y ax2 bx c(a 0)
与x轴交点的横坐标。
下面我们来研究如何应用二次函数的图 象来解一元二次不等式。
一元二次不等式的解集如下表
b2 4ac
说明:这类题要充分利用判别式和韦达定理.
课堂练习
1.若方程 x2 (k 2)x 4 0 有两负根,求k的
取值范围.
第二教材P74 15
例3.已知 A {x | x2 x 6 0}, B {x | x2 2x 8 0},
C {x | x2 4ax 3a2 0}, 若 A B C ,求实数a
的取值范围.
没有人能忽略这样一张脸孔:泪眼纷纷,呜咽声声,“求求,求求你们。”黑夜在颤抖,墨镜里,必藏着一双红肿、深陷、因其绝望而绝美的眼睛。 她叫苏珊,她说:“这原本是一个温良秋夜,她开车带着3岁和14个月大的两个孩子,行驶在静谧的公路上,忽然一个歹徒窜上车,持枪威逼她下车,带着她的孩子们,扬长而去。
二次函数
y ax2 bx c(a 0)
的图像
0
y
0 x1 x2 x
一元二次方程
ax2 bx c 0(a 0)
的根
x1 b
b2 4ac 2a
x2 b
b2 4ac 2a
ax2
bx c 0(a
的解集
0)
x
|
x
x1或x
x2
x R 恒成立,则必有
k>0
(6k)2 4k(k 8) 0
的解集.
一元二次方程 ax2 bx c 0(a 0) 的解实
际上就是二次函数 y ax2 bx c(a 0)
与x轴交点的横坐标。
下面我们来研究如何应用二次函数的图 象来解一元二次不等式。
一元二次不等式的解集如下表
b2 4ac
说明:这类题要充分利用判别式和韦达定理.
课堂练习
1.若方程 x2 (k 2)x 4 0 有两负根,求k的
取值范围.
第二教材P74 15
例3.已知 A {x | x2 x 6 0}, B {x | x2 2x 8 0},
C {x | x2 4ax 3a2 0}, 若 A B C ,求实数a
的取值范围.
没有人能忽略这样一张脸孔:泪眼纷纷,呜咽声声,“求求,求求你们。”黑夜在颤抖,墨镜里,必藏着一双红肿、深陷、因其绝望而绝美的眼睛。 她叫苏珊,她说:“这原本是一个温良秋夜,她开车带着3岁和14个月大的两个孩子,行驶在静谧的公路上,忽然一个歹徒窜上车,持枪威逼她下车,带着她的孩子们,扬长而去。
二次函数
y ax2 bx c(a 0)
的图像
0
y
0 x1 x2 x
一元二次方程
ax2 bx c 0(a 0)
的根
x1 b
b2 4ac 2a
x2 b
b2 4ac 2a
ax2
bx c 0(a
的解集
0)
x
|
x
x1或x
x2
x R 恒成立,则必有
k>0
(6k)2 4k(k 8) 0
7-2一元二次不等式及其解法 课件【共102张PPT】
则原不等式的解集是x2<x<1a
;
当a=12时,原不等式的解集是∅;
当a>12时,1a<2,则原不等式的解集是x1a<x<2
.
(2)当a=0时,原不等式为-(x-2)<0,解得x>2,即原不等式的解集是{x|x>2}.
(3)当a<0时,原不等式可以化为a(x-2)x-1a<0,
根据不等式的性质,这个不等式等价于(x-2)x-1a>0, 由于1a<2,故原不等式的解集是
角度Ⅱ.含参二次不等式的解法 试/题/调/研(题题精选,每题都代表一个方向)
3.解关于x的不等式ax2-(2a+1)x+2<0(a∈R).
[解] 原不等式可化为(ax-1)(x-2)<0. (1)当a>0时,原不等式可以化为a(x-2) x-1a <0,根据不等式的性质,这个不等 式等价于(x-2)·x-1a<0. 因为方程(x-2)x-1a=0的两个根分别是2,1a, 所以当0<a<12时,2<1a,
k1-k2或x>1-
1-k2 k
;
当k=-1时,不等式的解集为{x|x≠-1};
当k<-1时,不等式的解集为R.
解/题/感/悟(小提示,大智慧) 对于含参二次不等式,应注意参数出现的位置.二次项系数出现参数,需要讨 论系数和零的大小;如果可以通过因式分解法求得两个根,根里面含参,那么就需 要对根的大小关系进行讨论;如不能因式分解求根,则需要对判别式进行讨论.总 之我们一定要关注参数出现的位置,往往既要讨论二次项系数,同时还需要讨论根 的大小!
(1)解析:由不等式x(1-2x)>0,得不等式x(2x-1)<0,解得0<x<12. (2)解析:当a<0时,不等式(ax-1)(x-2)<0可化为 x-1a (x-2)>0,解得x>2或 x<1a;当a=0时,不等式(ax-1)(x-2)<0可化为x-2>0,解得x>2.
一元二次不等式的解法PPT优秀课件
2 2 2
一元二次方程 x x20 ,三者之间有什 关系
想一想
2
f x x x 2
2
x x20 x2 x 2 0
y
在初中学习二次函数时, 我们曾解决过这样的问题: 对二次函数y=x2-x-2, 当x为何值时,y=0?
-1
o
2
x
当x为何值时,y<0?
当x为何值时,y>0?
2
•
巩固练习
判断下列式子是不是一元二次不等式?
1 (1) x 5 x
( 2 ) xy 3 0
2
4 )x 3 x x ( x 1 ) ( 3 ) ( x 2 )( x 3 ) 0(
寻觅方法,解:
代数方法:
x x 2 0
2
x 2 x 1 0
3.2一元二次不等式的解法
现在有一家商店对某种成本价为650元的电视机有一个促销活 商品促销
动:
买一台电视机,单价950元; 买两台,单价是900元; 依次类推,每多买一台,单价降低50元。 要使商店保持每次交易赢利大于200元,
问每人最多买几台?
一元二次不等式
一个整式不等式,若只含有一个未知数,并且未知数
你还能写出多少个?
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]
一元二次方程 x x20 ,三者之间有什 关系
想一想
2
f x x x 2
2
x x20 x2 x 2 0
y
在初中学习二次函数时, 我们曾解决过这样的问题: 对二次函数y=x2-x-2, 当x为何值时,y=0?
-1
o
2
x
当x为何值时,y<0?
当x为何值时,y>0?
2
•
巩固练习
判断下列式子是不是一元二次不等式?
1 (1) x 5 x
( 2 ) xy 3 0
2
4 )x 3 x x ( x 1 ) ( 3 ) ( x 2 )( x 3 ) 0(
寻觅方法,解:
代数方法:
x x 2 0
2
x 2 x 1 0
3.2一元二次不等式的解法
现在有一家商店对某种成本价为650元的电视机有一个促销活 商品促销
动:
买一台电视机,单价950元; 买两台,单价是900元; 依次类推,每多买一台,单价降低50元。 要使商店保持每次交易赢利大于200元,
问每人最多买几台?
一元二次不等式
一个整式不等式,若只含有一个未知数,并且未知数
你还能写出多少个?
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]
含参数的一元二次不等式的解法PPT课件
二次项含有参数应如何求解?
第9页/共50页
考点
含参数的一元二次不等式
y
x1 O
x2 x
y
x1 O
x2 x
解不等式ax2 +(a-1)x-1>0(a R)
第10页/共50页
例3 解关于 x 的不等式: 例1
2x kx k 0 2 若不等式ax2+bx+2>0的解集为
的值为( )
{ x则a+1b x 1 },
(3x-1)(x-6) 0
相对应方程(3x-1)(x-6)=0的根x1
=
1 3
,x2
=6
不等式的解集(1 ,6) 3
第2页/共50页
例1 解不等式x2 +(a-1)x-a>0(a>0)
这个不等式和前面那个不等式有什么不同的地方?
第3页/共50页
含参数的不等式的解法
对于含有参数的不等式,由于参数的取值范围不 同,其结果就不同,因此必须对参数进行讨论,即要 产生一个划分参数的标准。 一元一次不等式ax+b>0(<0) 参数划分标准: 一次项系数a>0,a=0,a<0 一元二次不等式ax2+bx+c>0(<0) 参数划分标准:
x1 2a, x2 3a
x | x 2a或x 3a
x | x 0
x | x 3a或x 2a
综上所述: a 0时,原不等式解集为:x | x 3a或x 2a
a 0时,原不等式解集为 x | x 0
a 0时,原不等式解集为:x | x 2a或x 3a
第8页/共50页
例2 解不等式ax2 +(a-1)x-1>0(a R)
; 当c<2时,不等式(x-2)(x-c)<0的解集为{x|c<x<2}
第9页/共50页
考点
含参数的一元二次不等式
y
x1 O
x2 x
y
x1 O
x2 x
解不等式ax2 +(a-1)x-1>0(a R)
第10页/共50页
例3 解关于 x 的不等式: 例1
2x kx k 0 2 若不等式ax2+bx+2>0的解集为
的值为( )
{ x则a+1b x 1 },
(3x-1)(x-6) 0
相对应方程(3x-1)(x-6)=0的根x1
=
1 3
,x2
=6
不等式的解集(1 ,6) 3
第2页/共50页
例1 解不等式x2 +(a-1)x-a>0(a>0)
这个不等式和前面那个不等式有什么不同的地方?
第3页/共50页
含参数的不等式的解法
对于含有参数的不等式,由于参数的取值范围不 同,其结果就不同,因此必须对参数进行讨论,即要 产生一个划分参数的标准。 一元一次不等式ax+b>0(<0) 参数划分标准: 一次项系数a>0,a=0,a<0 一元二次不等式ax2+bx+c>0(<0) 参数划分标准:
x1 2a, x2 3a
x | x 2a或x 3a
x | x 0
x | x 3a或x 2a
综上所述: a 0时,原不等式解集为:x | x 3a或x 2a
a 0时,原不等式解集为 x | x 0
a 0时,原不等式解集为:x | x 2a或x 3a
第8页/共50页
例2 解不等式ax2 +(a-1)x-1>0(a R)
; 当c<2时,不等式(x-2)(x-c)<0的解集为{x|c<x<2}
《一元二次不等式及其解法》示范公开课教学PPT课件pptx
定义:含有一个未知数且未知数最高次数为2次的不等式叫做一元二次不等式。
重要性:一元二次不等式在数学中有着重要的地位,是解决许多实际问题的基础。 表达式:一般地,一元二次不等式可以表示为ax^2+bx+c>0或ax^2+bx+c<0,其 中a、b、c是常数且a≠0。
解法:求解一元二次不等式可以通过配方法、图像法、公式法等多种方法进行求解。
添加 标题
化学:在化学中,一元二次不等式可以用来描 述化学反应过程中各物质的浓度变化情况,也 可以用来进行化学分析、计算等。
一元二次不等式的解法
一元二次不等式的解法公式及步骤
公式:$ax^{2} + bx + c = 0$, 其中a、b、c为系数,$\Delta = b^{2} - 4ac$
步骤2:判断不等式的解集
一元二次不等式在数学中的地位
概念:一元二次 不等式是指形如 ax^2+bx+c>0
或 ax^2+bx+c<0
的不等式
重要性:一元二 次不等式是中学 数学中一个重要 的内容,它与一 元二次方程、二 次函数等有着密
切的联系
解题思路:通过 观察和计算,确 定不等式的解集, 掌握解一元二次
不等式的方法
实际应用:一元 二次不等式在实 际生活中有着广 泛的应用,如环 境保护、金融投
题目难度适中,适合不同层次的学 生
覆盖知识点全面,体现一元二次不 等式的重点和难点
添加标题
添加标题
题量适当,避免过多或过少
添加标题
添加标题
题目类型多样,包括填空题、选择 题、解答题等
学生自主练习与思考
练习一元二次不等 式,掌握解题步骤
重要性:一元二次不等式在数学中有着重要的地位,是解决许多实际问题的基础。 表达式:一般地,一元二次不等式可以表示为ax^2+bx+c>0或ax^2+bx+c<0,其 中a、b、c是常数且a≠0。
解法:求解一元二次不等式可以通过配方法、图像法、公式法等多种方法进行求解。
添加 标题
化学:在化学中,一元二次不等式可以用来描 述化学反应过程中各物质的浓度变化情况,也 可以用来进行化学分析、计算等。
一元二次不等式的解法
一元二次不等式的解法公式及步骤
公式:$ax^{2} + bx + c = 0$, 其中a、b、c为系数,$\Delta = b^{2} - 4ac$
步骤2:判断不等式的解集
一元二次不等式在数学中的地位
概念:一元二次 不等式是指形如 ax^2+bx+c>0
或 ax^2+bx+c<0
的不等式
重要性:一元二 次不等式是中学 数学中一个重要 的内容,它与一 元二次方程、二 次函数等有着密
切的联系
解题思路:通过 观察和计算,确 定不等式的解集, 掌握解一元二次
不等式的方法
实际应用:一元 二次不等式在实 际生活中有着广 泛的应用,如环 境保护、金融投
题目难度适中,适合不同层次的学 生
覆盖知识点全面,体现一元二次不 等式的重点和难点
添加标题
添加标题
题量适当,避免过多或过少
添加标题
添加标题
题目类型多样,包括填空题、选择 题、解答题等
学生自主练习与思考
练习一元二次不等 式,掌握解题步骤
一元二次不等式解法——课件PPT
( 5) 9x 6x 1 0
2
1 ( 6)x (a ) x 1 0(a 0, a R) a
2
总结解一元二次不等式的步骤:
第一步: 将二次项系数化正 第二步: 求 b 2 4ac ,判断
0 求出对称轴,然后结合图像
0 利用因式分解或求根公式求根,然后结合图像
一元一次不等式的解集
ax b 0
b x x a
思考:
函数
函数、方程、 不等式 三者关系?
方程
方程的根
不等式
不等式的端点
不等式大于0的解 不等式小于0的解
图象与x轴交点横坐标
x轴上方图象对应横坐标 x轴下方图象对应横坐标
一元二次不等式如何解呢?
一元二次不等式解集表
与x轴交 点横坐标
ax b 0
b x x a
一元一次不等式的解集
ax b 0
b x x a
b x x a
方程的根 b x x a 不等式解集 b 端点 x x a
∆=b2-4ac 二次函数 y=ax2+bx+c(a>0) 的图象 方程x2+bx+c=0 的根 △ >0 △ =0 △ <0
x1
x2
x1 ( x2 ) 有两个相 等实根 x1=x2 x≠x1 无解 无实根
有两个不等实 根 x1,x2(x1<x2) ax2+bx+c>0(a>0) x<x 或x>x 1 2 的解集 ax2+bx+c<0(a>0) 的解集 x1<x<x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[答案]
(1)A
23 (2){x|3<x<4}
[分析] 此类不等式求解,要先移项通分化为gfxx>0(或 gfxx<0)的形式再化为整式不等式.转化必须保持等价.
[解析] (1)x-x 1-2≥0∴-xx-1≥0, ∴xx≠x+0 1≤0 ,∴-1≤x<0. (2)原不等式化为:64xx- -43<0, ∴(6x-4)(4x-3)<0,∴23<x<34, ∴原不等式的解集为{x|23<x<34}.
(3)数轴上方的曲线对应区间就是 f(x)>0 的解集;数轴下 方的曲线对应区间就是 f(x)<0 的解集.
(4)如果分解因式后有重根,则“奇过偶不过”,即乘方指 数是奇数的画线时穿过 x 轴,乘方指数是偶数的,画线时到此 根对应 x 轴上点后返回,不穿过去.
3.含根号的不等式求解一般用平方法,但平方时一定要 注意符合不等式性质的要求.
)
A.{x|x<-2,或 0<x<3}
B.{x|-2<x<2,或 x>3}
C.{x|x<-2,或 x>0}
D.{x|x<0,或 x<3}
[答案] A
[分析] 原不等式左端是分式,右端为 0,属于AB<0 型,可
等价转化为 AB<0,即 x(x+2)(x-3)<0,依次令 x=0,x+2=0,
x-3=0 得,x1=0,x2=-2,x3=3,将数轴按此三数对应点
∴(2)当 a 0时,原不等式变形为: x 2x 3 0
∴当 a 0时,原不等式解集为: x | 2 x 3
综上所述: a 0时,原不等式解集为:x | x 2或x 3
a 0时,原不等式解集为:x | 2 x 3
(4)由条件知,a=-2,∴不等式 ax2+5x+7>0, 即-2x2+5x+7>0,∴2x2-5x-7<0, ∴-1<x<72.
1.一元分式不等式一般要转化为整式不等式求解. gfxx>0⇔f(x)·g(x)>0; gfxx≥0⇔fgxx·≠gx0≥0 ⇔f(x)·g(x)>0 或 fx=0 gx≠0 .
.精品课件.
22
解关于x的不等式:
(1)x2 (1 a)x a 0
(2)x2 (a 2)x 2a 0
(3)x2 (a 1)x 1 0 a
(4)mx2 2(m 1)x 4 0
(5)ax2 ax 1 0.
含参数的不等式的解法
对于含有参数的不等式,由于参数的 取值范围不同,其结果就不同,因此必须 对参数进行讨论,那么如何讨论呢?
不等式32x--x1≥1 的解集是(
)
A.{x|34≤x≤2}
B.{x|x≤34或 x>2}
C.{x|34≤x<2}
D.{x|x<2}
[答案] C
[解析] 不等式32x--x1≥1,化为:42x--x3≥0, ∴34≤x<2.
命题方向 简单高次不等式解法
*[例 2] 不等式xxx-+32<0 的解集为(
4.含参数的不等式要弄清何种情况下需要讨论.
命题方向 分式不等式的解法
[例 1] (1)(2010~2011·鹿邑三高高二期中)不等式x-x 1 ≥2 的解集为( )
A.[-1,0) B.[-1,+∞) C.(-∞,-1] D.(-∞,-1]∪(0,+∞)
(2)不等式23x--41x>1 的解集为________.
分成四段,令 y=x(x+2)(x-3)列出 x 与 y 的对应值如表:
(-∞,- -
(3,+
x
(-2,0) 0 (0,3) 3
2) 2
∞)
y - 0 + 0-0 +
故不等式 x(x+2)(x-3)<0 的解集为(-∞,-2)∪(0,3). [解析] 原不等式等价于 x(x+2)(x-3)<0. 结合数轴穿根法(如图)可知:
x<-2 或 0<x<3.
不等式 2x3-3x2+x>0 的解集为________. [答案] {x|0<x<12或 x>1}
[解析] 不等式化为 x(x-1)(2x-1)>0, 方程 x(x-1)(2x-1)=0 的三个根为 x1=0,x2=1,x3=12, 如图
∴不等式的解集为{x|0<x&l根法). (1)将不等式通过移项分解因式化为 f(x)=a(x-x1)(x- x2)…(x-xn)>0(或<0)的形式,其中 xk(k=1,2……n)是方程的 n 个不同的根,且每个因式中 x 的系数为 1.
(2)将 n 个不同的根标在数轴上,然后穿线.穿线时从轴上 最右边一个根开始,由 x 轴上方向下穿过第一个根然后向左依 次自下而上,自上而下画一条曲线连续穿过 n 个根.
解答下列问题: (1)不等式x-x 1>1 的解集是________. (2)不等式 x2+|x|-2>0 的解集是________. (3)不等式 x- x+1≥1 的解集为________. (4)x-x a<0 的解集是{x|-2<x<0},则不等式 ax2+5x+7>0
的解集为________.
例题讲解
例1 解关于x 的不等式 ax2 5ax 6a 0a 0
分析: 因为 a 0 且 0 ,所以我们只要讨论二次项系
数的正负.
解: a(x2 5x 6) ax 2x 3 0 ∴(1)当 a 0时,原不等式变形为: x 2x 3 0
∴当 a 0时,原不等式解集为: x | x 2或x 3
解法二:化为xx2≥+0x-2>0 (Ⅰ) 或x2-x-2>0 (Ⅱ)
x<0 由(Ⅰ)得,x>1;由(Ⅱ)得,x<-1. ∴原不等式的解集为{x|x<-1 或 x>1}.
(3)将不等式变形为 x-1≥ x+1,① 显然xx-+11≥≥00 ,∴x≥1, 在此条件下,将不等式①两边平方得 x2-2x+1≥x+1,∴ x2-3x≥0,∴x≤0 或 x≥3, 又 x≥1,∴x≥3.
[答案] (1){x|x>1} (2){x<-1 或 x>1} (3){x|x≥3} (4){x|-1<x<72}
[解析]
x (1)x-1>1
化为x-x 1-1>0,
∴x-1 1>0,∴x>1.
(2)解法一:不等式化为|x|2+|x|-2>0,
∴|x|≥0,∴|x|>1,∴x<-1 或 x>1.