极限求法总结
求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
高等数学极限求法总结

04 极限求法之洛必达法则
洛必达法则基本思想
利用导数求解极限
在一定条件下,通过分子分母分别求导的方式,简化极限运 算。
转化无穷大比无穷大型
对于0/0型或∞/∞型的极限,通过洛必达法则可转化为其他 类型进行求解。
适用条件及典型例题
适用条件
适用于0/0型和∞/∞型的极限,且分子分母 在求导后极限存在或为无穷大。
05 极限求法之泰勒公式法
泰勒公式基本概念及展开式
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个在闭区间上可导的函数展开成多项式 的形式。
泰勒展开式
f(x) = f(a) + f'(a)(x-a) + f''(a)/2! * (x-a)^2 + ... + f^n(a)/n! * (x-a)^n + Rn(x),其 中Rn(x)为余项。
适用于连续函数情况
连续函数定义
若函数在某点的极限值等于该点的函 数值,则称函数在该点连续。对于连 续函数,我们可以直接将其自变量代 入函数表达式来求解极限。
适用范围
直接代入法适用于一元和多元函数的 极限求解,但要求函数在求极限的点 是连续的。
注意事项及典型例题
注意事项:在使用直接代入 法求极限时,需要注意以下
该方法不需要复杂的数学变换和技巧,易于掌握。
缺点
直接代入法仅适用于连续函数的极限问题,对于非连续函 数或复杂函数可能无法求解。
在某些情况下,即使函数在求极限的点连续,直接代入也 可能导致分母为零等无法计算的情况,需要结合其他方法 进行处理。
03 极限求法之因式分解法
适用于多项式函数情况
0/0型极限
求函数极限的八种方法

求函数极限的八种方法
常见的求函数极限的方法有八种:
1.定义域内求函数极限:在函数的定义域内直接计算函数值,即可得到函数的极限值。
2.不存在极限:若函数在某一点的极限不存在,则在该点处函数没有极限。
3.左右极限存在且相等:若函数在某一点处的左右极限都存在且相等,则在该点处函数的
极限等于左右极限的值。
4.不等式法求极限:通过不等式将函数的上下界确定,从而确定函数的极限值。
5.函数的单调性求极限:通过函数的单调性可以确定函数在某一点处的极限值。
6.函数连续性求极限:通过函数的连续性可以确定函数在某一点处的极限值。
7.函数导数存在求极限:通过函数的导数存在性可以确定函数在某一点处的极限值。
8.无穷小量法求极限:通过考虑无穷小量对函数值的影响,可以确定函数在某一点处的极
限值。
这八种方法都可以用来求解函数的极限,但是在实际应用中,不同的方法适用于不同的情况。
例如,当函数的定义域内有足够的数据时,定义域内求函数极限是最直接的方法;如果函数在某一点处的左右极限都存在且相等,则可以直接使用左右极限的值作为函数在该点处的极限值;如果函数有明显的单调性或连续性,则可以利用这些性质来求解函数的极限;如果函数的导数存在,则可以利用导数的性质来求解函数的极限。
总之,求函数极限有许多方法,选择哪种方法取决于函数的性质和特点。
在实际应用中,应该根据函数的具体情况选择适当的方法,以得到最准确的结果。
16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
求极限的方法

求极限的方法在数学中,求极限是一种重要的技巧,用于分析函数在某个点的行为。
下面介绍几种常见的求极限的方法。
1. 代入法:当函数在某个点处存在有限的定义时,可以直接将该点的值代入函数中得到极限值。
例如,求函数f(x) = 2x在x=3处的极限,可以将x=3代入函数中,得到f(3) = 2 * 3 = 6。
2. 因式分解法:当函数可以进行因式分解时,可以利用因式分解的性质来求解极限。
例如,求函数g(x) = (x^2 - 4)/(x - 2)在x = 2处的极限,可以先进行因式分解得到g(x) = (x + 2),然后将x = 2代入函数中,得到g(2) = 2 + 2 = 4。
3. 夹逼定理:当函数的极限难以直接求解时,可以利用夹逼定理来求解。
夹逼定理的核心思想是找到两个函数,它们的极限分别趋近于所求极限,然后利用夹逼定理来得到所求极限的值。
例如,求函数h(x) = sin(x)/x在x = 0处的极限,可以通过夹逼定理,将h(x)夹在函数i(x) = 1和函数j(x) = x之间,显然,i(x)和j(x)的极限分别为1和0,因此根据夹逼定理,h(x)的极限为1。
4. 泰勒展开法:当函数的极限无法通过以上方法求解时,可以利用泰勒展开来近似计算极限。
泰勒展开是将函数在某一点处展开成无穷项幂级数的形式,利用一定数量的项来近似原函数。
例如,求函数k(x) = e^x在x = 0处的极限,可以利用泰勒展开公式e^x = 1 + x + x^2/2! + x^3/3! + ...,将x = 0代入泰勒展开公式中,得到k(0) = e^0 = 1。
以上是几种常见的求极限的方法,根据具体问题的不同,可以选用不同的方法来求解极限。
求极限的方法总结

求极限的方法总结求极限是数学分析中的一个重要概念,用于描述函数在某一点的变化趋势,包括函数趋于无穷大、无穷小、某一常数以及其他特殊情况等。
在解题过程中,需要灵活运用各种极限的计算方法,掌握不同类型极限的求解技巧。
下面将对常见极限的求解方法进行总结。
一、几种常见的极限类型1. 无穷大与无穷小极限当自变量趋于无穷大或无穷小时,函数的极限值称为无穷大或无穷小极限。
在计算过程中,可以利用以下方法求解:(1)使用等价无穷小替换法,将复杂的函数替换为更简单的无穷小,从而求出极限;(2)利用夹逼准则,通过找到两个函数夹住待求函数,确定其极限范围;(3)使用洛必达法则,计算函数的导数与求导后函数的极限,进而求得原函数的极限。
2. 常数极限当自变量趋于某一常数时,函数的极限称为常数极限。
常见的求解方法包括:(1)直接计算法,将自变量带入表达式中,求解对应的极限值;(2)利用函数的连续性,根据定义进行计算;(3)使用复合函数的性质,将函数分解为多个部分,然后计算各部分的极限。
3. 极限的两侧性质当自变量趋于某一点的左右两侧时,函数的极限可能存在不同的值。
这时可根据函数的性质和定义来判断其左右极限是否相等,常用的方法有:(1)利用函数的连续性,判断函数在特定点处是否连续,以及左右极限是否相等;(2)使用夹逼准则,确定左右极限的取值范围。
4. 极限存在性的判定在有些情况下,函数的极限可能不存在。
判断函数是否存在极限的方法有多种:(1)使用保号性质,判断是否存在有界变量和无穷小数列;(2)利用函数的性质,如奇偶性、周期性等,判断函数在某一点的趋势。
二、极限的计算方法1.常用求极限的基本运算法则(1)常数运算法则:如果f(x)和g(x)的极限都存在,那么常数c * f(x)和f(x) ± g(x)的极限也存在,并且满足以下关系:lim(c * f(x)) = c * lim(f(x)),lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))。
极限的求法总结

8.分子(母)有理化求极限
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
例 求极限 lim ( x2 + 3 − x2 +1) x→+
lim (
x→+
x2 + 3 −
x2 +1) = lim ( x2 + 3 − x2 +1)( x2 + 3 +
x→+
x2 + 3 + x2 +1
= lim
− −
1) 1)
= lim x + 1 = 1 . x→1 x + 3 2
(消去零因子法)
4.无穷小因子分出法求极限
例
求
lim
x→
2x3 7x3
+ +
3x2 4x2
+ −
5 1
.
解
x
→
时,
分子,分母的极限都是无穷大.(
型
)
先用x3去除分子分母,分出无穷小,再求极限.
35
lim
x→
2x3 7x3
+ +
练习4
lim
x→
(2x
+1)4 (x −1)78 (x +1)82
=
lim
x→
x4
(2
+
1 x
)4
x 78
(1 −
x82
(1 +
)1 82
x
1 x
)78
= 24
= 16
5.先变形再求极限
(利用求和化简,拆项技巧,合并化简等)
例
求
1
lim(
极限求法总结PDF打印版

9.
lim(tan x) cos x −sin x
x→
4
x1 0 , xn +1 = xn + (n = 1, 2,3, ) 例 设 a0 , 2 x
n
1
a
(1)证明
lim xn 存在; (2)求 lim xn . n →+ n →+
解: (1) xn+1 = xn + xn = a 0 xn a 2 xn xn
无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小量,然后再求极限.
2 x 2 + 5x + 1 . x →1 x 2 − 4 x − 8 2n + 1 . 练习2 求 lim n → n2 + n
练习1 求 lim
练习3 练习4
lim
(2 x − 3) 20 (3x + 2) 30 x → (2 x + 1) 50
2
练习 1
1 lim 1 − 2 x →+ x
x
2 xlim →+
x + 2a = 8 ,求 x−a
a
2012年数学三考研试题 (第二答题填空题第9小题)
1
12. 应用数列的单调有界收敛准则求极限
【分析】一般利用单调增加有上界或单调减少有 下界数列必有极限的准则来证明数列极限的存在。
例:求极限 lim x →0
x ln(1 + x) 1 − cos x
解 lim x →0
x ln(1 + x) xx = lim =2 x →0 1 2 1 − cos x x 2
求极限的方法总结

求极限的方法总结1.约去零因子求极限例1:求极限11lim41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】4)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x 习题:233lim 9x x x →-- 22121lim 1x x x x →-+-2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的......⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 011011习题 3232342lim 753x x x x x →∞+++-n 1+13lim 3n n n n n +→∞++(-5)(-5)nn nn n 323)1(lim++-∞→3.分子(母)有理化求极限例1:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x132lim22=+++=+∞→x x x例2:求极限30sin 1tan 1limx xx x +-+→【解】x x x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键习题:lim1x x →∞+1213lim1--+→x x x4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值...................) 22034lim 2x x x x →+++ 【其实很简单的】5.利用无穷小与无穷大的关系求极限例题3x → 【给我最多的感觉,就是:当取极限时,分子不为0而分母为0时 就取倒数!】6. 有界函数与无穷小的乘积为无穷小例题sin limx x x →∞ , arctan limx xx →∞7.用等价无穷小量代换求极限【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x-,()abx ax x x b~11,21~cos 12-+-;(2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。
高数求极限的方法总结

高数求极限的方法总结
1、利用定义求极限。
2、利用柯西准则来求。
柯西准则:必须并使{xn}存有音速的充要条件官任给ε>0,存有自然数n,使当n>n 时,对于
任意的自然数m有|xn-xm|<ε.
3、利用音速的运算性质及未知的音速xi。
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即为:夹挤定理。
5、利用变量替换求极限。
比如lim (x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/
6、利用两个重要极限来求极限。
(1)lim sinx/x=1
x->0
(2)lim (1+1/n)^n=e
n->∞
7、利用单调有界必存有音速xi。
8、利用函数连续得性质求极限。
9、用洛必达法则谋,这就是改得最少的。
10、用泰勒公式来求,这用得也很经常。
高等数学中求极限方法总结

高等数学中求极限方法总结高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。
一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。
故在这里总结了10种常用的求极限的方法并举例说明。
1、利用等价无穷小的转化求极限例:求极限x x x x 1cossin lim 20→。
解:x x x x 1cossin lim 20→x x x x 1cos lim 20→=xx x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~sin ,~3x x x x x tgx x tgx −−。
2、罗比达法则例:求极限∫→x x tdtx 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 21211lim 2arctan lim 200=+==→→x x t x x 例:求极限⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11−−−=⎟⎠⎞⎜⎝⎛−−→→21111lim 1ln 11lim 2211=+=−+−=→→xx x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。
罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)3、利用2个重要极限求极限例:求极限2)11(lim 22x x x x +−∞→解:211(lim 22x x x x +−∞→2)121(lim 2x x x +−+=∞→12212222])121[(lim +−−+∞→+−+=x x x x x 12lim 22+−∞→=x x x e 2−=e 。
求极限方法总结

求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
极限方法总结

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式
2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和
5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)
必须是 0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
落笔他 法则分为3中情况
1 0比0 无穷比无穷 时候 直接用
2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。
为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面
首先 对 极限的总结 如下
极限的求解方法总结

极限的求解方法总结极限是数学中的重要概念,用来描述函数在其中一点逼近一些特定值的过程。
求解极限的方法有很多种,常见的方法包括直接代入法、夹逼准则、洛必达法则、级数展开法等。
下面将对这些方法进行总结。
1. 直接代入法:对于一些简单的极限问题,可以直接通过将自变量的值代入函数中计算得到极限的值。
例如,对于极限lim(x->2) (3x-1),可以直接将x的值替换为2,计算出极限的值为52. 夹逼准则:夹逼准则是一种常用的证明极限存在的方法。
当一个函数f(x)在特定点x0的左右两侧有两个函数g(x)和h(x)夹住时,即g(x)<=f(x)<=h(x),并且lim(x->x0) g(x) = lim(x->x0) h(x) = L,那么就可以得出lim(x->x0) f(x) = L。
这个准则同时适用于极限为实数和无穷大的情况。
3. 洛必达法则:洛必达法则是一种求解极限的常用方法,特别适用于遇到0/0或∞/∞的不定型。
洛必达法则的核心思想是利用导数的性质来简化极限的计算。
如果一个极限可以用洛必达法则求解,首先计算函数f(x)和g(x)的导数,然后计算导数的极限lim(x->x0) f'(x) / g'(x),如果此极限存在,且不为无穷大,则lim(x->x0) f(x) / g(x) = lim(x->x0) f'(x) / g'(x)。
4.级数展开法:级数展开法是一种将复杂的函数用简单的级数来逼近的方法,常用于求解无穷小量的极限。
通过将函数展开成无穷级数的形式,并且当无穷级数收敛时,可以认为级数展开是原函数的近似解,在特定范围内与原函数相等。
通过计算级数的部分和求出极限的值。
以上方法并不是独立使用的,有些问题需要结合多种方法才能求解。
在实际应用中,根据具体的问题特点,选择合适的方法进行求解。
总之,求解极限是数学中的重要任务之一,需要掌握不同的求解方法,并根据具体情况选择合适的方法。
求极限方法总结

求极限方法总结求极限是微积分的重要内容之一,需要通过特定的方法来计算。
下面对常见的求极限方法进行总结。
1. 代入法:将极限中的变量直接代入函数中,求出函数在该点处的函数值,作为极限的近似值。
这种方法适用于简单的极限。
2. 分子有理化法:当极限的分子、分母含有根式时,可以通过有理化的方法,将根式分子分母有理化,然后进行化简,化简后求极限。
这种方法适用于分子分母含有根式的情况。
3. 夹逼法:当函数的极限不存在或难以直接求出时,可以通过构造一个上界函数和下界函数,使得它们的极限都存在且相等,且夹住函数的极限。
然后通过夹逼原理,求出该极限。
这种方法适用于极限存在且难以直接求出的情况。
4. L'Hopital法则:当极限为形式为“∞/∞”、“0/0”、“1^∞”、“0^0”等无穷型与无穷型的不定式时,可以通过求导的方法,将其转化为可直接计算的形式。
这种方法适用于无穷型与无穷型的不定式。
5. 推广L'Hopital法则:当极限为形式为“∞*0”、“∞-∞”等不定型不定式时,可以通过引入参数,将其转化为可直接计算的形式。
这种方法适用于不定型不定式。
6. 换元法:当极限为特殊函数形式时,可以通过换元的方法,将其转化为可直接计算的形式。
比如将极限中的自变量换成1/自变量或sin(1/自变量)等函数形式。
这种方法适用于特殊函数形式的极限。
7. Taylor展开法:当极限为函数值在某点的展开式时,可以通过泰勒展开的方法,将其转化为可直接计算的形式。
这种方法适用于函数值在某点的展开式。
8. 综合运用:对于复杂的极限问题,可以综合运用以上方法,逐步化简。
先运用代入法、分子有理化法,再运用夹逼法、L'Hopital法则等,逐步逼近极限的值。
在实际应用中,根据题目的要求和已知条件,选择适合的方法来求解极限。
对于复杂的问题,可以采用逐步化简的方法,一步步逼近极限的值。
同时,对于无法通过常见方法求解的特殊问题,还可以借助数值计算的方法,利用计算机进行近似计算。
极限求法总结

极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限6.利用无穷小的性质求极限7、无穷小量分出法求极限8、消去零因子法求极限9、利用拆项法技巧求极限10、换元法求极限11、利用夹逼准则求极限[3]12、利用中值定理求极限13、利用罗必塔法则求极限14、利用定积分求和式的极限15、利用泰勒展开式求极限16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。
例:lim f x A的ε-δ 定义是指:ε>0,δ=δ( x0,ε) >0,0< |x- x0| x x<δ |f(x)-A| <ε 为了求δ 可先对x0 的邻域半径适当限制,如然后适当放大|f(x)-A |≤φ (x) ( 必然保证φ (x) 为无穷小) ,此时往往要用含绝对值的不|x+a|=|(x- x0)+( x0 +a)| ≤|x- x0|+| x0+a| <|x0 +a|+δ1 域|x+a|=|(x- x0)+( x0 +a)| ≥| x0 +a|-|x- x0|>| x0 +a|- δ1 从φ(x)<δ 2,求出δ 2后,取δ=min( δ1,δ2) ,当0<|x- x0 | <δ 时,就有|f(x)-A| <ε.例:设lim x n a 则有 lim x 1x2...xna.n n n证明:因为lim x a , 对,N1N1() ,当n N1 时,x n -a于是当n 2n N1时,x1 x2 (x)nax1 x2 (x)nnan n其中 A x1 a x2 a x N1 是一个定数再由A,n2解得 n 2A,故取N max N1, 2A 当n N时,x1 x2 ... x n +n 2 22、直接代入法求极限适用于分子、分母的极限不同时为零或不同时为例 1.求分析由于所以采用直接代入法解原式=3、利用函数的连续性求极限定理[2]:一切连续函数在其定义区间内的点处都连续,即如果x0是函数f(x)的定义区间内的一点,则有 lim f(x) f (x0)。
求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明:1223lim 22=-+-→x x x x 证: 由244122322-+-=--+-x x x x x x()2222-=--=x x x0>∀ε取εδ= 则当δ<-<20x 时,就有ε<--+-12232x x x由函数极限δε-定义有:1223lim 22=-+-→x x x x 2、利用极限的四则运算性质若A x f x x =→)(lim 0B x g x x =→)(lim 0(I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0(II)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(III)若 B ≠0 则:BAx g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000(IV )cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)上述性质对于时也同样成立-∞→+∞→∞→x x x ,,例:求 453lim 22+++→x x x x解: 453lim 22+++→x x x x =254252322=++⋅+3、约去零因式(此法适用于型时0,0x x →例: 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x xx x x x x x=)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x=2lim-→x 735-=+-x x4、通分法(适用于∞-∞型) 例: 求 )2144(lim 22xx x ---→解: 原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:(I )0)(lim 0=→x f x x(II)M x g ≤)( (M 为正整数)则:0)()(lim 0=→x f x g x x例: 求 xx x 1sinlim⋅→ 解: 由 0lim=→x x 而 11sin≤x故 原式 =01sinlim=⋅→xx x6、利用无穷小量与无穷大量的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限 6. 利用无穷小的性质求极限 7、无穷小量分出法求极限 8、消去零因子法求极限 9、 利用拆项法技巧求极限 10、换元法求极限11、利用夹逼准则求极限[3] 12、利用中值定理求极限 13、 利用罗必塔法则求极限 14、利用定积分求和式的极限 15、利用泰勒展开式求极限 16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。
例:()0lim x x f x A →=的ε-δ 定义是指:∀ε>0, ∃δ=δ(0x ,ε)>0,0<|x-0x |<δ⇒|f(x)-A|<ε 为了求δ 可先对0x 的邻域半径适当限制, 如然后适当放大|f(x)-A |≤φ(x) (必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式:|x+a |=|(x-0x )+(0x +a)|≤|x-0x |+|0x +a|<|0x +a |+δ1 域|x+a|=|(x-0x )+(0x +a)|≥|0x +a|-|x-0x |>|0x +a|-δ1 从φ(x)<δ2,求出δ2后,取δ=min(δ1,δ2),当0<|x-0x |<δ 时,就有|f(x)-A|<ε.例:设lim n n x a →∞=则有12 (i)nn x x x a n→∞++=.证明:因为lim n n x a →∞=,对110()N N εε∀>∃=,,当1n N >时,-2n x a ε∣∣<于是当1n N >时,1212......n n x x x x x x na a n n+++∣+++-∣∣-∣=0ε<<1其中112N A x a x a x =∣-∣+∣-∣+∣-α∣是一个定数,再由2A n ε<,解得2An ε>,故取12max ,A N N ε⎧⎫⎡⎤=⎨⎬⎢⎥⎣⎦⎩⎭12...+=22n x x x n N n εεε+++>-α<当时,。
2、 直接代入法求极限适用于分子、分母的极限不同时为零或不同时为例 1. 求. 分析由于,所以采用直接代入法.解 原式=3、利用函数的连续性求极限定理[2]:一切连续函数在其定义区间内的点处都连续,即如果0x 是函数)(x f 的定义区间内的一点,则有)()(lim 00x f x f x x =→。
一切初等函数在其定义域内都是连续的,如果()f x 是初等函数,0x 是其定义域内一点,则求极限0lim ()x x f x →时,可把0x 代入()f x 中计算出函数值,即lim ()x x f x →=0()f x 。
对于连续函数的复合函数有这样的定理:若()u x φ=在0x 连续且00()u x φ=,()y f u =在0u 处连续,则复合函数[()]y f x φ=在0x 处也连续,从而lim o x xof x f x φφ→[()]=[()]或lim lim x xox xof x f x φφ→→[()]=()。
例:2lim ln sin x x π→解:复合函数=2x π在处是连续的,即有2lim ln sin =ln sin ln102x x ππ→==4、利用单调有界原理求极限这种方法是利用定理:单调有界数列必有极限,先判断极限存在,进而求极限。
例:求lim ...n a a a →∞+解:令...n x a a a =+++,则1n n x a x +=+, a a a +>,即1n n x x +>,所以数列{}n x 单调递增,由单调有界定理知,lim ...n a a a →∞+有限,并设为A ,1lim lim n nn n x a x +→∞→∞=+,即114,2aA a A +++=A=,所以114lim (2)n aa a a →∞+++=。
5、利用极限的四则运算性质求极限定理[1]:若极限0lim ()x x f x →和0lim ()x x g x →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[]0lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±②[]0lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→⋅=⋅又若c ≠0,则)()(x g x f 在0x x →时也存在,且有000lim ()()lim ()lim ()x xx x x x f x f x g x g x →→→=. 利用该种方法求极限方法简单,但要注意条件是每项或每个因子极限存在,一般情况所给的变量都不满足这个条件, 例如出现00,∞∞,∞-∞ 等情况,都不能直接运用四则运算法则,必须对变量进行变形。
变形时经常用到因式分解、有理化的运算以及三角函数的有关公式。
总的说来,就是函数的和、差、积、商的极限等于函数极限的和、差、积、商。
例:求3131lim 11x x x→---()解:由于当→x 1时,331x -与11x-的极限都不存在,故不能利用“极限的和等于和的极限”这一法则,先可进行化简23322313(1)(1)(2)(2)=111-(1)(1)(1)x x x x x x x x x x x x x -++-++-==---++++这样得到的新函数当1x →时,分子分母都有极限且分母的极限不为零,可用商的极限法则,即321131(2)lim =lim =111(1)x x x x x x x →→+---++()例2. 求11lim2+-→x x x 。
解 11lim 2+-→x x x )1(lim )1(lim 22+-=→→x x x x 31=6. 利用无穷小的性质求极限我们知道在某一过程中无穷大量的倒数是无穷小量,有界变量乘无穷小是无穷小,对一些特殊的函数而言用其他方法很难求得,只能用这种方法来求。
例:求214-7lim 32x x x x →-+解:当时1x →,分母的极限为零,而分子的极限不为零,可先求处所给函数倒数的极限2132lim =04-7x x x x →-+,故214-7lim =32x x x x →∞-+。
例5. 求极限分析因为不存在,不能直接使用运算法则, 故必须先将函数进行恒等变形.解原式= (恒等变形)因为当时,, 即是当时的无穷小,而≤1, 即是有界函数,由无穷小的性质:有界函数乘无穷小仍是无穷小,得=0.7、无穷小量分出法求极限适用于分子、分母同时趋于,即型未定式例3.分析所给函数中,分子、分母当时的极限都不存在,所以不能直接应用法则.注意到当时,分子、分母同时趋于,首先将函数进行初等变形,即分子、分母同除的最高次幂,可将无穷小量分出来,然后再根据运算法则即可求出极限.为什么所给函数中,当时,分子、分母同时趋于呢?以当说明:因为,但是趋于的速度要比趋于的速度快,所以.不要认为仍是(因为有正负之分).解原式 (分子、分母同除)(运算法则)(当时,都趋于.无穷大的倒数是无穷小.)8、消去零因子法求极限适用于分子、分母的极限同时为0,即型未定式例4.分析所给两个函数中,分子、分母的极限均是0,不能直接使用法则四,故采用消去零因子法.解原式= (因式分解) =(约分消去零因子)=(应用法则)=9、 利用拆项法技巧求极限例6:))12)(12(15.313.11(lim +-+⋅⋅⋅++∞→n n n分析:由于))12)(12(1+-n n =)12112(1(21+--n n原式=21)1211(21)]121121()5131()311[(21lim lim =+-=+--+⋅⋅⋅+-+-∞→∞→n n n n n10、换元法求极限当一个函数的解析式比较复杂或不便于观察时,可采用换元的方法加以变形,使之简化易求。
例: 求11lim ln x x x x x→-解:令1x t x =- 则ln ln(1)x x t =+10011limlim lim 1ln(1)ln ln(1)x x t t x t t x x t t→→→-===++ 例7 求极限 .分析当时,分子、分母都趋于,不能直接应用法则,注意到,故可作变量替换.解原式 == (令,引进新的变量,将原来的关于的极限转化为的极限.)=.( 型,最高次幂在分母上)11、利用夹逼准则求极限[3]已知}{,}{,}{n n n z y x 为三个数列,且满足: (1) ),3,2,1(,Λ=≤≤n z x y n n n ; (2) a y n n =∞→lim ,a z n n =∞→lim 。
则极限∞→n n x lim 一定存在,且极限值也是a ,即a x n n =∞→lim 。
利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个同极限值的数列使得n n n y x z ≤≤。
例:222111 (1)2n x n n n n=++++++,求n x 的极限解:因为n x 单调递减,所以存在最大项和最小项2222111...n n x n n n n n n n n ≥+++=++++2222111 (111)1n n x n n n n ≤+++=++++则221n nnx n nn ≤≤++又因为22limlim1n n n n n n n→∞→∞=++,则lim 1n x x →∞=。
12、利用中值定理求极限(1)微分中值定理[1]:若函数()f x 满足①在[],a b 连续,②在(a ,b)可导; 则在(a ,b)内至少存在一点ε,使得'()()()f b f a f b a ε-=-。
例:求3sin(sin )sin limx x xx →-解:sin(sin )sin (sin )cos[(sin )]x x x x x x x θ-=-⋅⋅-+,(01)θ<< 3sin(sin )sin limx x xx →-=3(sin )cos[(sin )]limx x x x x x x θ→-⋅⋅-+=3cos 1cos 3limx x xθ→-⋅ =0sin 6limx xx→- =16-(2)积分中值定理[1]:设函数()f x 在闭区间[],a b 上连续; ()g x 在[],a b 上不变号且可积,则在[],a b 上至少有一点ξ使得()()()()()..,b baaf xg x f g x dx a b εε=≤≤⎰⎰例:求 40sin lim n n xdx π→∞⎰解:40sin lim n n xdx π→∞⎰=sin (0)4lim n n x πξ→∞⋅⋅- (0)4πξ≤≤=(sin )4lim nn πξ→∞=013、 利用罗必塔法则求极限定理[4]:假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满足:(1))(x f 和)(x g 的极限都是0或都是无穷大;(2))(x f 和)(x g 都可导,且)(x g 的导数不为0;(3))()(lim x g x f ''存在(或是无穷大);则极限)()(limx g x f 也一定存在,且等于)()(lim x g x f '',即)()(lim x g x f =)()(lim x g x f '' 。