人大附中初二(下)数学练习9《二次根式》
2023-2024学年北京市人大附中朝阳学校八年级下学期期中数学试题
![2023-2024学年北京市人大附中朝阳学校八年级下学期期中数学试题](https://img.taocdn.com/s3/m/d61d975617fc700abb68a98271fe910ef12dae2d.png)
2023-2024学年北京市人大附中朝阳学校八年级下学期期中数学试题1.下列二次根式中,最简二次根式是()A.B.C.D.2.下列四组线段中,可以构成直角三角形的是()A.1,1,1B.2,,3C.6,8,9D.5,12,133.关于的叙述正确的是()A.在数轴上不存在表示的点B.C.D.与最接近的整数是34.如图,已知点的坐标为,则线段的长为()A.B.C.D.35.小雨在参观故宫博物馆时,被太和殿窗棂的三交六椀菱花图案所吸引,他从中提取出一个含角的菱形(如图1所示).若的长度为a,则菱形的周长为()A.B.C.a D.6.如图,在四边形中,,要使为平行四边形,下列添加的条件不能..是()A.B.C.D.7.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去高六尺,折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),一阵风将竹子折断,竹梢恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.设竹子折断处离地面x尺,根据题意,可列方程为()A.B.C.D.8.已知、是两个连续自然数,且,设,则下列对的表述中正确的是()A.总是偶数B.总是奇数C.总是无理数D.有时是有理数,有时是无理数9.若二次根式在实数范围内有意义,则x的取值范围是_____.10.下列命题:①两直线平行,同位角相等;②对顶角相等;③平行四边形的对角线互相平分.其中逆命题是真命题的命题共有_____个.11.如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=_______.12.如图,在正方形ABCD内部作等边△CDE,连接BD.则的度数为______.13.如图,中,,则线段的长为______.14.如图,校园内有一块长方形草地,为了满足人们的多样化品求,在草地内拐角位置开出了一条路,走此路可以省____________m的路.15.如图,在平行四边形中,,,平分,是对角线上的一个动点,点是边上的一个动点,则的最小值是_____.16.已知邻边长分别为1,的平行四边形纸片,且有,如图那样折一下,剪下一个边长等于1的菱形(称为第一次操作);再把剩下的平行四边形如图那样折一下,剪下一个边长等于此时平行四边形一边长的菱形(称为第二次操作);再把剩下的平行四边形如此反复操作下去.若在第三次操作后,剩下的平行四边形为菱形,则的值是______.17.计算:.18.计算:.19.如图,A,B,H是直线l上的三个点,AC⊥l于点A,BD⊥l于点B,且HC=HD,AB=5,AC=2,BD=3,求AH的长.20.如图,在□ABCD中,M,N是AD,BC上的两点且DM=BN,连接CM,AN.求证:CM=AN.21.如图,在中,,在边上截取,连接,过点作于点.已知,,如果是边的中点,连接,求的长.22.如图,每个小正方形的边长都是1,,,,均在网格的格点上.(1)判断是否为直角:______.(填写“是”或“不是”)(2)直接写出四边形的面积为______.(3)找到格点,并画出四边形(一个即可),使得其面积与四边形面积相等.23.已知矩形,以为一边求作一个平行四边形,使得该平行四边形的一个内角为,且面积为矩形面积的一半.(1)利用尺规作图作出符合题意的平行四边形(保留作图痕迹);(2)写出判定四边形是平行四边形的依据是______.24.如图,在中,,,点D,E,F分别为,,的中点.(1)求证:四边形是菱形;(2)若,,求菱形的面积.25.在数学课上,老师说统计学中常用的平均数不是只有算术平均数一种,好学的小聪通过网络搜索,又得到了两种平均数的定义,他把三种平均数的定义整理如下:对于两个数a,b,称为a,b这两个数的算术平均数.称为a,b这两个数的几何平均数,称为a,b这两个数的平方平均数.小聪根据上述定义,探究了一些问题,下面是他的探究过程(1)若,则_____,_____,_____;(2)小聪发现当a,b两数异号时,在实数范围内N没有意义,所以决定只研究当a,b都是正数时这三种平均数的大小关系.结合乘法公式和勾股定理的学习经验,他选择构造几何图形,用面积法解决问题:如图,画出边长为的正方形和它的两条对角线,则图1中阴影部分的面积可以表示.①请分别在图2,图3中用阴影标出一个面积为的图形;②借助图形可知当a,b都是正数时,M,N,P的大小关系是______(把M,N,P从小到大排列,并用“”或“”号连接).26.如图,在正方形中,是边上的一点(不与,重合),点关于直的对称点是点,连接,,直线,交于点,连接.(1)在图1中补全图形;(2)求的度数,写出求解过程.(3)用等式表示线段之间的数量关系,并证明.27.在平面直角坐标系中,对于点,,给出如下定义:当点,满足时,称点是点的等积点.已知点.(1)在,,中,点的等积点是_____.(2)点是点的等积点,点在轴上,以,,,为顶点的四边形是平行四边形,求点的坐标,写出求解过程.。
中国人民大学附属中学八年级数学下册第十六章《二次根式》习题(课后培优)
![中国人民大学附属中学八年级数学下册第十六章《二次根式》习题(课后培优)](https://img.taocdn.com/s3/m/76f788e7a76e58fafbb0030d.png)
一、选择题1.下列是最简二次根式的是( )A .6B .4C .15D .23 2.已知123a =+,23b =-,a 与b 大小关系是( ) A .a b ≥B .a b ≤C .a b <D .a b = 3.下列各式变形中,正确的是( )A .236x x x ⋅=B .2x x =C .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭ D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭ 4.下列各式中,正确的是( )A .93±=B .93=±C .()233-=-D .()233-= 5.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b 6.已知y 1110x x --,那么252x y x y +-的值等于( ) A .1 B .78 C .54- D .45- 7.下列计算中,正确的是( )A 235+=B 235=C .2(23)=12D 633= 8.下列计算正确的是( )A 532=B 25177=C .422= D 1422233x x x =9.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .81111911=10.设a b 0>>,2240a b ab +-=,则a b b a+-的值是( )A .2B .-3C .D .11.)0a <得( )A B .C D .12.下列计算中,正确的是()A .=B .10==C .(33+-=-D .2a b =+13.已知y 3,则x y的值为( ). A .43 B .43-C .34D .34- 14.下列运算正确的是( )A =B .=C 3=D =15.下列二次根式中,不能..合并的是( )A B C D 二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.在y =中,x 的取值范围是:______________.18.与-a 可以等于___________.(写出一个即可)19.已知a +b =﹣8,ab =6__.20.,则x 的取值范围是_____.21.比较大小:① 32;② .22.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示,点B 表示1,那么点C 表示的数是________.23.24.已知实数a 、b 在数轴上的位置如图所示,化简a b -+25.已知223y x x =--,则()x x y +的值为_________.26.2121=-+3232=+4343=+,请从上述等式找出规律,并利用规律计算(20082)32435420082007++⋅⋅⋅++=++++_________. 三、解答题27.(1232;(2)计算:122728.计算:(12398(5)-- (2)()()2332222a b b ab ⋅-+-29.计算:(1483(2632⨯1(3)(55﹣2)(4)2(323)30.计算:(1()2020349564125---(2)657321x y x y +=⎧⎨-=-⎩。
北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)
![北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)](https://img.taocdn.com/s3/m/8dcd02278f9951e79b89680203d8ce2f0166655e.png)
人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。
新人教版八年级数学下二次根式练习题及答案
![新人教版八年级数学下二次根式练习题及答案](https://img.taocdn.com/s3/m/fa16c179fab069dc502201fe.png)
人教版八年级数学下二次根式练习题一、单项选择题(每小题2分,共20分) 1.下列各式是二次根式的是( )A.2--xB.xC.22+x D.22-x 2.x 的取值范围是( )A.1x >B.1x ≥C.1x ≤D.1x <)A.C.2-D.24.下列根式中属于最简二次根式的是( )5.下列计算错误..的是( )A.B.=C.=D.3= 6.估计202132+⨯的运算结果应在( ) A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间 7.最简二次根式x 26-与2是同类二次根式,则x 的值为( ) A.-2 B.2 C.-4 D.4 8.n 的最小值是( )A.2B.3C.4D.5 9.x ,小数部分为yy -的值是( )A.310.已知△ABC 的三边分别为2,x ,5,则化简22)7()3(-+-x x 的值是( )A.102-xB.4C.x 210-D.4- 二、填空题(每小题2分,共20分)1.已知2=a ,则代数式12-a 的值是.2.__________==.3.计算:825-=.4.比较大小:--). 5.若实数y x ,2(0y =,则xy 的值为.6.已知x y ==33_________x y xy +=7.三角形的一边长是cm 42,这边上的高是cm 30,则这个三角形的面积是2cm8.已知a ,b 为两个连续的整数,且a b <,则a b +=.9.如果101=+a a ,则221aa +的值是. 10.观察下列各式:①312311=+,②413412=+③514513=+,……请用含n (n ≥1)的式子写出你猜想的规律:.三、计算题(每小题5分,共20分);2.÷3.)632)(63(2-+;4.6)273482(÷-.四、求值题(每小题5分,共10分) 1.当1x =时,求代数式652--x x 的值.2.先化简,再求值:1212143222-+÷⎪⎭⎫ ⎝⎛---+x x x x x x,其中x =五、解答题(每小题7分,共14分) 1.若实数,x y满足1y <,求11y y --的值.2.解方程组⎩⎨⎧=+=+8361063y x y x ,并求xy 的值.六、解答题(每小题8分,共16分)1.已知正方形纸片的面积是232cm ,如果将这个正方形做一个圆柱的侧面,请问这个圆柱底面半径是多少?(精确到0.1,π取3.14)2.已知a 、b 、c 满足0235)8(2=-+-+-c b a .求:(1)a 、b 、c 的值;(2)试问:以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.3、已知,a b 为等腰三角形的两条边长,且,a b满足4b =,求此三角形的周长.4、阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+;……仿上的规律计算10099199981431321211++++++++++ .参考答案第Ⅰ卷一、选择题:二、填空题:1.1;2.6,18;3.23;4.<;5.32;6.10;7.353;8.11;9.8;10.21)1(++n n . 三、1.334;2.223;3.6;4.22-. 四、1.575-;2.22. 五、1.-1;2.232. 六、1.0.7.2.(1)22=a ,5=b ,23=c ;(2)能构成三角形(525=>=+b c a ),其周长为525+.第Ⅱ卷一、10或11. 二、9.。
2023北京海淀人大附中初二期中(下)数学试卷及答案
![2023北京海淀人大附中初二期中(下)数学试卷及答案](https://img.taocdn.com/s3/m/7105e2c2951ea76e58fafab069dc5022abea4667.png)
2023北京人大附中初二(下)期中数 学一、选择题:(每小题3分,共30分)1. 下列二次根式中,属于最简二次根式的是( )2. 下列各组数中不能..作为直角三角形的三边长的是( )A. 1,1B. 12C. 4,5,6D. 6,8,103. 如图,ABCD 的对角线AC BD ,相交于点O ,且10AC BD ,3AB =.则OCD 的周长为( )A. 13B. 8C. 7D. 54. 下列等式不成立的是( )2=6==2=5. 如图,下列四组条件中,不能判定四边形ABCD 为平行四边形的是( ) A. AB CD =,AD BC = B. ABDC ,AD BCC. ABDC ,AB DC = D. AB CD =,AD BC ∥6. 如图,在4×3的正方形网格中,标记格点A 、B 、C 、D ,且每个小正方形的边长都是1.下列选项中的的是( )A. 线段ABB. 线段BCC. 线段CDD. 线段AD7. 实数a ,b )A. 2a −B. 2b −C. 22b a −D. 08. 如图,在ABCD 中,42B ∠=︒,E 为AD 上一点,且DE DC =,过D 作DF EC ⊥交BC 于F ,则DFC ∠的度数为( )A. 14︒B. 18︒C. 21︒D. 22︒9. 某工厂要制作一些等腰三角形的模具,工人师傅对四个模具的尺寸按照腰长、底长和底边上高的顺序进行了记录,其中记录有错误的是( ) A. 26,10,24 B. 10,16,6C. 17,30,8D. 13,24,510. 如图,在ABCD 中,2=AD AB ,F 是AD 的中点,作CE AB ⊥于E ,连接CF 、EF ,下列结论不成立的是( )A. 2BCD DFC ∠=∠B. EF CF =C. 13AEF DFE ∠=∠ D. 2BEC EFC S S =△△二、填空题:(第11-19题每空2分,第20题每空1分,共22分)11. x 的取值范围是______.12. 分解因式:mn 2﹣m=__________ 13. 方程215x x=+的解为___________.14. 当1x =时,代数式x 2+2x +2的值是__________ 15. 如图,在ABCD 中,120A ∠=︒,2AD =,作CE AB ⊥于E ,则ECB ∠=______;CE =______.16. 已知2431849=,2441936=,2452025=,2462116=.若n 为整数且1n n <<+,则n的值是______.17. 如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成了一个四边形.在转动其中一张纸条的过程中,线段AD 和BC 的长度始终相等,这里蕴含的数学原理是____________.18. 如图,在Rt ABC △中,90C ∠=︒,10AB =,8BC =,D ,E 分别是边AB 和BC 上的点,把ABC 沿着直线DE 折叠,若B 恰好落在AC 中点M 上,则CE 长为______.19. 如图,点A ,B 为定点,直线l AB ∥,P 是l 上一动点,点M ,N 分别为PA PB ,的中点,对于下列各值:①线段MN 的长; ②PAB 的周长; ③PMN 的面积; ④APB ∠的大小;⑤直线MN 与AB 之间的距离.其中会随点P 的移动而发生变化的是______(填序号).20. 如图,等边ABC 边长为2,点D 为边BC 延长线上一动点,CD DE =,120∠=︒BDE ,点F 是线段BE 的中点,连接DF CF 、.(1)用等式表示线段DF和AD的数量关系为:______;(2)线段CF长度的最小值为:______.三、解答题:(第21题8分,第22-25题每小题5分,第26题6分,第27、28题每小题7分,共48分)21. 计算:(1(2.22. 解不等式组:274,4.2x xxx+>−⎧⎪⎨+<⎪⎩23.,其中:3a=,2b=.24. 勾股定理是几何中的一个重要定理,且贴近人们的生活实际,古往今来,人们对勾股定理的证明颇感兴趣,出现了诸多证法.下面是证明勾股定理的两种图形构造方法,选择______其中一种,补全后续证明过程.ABC中,22=c.个全等的该直角三角形围成一个大正方共线,点D、E、F共方法二证明:如图,将围成一个梯形,即使点QAB为等腰直角三角形.25. 如图,在ABCD 中,点E 在AB 上,点F 在CD 上,且AE CF =.(1)求证:四边形DEBF 是平行四边形;(2)若DE 为ADC ∠的平分线,且3AD =,2EB =,求ABCD 的周长.26. 在学习完二次根式后,数学兴趣小组开始自主研究根式方程的解法,针对关于x 的根式方程1=,小组成员展开讨论(如材料一),并梳理了解法(如材料二). 材料一:(1)解关于x 1=;(2)解关于x 1x =−.27. 已知ABCD ,2BC =.(1)如图1,若以BC 为边作等边BCE ,且点E 恰好在边AD 上,直接写出此时ABCD 的面积;(2)如图2,若以BC 为斜边作等腰直角BCF △,且点F 恰好在边AD 上,过C 作CG CD ⊥交BF 于G ,连接AG . ①依题意将图2补全;②用等式表示此时线段CD CG AG ,,之间的数量关系,并证明;(3)如图3,以BC 为边作BCMN ,且60CMN ∠=︒,3BN =.若NA BD ⊥,直接用等式表示此时BD 与NA 的数量关系.28. 在平面直角坐标系xOy 中,对于没有公共点的两个图形M 、N 给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,若P 、Q 两点间距离的最大值和最小值分别为1d 和2d ,则称比值12d d 为图形M 和图形N 的“距离关联值”,记为(),k M N .已知ABCD 顶点坐标为()1,1A −,()1B −,()1,1C −,)D.(1)若E 为ABCD 边上任意一点,则OE 的最大值为______,最小值为______,因此k (点O ,ABCD )=______;(2)若()1,F x m 为ABCD 对角线BD 上一点,()2,G x m 为ABCD 对角线AC 上一点,其中12x x ≠.①若12m =,则k (线段FG ,ABCD )=______;②若6k ≤(线段FG ,ABCD )8<,求m 的取值范围;(3)若HIJK 的对角线交点为O ,且顶点(),H p n 在直线AC 上,顶点(),K q n 在直线BD 上,其中p q <,请直接用含n 的代数式表示(),k HIJK ABCD .参考答案一、选择题:(每小题3分,共30分)11. 【答案】3x ≥【解析】【分析】根据二次根式有意义的条件:被开方数是非负数,进行求解. 【详解】解:由题意得:30x −≥, ∴3x ≥; 故答案为3x ≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 12. 【答案】m (n+1)(n ﹣1) 【解析】【分析】先提取公因式m ,再利用平方差公式a 2﹣b 2=(a+b )(a ﹣b )进行二次分解. 【详解】mn 2﹣m=m (n 2﹣1)=(n+1)(n ﹣1) 考点:提公因式法与公式法的综合运用 13. 【答案】x =5 【解析】【分析】观察可得最简公分母是x (x +5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,再进行检验即可得解. 【详解】解:215x x=+ 方程的两边同乘x (x +5),得:2x =x +5, 解得:x =5, 经检验:把x =5代入x (x +5)=50≠0. 故答案为:x =5.【点睛】此题考查了分式方程的求解方法,注意掌握转化思想的应用,注意解分式方程一定要验根. 14. 【答案】18 【解析】【分析】首先把x 2+2x +2化为(x+1)2+1,然后把1x =代入,求出算式的值是多少即可. 【详解】解:x 2+2x +2=(x+1)2+1,当1x =时,原式=)211118++=.故答案为:18.【点睛】此题考查了二次根式的运算,熟练掌握运算法则是解答此题的关键. 15.【答案】 ①. 30︒##30度 ②【解析】【分析】利用平行四边形的性质求得=60B ∠︒,根据三角形内角定理即可求得ECB ∠;利用含30度角的直角三角形的性质以及勾股定理即可求得CE 的长. 【详解】解:∵四边形ABCD 是平行四边形,120A ∠=︒, ∴18060B A ∠=︒−∠=︒, ∵CEAB ⊥,∴90CEB ∠=︒,∴906030ECB ∠=︒−︒=︒;∵四边形ABCD 是平行四边形,2AD =, ∴2BC AD ==, ∴112BE BC ==,CE ==故答案为:30︒【点睛】本题考查了平行四边形的性质,含30度角的直角三角形的性质以及勾股定理,解题的关键是灵活运用所学知识解决问题. 16. 【答案】44 【解析】<<,即4445<<,从而可得答案.【详解】解:∵193620232025<<,<<4445<<,又∵1n n <<+,n 为整数,∴44n =. 故答案为:44.【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键. 17. 【答案】两组对边分别平行的四边形是平行四边形 【解析】【分析】根据题意可证明四边形ABCD 是平行四边形,再由平行四边形的性质即可得到AD BC =. 【详解】解:蕴含的数学原理是两组对边分别平行的四边形是平行四边形, ∵AD BC ∥,AB CD ∥, ∴四边形ABCD 是平行四边形, ∴AD BC =.故答案为:两组对边分别平行的四边形是平行四边形.平行四边形对边相等;【点睛】本题主要考查了平行四边形的性质与判定,解题的关键在于能够熟练掌握“两组对边分别平行的四边形是平行四边形”. 18. 【答案】5516【解析】【分析】在Rt ABC △中,利用勾股定理求得6AC =,结合点M 是AC 中点可得3CM =,由翻折可知ME BE BC CE ==−,在Rt CME △中运用勾股定理求解即可.【详解】解:在Rt ABC △中,90C ∠=︒,10AB =,8BC =,6AC ∴==,点M 是AC 中点, 132CM AC ∴==, 由翻折可知ME BE BC CE ==−, 在Rt CME △中,222CM CE ME +=,()22238CE CE ∴+=−,解得:5516CE =, 故答案为:5516.【点睛】本题考查了折叠的性质,勾股定理解直角三角形;解题的关键是熟练掌握折叠的性质,并运用勾股定理正确计算. 19. 【答案】②④ 【解析】【分析】根据中位线,平行线间的距离处处相等,进行判断即可. 【详解】解:∵点M ,N 分别为PA PB ,的中点, ∴MN 是ABP 的中位线, ∴12MN AB =,∥MN AB ,∵AB 为定值,∴MN 为定值,①不符合要求; PAB 的周长为PA PB AB ++,∵PA PB 、为变化的量,∴PAB 的周长变化,②符合要求;∵l AB ∥,∥MN AB ,∴MN l ∥,∴P 到MN 的距离d 为定值, ∴2PMN MN d S ⨯=为定值,③不符合要求; 设∠PAB 减少的量为α,PBA ∠增加的量为β,由题意知,0PAB α<<∠,0180PBA β<<︒−∠, ∵180PAB PBA APB ∠+∠+∠=︒,α与β不一定相等,∴APB ∠的大小随着P 的变动而变化,④符合要求;∵∥MN AB ,直线MN 与AB 之间的距离是定值,⑤不符合要求;∴发生变化的为②④,故答案为:②④.【点睛】本题考查了中位线,平行线之间距离处处相等.解题的关键在于对知识的熟练掌握与灵活运用. 20. 【答案】 ①. 2AD DF = ②. 12##0.5【解析】【分析】(1)延长DF 至点M DF FM =,连接BM 、AM ,先证明()SAS BFM EFD ≌△△,得出BM DE MBF DEF =∠=∠,,则BM DE ∥,再证()SAS ABM ACD ≌△△,得AM AD BAM CAD =∠=∠,,据此即可求解;(2)连接CE ,取BC 的中点N ,作射线NF ,先由等腰三角形的性质得30DCE ∠=︒,再由三角形中位线定理得NF CE ∥,则30CNF DCE ∠=∠=︒,得出点F 的轨迹为射线NF ,且30CNF ∠=︒,当CF NF ⊥时,CF 最短,然后由直角三角形的性质即可求解.【详解】解:(1)如图1,延长DF 至点M ,使DF FM =,连接BM 、AM ,∵点F 是线段BE 的中点,∴BF EF =,在BFM 和EFD △中,BF EF BFM EFD FM FD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BFM EFD ≌△△,∴BM DE MBF DEF =∠=∠,,∴BM DE ∥,∵CD DE =,120∠=︒BDE ,∴CD DE BM ==,∴18012060MBD ∠=−=︒︒︒,∵ABC 是等边三角形,∴60AB AC ABC ACB =∠=∠=︒,,∴6060120ABM ABC MBD ∠∠∠︒︒=+=+=︒,∴ABM ACD ∠=∠,在ABM 和ACD 中,AB AC ABM ACD BM CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABM ACD ≌△△,∴AM AD BAM CAD =∠=∠,,∴60MAD MAC CAD MAC BAM BAC ∠∠∠∠∠∠=+=+==︒,∴AMD 是等边三角形,∴2==AD DM DF ;故答案为:2AD DF =;(2)如图2,连接CE ,取BC 的中点N ,作射线NF ,∵CD DE =,120∠=︒BDE ,∴30DCE ∠=︒,∵点N 是BC 的中点,∴NF 是BCE 的中位线,∴NF CE ∥,∴30CNF DCE ∠=∠=︒,∴点F 的轨迹为射线NF ,且30CNF ∠=︒,当CF NF ⊥时,CF 最短,∵2AB BC ==,∴1CN =,在Rt CNF △,30CNF ∠=︒, ∴1122CF CN ==, ∴线段CF 长度的最小值为:12. 故答案为:12.【点睛】本题考查了等边三角形和判定和性质,全等三角形的判定和性质,含30度角的直角三角形的性质,三角形中位线定理,作出合适的辅助线,是解题的关键. 三、解答题:(第21题8分,第22-25题每小题5分,第26题6分,第27、28题每小题7分,共48分)21. 【答案】(1)(2)【解析】【分析】(1)先化简二次根式,然后合并同类二次根式;(2)先计算二次根式的除法,然后再计算二次根式的乘法即可.【小问1详解】解:原式==;【小问2详解】解:原式=5==【点睛】本题考查了二次根式的混合运算,正确运用二次根式运算法则是解题的关键.22. 【答案】14x <<【解析】【分析】分别解两个一元一次不等式,再求交集即可. 【详解】解:27442x x x x +>−⎧⎪⎨+<⎪⎩①② 解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.23. 【答案】a b −,1.【解析】【分析】利用二次根式的性质和平方差公式化简,然后代入求值即可.221·ab=−−a b =− a b =−,当3a =,2b =时,原式32=−1=.【点睛】题目主要考查二次根式的化简求值及平方差公式,熟练掌握二次根式的运算法则是解题关键. 24. 【答案】方法一,见解析;或方法二,见解析【解析】【分析】方法一,根据题意、结合图形,根据完全平方公式进行计算即可;方法二,根据题意、结合图形,根据完全平方公式进行计算即可.【详解】解:方法一,证明:如图,将4个全等的该直角三角形围成一个大正方形HCDF ,即分别使点C 、B 、D 共线,点D 、E 、F 共线,点F 、G 、H 共线,此时四边形ABEG 也是正方形. ∵12AHG GFE EDB BCA S S S S ab ====△△△△,2ABEG S c =正方形,()2CDFH S a b =+正方形, 又∵AHG GFE EDB BCA ABEG CDFH S S S S S S ++++=正方形正方形△△△△, ∴()22142ab c a b ⨯+=+,整理得22222ab c a ab b +=++, ∴222+=a b c ;方法二证明:如图,将2P 、A 、C 共线,此时QAB 为等腰直角三角形.∵()()()21122PQBC S b a a b a b =++=+梯形,12APQ BCA S S ab ==△△,212ABQ S c =△, 又∵APQ BCA ABQ PQBC S S S S ++=梯形△△△, ∴()221112222ab c a b ⨯+=+, ∴222+=a b c .【点睛】本题主要考查勾股定理的验证,解题关键是利用面积相等建立等量关系,判定勾股定理成立. 25. 【答案】(1)见详解 (2)16【解析】【分析】(1)根据平行四边形对边平行且相等的性质和AE CF =可得BE DF =,进而可得四边形DEBF 是平行四边形.(2)根据(1)可得EDC AED ∠=∠,根据DE 为ADC ∠的平分线,可得ADE 为等腰三角形,即可得出AB 的值,即可解答.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AB CD ,AB CD =,∵AE CF =,∴BE DF =,∴四边形DEBF 是平行四边形.【小问2详解】解:∵AB CD ,∴EDC AED ∠=∠,∵DE 为ADC ∠的平分线,∴ADE EDC ∠=∠,∴ADE AED ∠=∠,∴ADE 为等腰三角形,∴3AE AD ==,∴325AB AE BE =+=+=, ABCD 的周长为:()22816AB AD +=⨯=.【点睛】本题考查了平行四边形的判定与性质,角平分线的定义,等腰三角形的判定与性质,平行四边形的周长,熟练掌握平行四边形的性质和等腰三角形的判定与性质是解答的关键.26. 【答案】(1)3x =;(2)无解【解析】【分析】仿照例题,两边平方,得到整式方程,解整式方程,再检验即可求解.【小问1详解】解:两边平方得:21x −=.解得:3x =.检验:将3x =代入原方程,成立.∴原方程的解为3x =;【小问2详解】解:两边平方得:()22431x x x +−=−. 解得:23x =. 检验:当23x =时,2111033x −=−=−<,即23x =是增根. ∴原方程无解.【点睛】本题考查了解无理方程,掌握解无理方程的步骤是解题的关键.注意一定要验根.27. 【答案】(1)ABCD 的面积为(2)①见解析;②CG CD AG =+;理由见解析(3)2219BD NA +=.【解析】【分析】(1)作EI BC ⊥于点I ,利用等边三角形的性质求得BI 的长,再利用勾股定理求得EI 的长,最后利用平行四边形的面积公式求解即可;(2)①依照题意补全图形即可;②延长CF 交BA 的延长线于点H ,延长CG 交BA 的延长线于点J ,利用ASA 证明HBF GCF ≌△△,推出GC BH =,FG FH =,再证明()SAS AFG AFH ≌△△,推出AG AH =,即可证明CG CD AG =+;(3)连接BM ,作BK MN ⊥并交MN 的延长线于点K ,推出四边形ADMN 是平行四边形,得到BMD 是直角三角形,22222BD DM BD NA BM +=+=,求得BM 即可解决问题.【小问1详解】解:作EI BC ⊥于点I ,∵BCE 是边长为2的等边三角形, ∴112BI IC BC ===,∴EI ==,∴此时ABCD 的面积为2BC EI ⨯==;【小问2详解】解:①补全图形如图,②CG CD AG =+;理由如下,延长CF 交BA 的延长线于点H ,延长CG 交BA 的延长线于点J ,∵BCF △是以BC 为斜边的等腰直角三角形,∴BF CF =,90BFC BFH ∠=∠=︒,45FBC ∠=︒,∵四边形ABCD 是平行四边形,∴AD BC ∥,AB CD =,∴45AFB FBC AFH ∠=∠=︒=∠,∵四边形ABCD 是平行四边形,CG CD ⊥,∴90BJG GFC ∠=∠=︒,∴9090HBF BGJ FGC GCF ∠=︒−∠=︒−∠=∠,在HBF 和GCF 中,90HFB GFC BF CF HBF GCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴()ASA HBF GCF ≌△△,∴GC BH =,FG FH =,又∵AFB AFH ∠=∠,FA FA =,∴()SAS AFG AFH ≌△△,∴AG AH =,∴CG BH BA AH CD AG ==+=+;【小问3详解】解:2219BD NA +=.【点睛】本题考查了平行四边的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件.28. 【答案】(1)2,1,2(2)①6;②3152m −<≤−或1325m ≤< (3)当01n <<时,()()21,1n k HIJK ABCD n +=−当n>1时()()121,n k HIJK ABC n D +=−【解析】 【分析】(1)如图1,过A 作AR BC ⊥于R ,过C 作CS AD ⊥于S ,AD 与y 轴交于T ,则四边形ARCS 是正方形,由题意知,当E 与B 或D 重合时,OE 最大,当E 与T 重合时,OE 最小,求2OB ==,1OT =,根据k (点O ,ABCD ) OB OT=,计算求解即可;(2)①如图2,设直线BD 的解析式为y kx =,则1=,解得3k =,即3y x =,122F ⎛⎫ ⎪ ⎪⎝⎭,,由题意知,线段GF 上的点与ABCD 上的点的最大距离为FB ,最小距离为12,根据k(线段FG ,ABCD )定义求解即可;②将()1,F x m 代入3y x =,解得1x =,即)F m ,,分当01m <<时;当1m >时;当10m −<<时;当1m <−时;表示出最大与最小距离,然后解一元一次不等式组求解满足要求的解即可;(3)如图3,将()K q n ,代入3y x =,解得q =,即)K n ,,由p q <,可得0n >,由(2)可知,将HIJK 的边HK 等同于线段GF 时求k 的求解方法求解即可.【小问1详解】解:如图1,过A 作AR BC ⊥于R ,过C 作CS AD ⊥于S ,AD 与y 轴交于T ,则四边形ARCS 是正方形,由题意知,当E 与B 或D 重合时,OE 最大,当E 与T 重合时,OE 最小,∴2OB ==,1OT =,∴OE 最大为2,OE 最小为1,k (点O ,ABCD ) 2OB OT==, 故答案为:2,1,2;【小问2详解】解:如图2,设直线BD 的解析式为y kx=,则1=,解得3k =,∴3y x =, 当12m =,x =,∴12F ⎫⎪⎪⎝⎭,, 由题意知,线段GF 上的点与ABCD上的点的最大距离为3FB ==,最小距离为12,∴k (线段FG ,ABCD )3612==, 故答案为:6;②解:∵ABCD顶点坐标为11A −(,)) ∴对角线BD 、AC 相交于原点O 且与x 轴夹角分别为30°、45°。
八年级下册二次根式知识点总结和练习题及答案(K12教育文档)
![八年级下册二次根式知识点总结和练习题及答案(K12教育文档)](https://img.taocdn.com/s3/m/c30445968e9951e79a892752.png)
(直打版)八年级下册二次根式知识点总结和练习题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)八年级下册二次根式知识点总结和练习题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)八年级下册二次根式知识点总结和练习题及答案(word版可编辑修改)的全部内容。
二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1。
二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可.2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义.知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0().注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
北京中国人民大学附属外国语中学八年级数学下册第一单元《二次根式》测试卷(有答案解析)
![北京中国人民大学附属外国语中学八年级数学下册第一单元《二次根式》测试卷(有答案解析)](https://img.taocdn.com/s3/m/a8b656b8ddccda38366baf6b.png)
一、选择题1.已知2252a b ab +=,且a >b >0,则a b a b +-的值为( ) A .3 B .3± C .2 D .2±2.下列运算正确的是( ).A +=B .3=C =D 2=3.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .14.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间5.下列运算正确的是 ( )A B C .1)2=3-1 D6.合并的是( )A B C D 7.下列计算正确的是( )A 9=-B .1=C .-=-D .=8.下列各式中,正确的是( )A .2(9=B 3=-C 3=-D 3= 9.下列各式正确的是( ).A .2=10BC .D 2 10.下列各式不是最简二次根式的是( )A B C D 11.下列各式成立的是( )A .23=B 2=-C 7=D x12.计算 )A.-3 B.3 C.-9 D.9二、填空题13.把四张形状大小完全相同宽为1cm的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为21cm,宽为4cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是_________.14.已知223y x x=--,则xy的值为__________.15.45325÷-__.16.已知51x=,求229x x++=______.17.计算:()()202020203232+⨯-=___________18.1x-在实数范围内有意义,则x的取值范围是______.19.3x-在实数范围内有意义,则 x 的取值范围是_______ .20.使式子32xx-+有意义的x的取值范围是______.三、解答题21.(16224348(2)解不等式组:2(3)8(1)22x xxx x--<⎧⎪⎨--≤-⎪⎩22.计算下列各题(111274833(20()220803215-23.(1)计算21211(20181978)|232-⎛⎛⎫-⨯-----⎪⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取.24.计算:(1)101(4)4π-⎛⎫-- ⎪⎝⎭(2)25.计算(1) (2)22)-26.计算(1)22018112-⎛⎫-+ ⎪⎝⎭;(20|1-;(3)2(1)16x -=; (4)321x +=【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】用完全平方公式,把两数和与差都转化为两数积的代数式,再代入原式计算便可.【详解】解:∵a 2+b 2=52ab , ∴a 2+b 2﹣2ab =12ab ,a 2+b 2+2ab =92ab , ∴(a ﹣b )2=12ab ,(a +b )2=92ab , ∵a >b >0, ∴a ﹣b >0,a +b >0,∴a﹣b a +b =2∴3a b a b+=- 故选:A .【点睛】 本题主要考查了完全平方公式的应用,求代数式的值,关键是运用完全平方公式,把两数和与差表示成这两数积的代数式.2.C解析:C【分析】二次根式的加减法法则,乘除法法则计算并依次判断.【详解】A ∴A 选项不符合题意;B 选项:原式=∴B 选项不符合题意;C 选项:原式==∴C 选项符合题意;D =∴D 选项不符合题意. 故选:C .【点睛】此题考查二次根式的运算,掌握二次根式的加减法法则,乘除法法则是解题的关键. 3.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A +1+1)=0,故本选项不合题意;B 、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意;C ﹣2)=3,故本选项不合题意;D )(12,故本选项不合题意.故选:B .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b )(a-b )=a 2-b 2.4.D解析:D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4=== ∵34<<, ∴748<<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.5.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A A 错误;B ,故选项B 正确;C 、21)313=-=-,故选项C 错误;D 53=≠+,故选项D 错误;故选:B .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的法则. 6.D解析:D【分析】先化简选项中各二次根式,然后找出被开方数为2的二次根式即可.【详解】的同类二次根式.A 6无法合并,故A 错误;B 43无法合并,故B 错误;C 25无法合并,故C 错误;D 32可以合并,故D 正确. 故选D .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键. 7.C解析:C【分析】分别根据二次根式的性质进行化简与计算即可得出答案【详解】解:9=,故本选项不符合题意;B.=C.-=-D.2=--≠, ,故本选项不符合题意.故选C .【点睛】本题考查了二次根式的加减法、二次根式的性质等知识点,能正确求出每个式子的值是解此题的关键. 8.D解析:D【分析】根据二次根式的性质逐项判断即可.【详解】解:A 、2(3=,故本选项错误;B 3=,故本选项错误;CD 3=,故本选项正确.故选:D .【点睛】a =,2(0)a a =≥.9.D解析:D【分析】根据二次根式的加法法则,乘法计算法则计算后依次判断.【详解】AB 不是同类二次根式,不能计算,故该项错误;C 、=≠D 2=,故该项正确;故选:D.【点睛】此题考查二次根式的计算,掌握二次根式的加法计算法则,二次根式的乘法计算法则,二次根式的化简是解题的关键.10.D解析:D【分析】满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,据此判断即可.【详解】A是最简二次根式,故本选项错误;B是最简二次根式,故本选项错误;C是最简二次根式,故本选项错误;D=,不是最简二次根式.故选:D.【点睛】本题考查了最简二次根式的定义,掌握最简二次根式条件,是解题的关键.11.C解析:C【分析】利用二次根式的性质进行化简判断选项的正确性.【详解】解:A2=32=9,错误;B、原式=|﹣2|=2,错误;C、原式=|﹣7|=7,正确;D、原式=|x|,错误,故选:C.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的化简方法.12.A解析:A【分析】根据二次根式的性质即可求出答案.【详解】解:原式=-3,故选:A.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.二、填空题13.16cm【分析】根据题意分别列出关系式得出关于图②中两块阴影部分的长和宽再利用周长公式时行计算去括号合并即可得到结果【详解】解:设小长方形卡片的长为xcm小长方形卡片的宽为根据题意得:x=-2则图②解析:16cm【分析】根据题意分别列出关系式,得出关于图②中两块阴影部分的长和宽,再利用周长公式时行计算,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为xcm,小长方形卡片的宽为1cm,根据题意得: x2,则图②-2和2,宽分别为:2和4-x=6∴图②中两块阴影部分的周长和是:22+2)+2(2+6)=16-16(cm).故答案为:16cm.【点睛】本题主要考查了二次根式的应用,在解题时要根据题意结合图形得出两块阴影部分的长和宽是解题的关键.14.6【分析】根据二次根式有意义的条件可得关于x的不等式组进而可求出xy 然后把xy的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x的不等式组,进而可求出x、y,然后把x、y的值代入所求式子计算即可.【详解】由题意得:2020xx-≥⎧⎨-≥⎩,所以x=2,当x=2时,y=3,所以236xy=⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.15.【分析】根据二次根式的混合运算进行计算即可得到答案【详解】解:原式=3÷3﹣2=﹣2=﹣故答案为:﹣【点睛】本题考查了二次根式的混合运算二次根式的性质解题的关键是掌握运算法则进行计算解析:【分析】根据二次根式的混合运算进行计算,即可得到答案.【详解】解:原式=﹣【点睛】本题考查了二次根式的混合运算,二次根式的性质,解题的关键是掌握运算法则进行计算.16.13【分析】先变形为然后代入求值即可【详解】解:当时原式==13故答案是:13【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质熟悉公式是解题关键解析:13【分析】先变形为222918x x x ++=++(),然后代入求值即可.【详解】解:2222921818x x x x x ++=+++=++(),当1x =时,原式2118++=13.故答案是:13.【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质,熟悉公式是解题关键. 17.1【分析】根据积的乘方逆运算求解即可【详解】解:===1故答案为:1【点睛】此题主要考查了积的乘方熟练掌握积的乘方运算法则是解答此题的关键解析:1【分析】根据积的乘方逆运算求解即可.【详解】解:))2020202022⨯=)2020[22] =2020(1)-=1故答案为:1【点睛】此题主要考查了积的乘方,熟练掌握积的乘方运算法则是解答此题的关键. 18.【分析】根据二次根式的被开方数大于或等于0分式的分母不能为0即可得【详解】由二次根式的被开方数大于或等于0得:解得由分式的分母不能为0得:解得则x 的取值范围是故答案为:【点睛】本题考查了分式有意义的 解析:1x >【分析】根据二次根式的被开方数大于或等于0、分式的分母不能为0即可得.【详解】由二次根式的被开方数大于或等于0得:10x -≥,解得1≥x ,由分式的分母不能为0得:10x -≠,解得1x ≠,则x 的取值范围是1x >,故答案为:1x >.【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式和二次根式的概念是解题关键.19.【分析】根据二次根式的性质被开方数大于等于0列出不等式即可求解【详解】由题意得:解得:故答案为:【点睛】本题主要考查了二次根式熟练掌握二次根式的性质并列出不等式是解决本题的关键解析:3x ≥【分析】根据二次根式的性质,被开方数大于等于0,列出不等式即可求解.【详解】由题意得:30x -解得:3x故答案为:3x .【点睛】本题主要考查了二次根式,熟练掌握二次根式的性质并列出不等式是解决本题的关键. 20.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.三、解答题21.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x ≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.22.(1)2)13【分析】(1)先将原式中的二次根式化成最简二次根式,然后再合并即可得到答案;(2)先进行化简和根据完全平方公式去括号,再进行计算即可.【详解】解:(1=13⨯==(2()21-==6-=13-【点睛】此题考查二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.23.(1)12)12x -,12- 【分析】(1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案.【详解】解:(1)原式(14124121⎛=⨯--=--+= ⎝⎭;(2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠, x 只能取0,当0x =时, 原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.24.(1)3;(2)2.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、二次根式的除法,然后再计算加减运算,即可得到答案;(2)先由二次根式的性质进行化简,然后计算乘法运算和加法运算即可.【详解】解:(1)101(4)4π-⎛⎫-- ⎪⎝⎭=14=3;(2)=2=2.【点睛】本题考查了二次根式的性质,二次根式的混合运算,零指数幂,负整数指数幂,解题的关键是熟练掌握运算法则进行解题.25.(12)9. 【分析】(1)先将二次根式化简,再合并计算即可;(2)先利用完全平方公式,二次根式的性质化简,再合并计算即可.【详解】解:(1)=(2)22)-=3434432=9.【点睛】 本题考查二次根式的混合运算,完全平方公式,熟练运用二次根式的运算法则是解题的关键.26.(1)-5;(2;(3)5x =或3x =-;(4)-1【分析】(1)分别利用乘方、负整数指数幂、算术平方根和立方根计算,再将结果相加减;(2)分别利用二次根式的性质、绝对值的性质和零指数幂化简(或计算),再将结果相加减;(3)两边直接开平方后,解一元一次方程即可;(4)移项合并后开立方即可.【详解】解:(1)原式=145(3)-+-+-=94-+=5-;(2)原式=211-;(3)2(1)16x -=两边同时开平方得:14x -=±,即14x =±,即5x =或3x =-;(4)321x +=移项后合并得:31x =-两边同时开立方得:1x =-.【点睛】本题考查实数的混合运算,利用平方根和立方根解方程.涉及的知识点有二次根式的性质、零指数幂和负整数指数幂、化简绝对值、平方根和立方根等.(1)(2)中能利用相关定义分别计算是解题关键;(3)(4)中主要用到的思想是降次.。
新人教版八年级下册二次根式(全章)习题及答案
![新人教版八年级下册二次根式(全章)习题及答案](https://img.taocdn.com/s3/m/6effcb7ff18583d048645933.png)
二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
八年级数学下册《二次根式》练习
![八年级数学下册《二次根式》练习](https://img.taocdn.com/s3/m/81468be28bd63186bcebbcae.png)
八年级数学下册《二次根式》练习班级姓名一、选择——基础知识运用1.化简的结果是()A.2B.2C.3D.32.当1<x<2时,化简-+-得()A.2x-3 B.1 C.3-2x D.-13.把x-根号外的因数移到根号内,结果是()A.B.-C.--D.--= -1,则a与b的大小关系为()4.如果-A.a>b B.b>a C.a≥b D.b≥a5.某校研究性学习小组在学习二次根式=|a|之后,研究了如下四个问题,其中错误的是()A.在a>1的条件下化简代数式a+-的结果为2a-1B.当a+-的值恒为定值时,字母a的取值范围是a≤1C.a+-的值随a变化而变化,当a取某个数值时,上述代数式的值可以为D.若-=(-)2,则字母a必须满足a≥1二、解答——知识提高运用6.计算:(a>0)。
7.计算:(1)(a≥0,b≥0)(2)-(3)(c>-1,b>0)(4)(m≥0)8.求-+ -的值。
9.如图,已知实数a,b在数轴上位置如图所示,试化简-+ -|a+b|.。
10.若b为实数,化简|2b-1|- -。
11.设-的小数部分为b,求证:-=2b+。
12.把根号外的因式移到根号内:(a-1)。
-13.已知x<2,则化简x2-4x+4.14.化简1-6x+9x2-(2x-1)215.若m满足关系式3x+5y-2-m+2x+3y-m=x-199+y·199-x-y,试确定m的值.参考答案一、选择——基础知识运用1.【答案】C2.【答案】B【解析】∵1<x<2,∴原式=-+ -=|x-2|+|x-1|=2-x+x-1=1故选:B。
3.【答案】C【解析】由x-可知x<0,所以x-= - -= --,故选:C。
4.【答案】B-= -1,【解析】∵--=-1,∴-∴-=b-a,∵b-a>0,∴b>a,则a与b的大小关系为:b>a.故选:B。
5.【答案】C【解析】A.原式=a+-=a+|a-1|当a>1时,原式=a+a-1=2a-1,故A正确;B.原式=a+-=a+|a-1|,当a≤1时,原式=a+|a-1|=a+1-a=1,故B正确;C.当a>1时,原式=2a-1>1;当a≤1时,原式=1,故C错误;D.由=()2(a≥0),可知D正确.故选:C。
(2021年整理)新人教版八年级数学下二次根式练习题(推荐完整)
![(2021年整理)新人教版八年级数学下二次根式练习题(推荐完整)](https://img.taocdn.com/s3/m/bbd515d076c66137ef061900.png)
新人教版八年级数学下二次根式练习题(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版八年级数学下二次根式练习题(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版八年级数学下二次根式练习题(推荐完整)的全部内容。
新人教版八年级数学下二次根式练习题(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望新人教版八年级数学下二次根式练习题(推荐完整)这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈新人教版八年级数学下二次根式练习题(推荐完整)> 这篇文档的全部内容。
新人教版八年级数学下二次根式练习题测试时间:90分钟第Ⅰ卷[基础测试卷]一、单项选择题(每小题2分,共20分) 1.下列各式是二次根式的是( )A 。
2--xB 。
xC 。
22+x D.22-x2.如果x 的取值范围是( )A.1x >B.1x ≥ C 。
1x ≤ D.1x <3 )A 。
B 。
C 。
2-D.24。
下列根式中属于最简二次根式的是( )A5.下列计算错误..的是( )== C.=。
3= 6.估计202132+⨯的运算结果应在( ) A.6到7之间 B.7到8之间 C 。
8到9之间 D.9到10之间 7。
北京市人大附中八年级数学下册第一单元《二次根式》检测卷(有答案解析)
![北京市人大附中八年级数学下册第一单元《二次根式》检测卷(有答案解析)](https://img.taocdn.com/s3/m/c0482336f8c75fbfc67db228.png)
一、选择题1.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .12. )A .1B .2C .3D .4 3.若x=,则2x 2x -=( )A B .1 C .2D 14.( )A .1个B .2个C .3个D .4个5. )A .3BCD .36.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .7.下列根式是最简二次根式的是( )A B C D8.)0a <得( )A B .C D .9.是同类二次根式,那么下列各数中,n 可以取的数为( ). A .4 B .6 C .8 D .1210. )A B .C D .11. ) A .1个 B .2个 C .3个 D .4个12.已知a =,b =,则a 与b 的大小关系是( ). A .a b > B .a b < C .a b = D .无法确定二、填空题13.计算((22⨯+的结果是_____.14.=_____.15.已知m =m a =_____________.16.若6y =,则xy 的平方根为________.17.可以合并,则实数a 的值是 _________.18.20052006=________.19.已知263(5)36m n m -+-=-m n -=_______.20.若1y =,则x y -=_________.三、解答题21.0111()2π--+. 22.计算:(1(2)2|1(2)+--23.(1(2)计算:21)2)+;(3)用适当的方法解方程组:3,43 5.x y x y -=⎧⎨+=⎩ 24.计算:(1(2)(325.先化简,再求值:21()111x x x x -÷---,其中x .26.先化简,再求值:2221111x x x x -+⎛⎫÷- ⎪-⎝⎭,其中x 1.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A+1+1)=0,故本选项不合题意;B、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意; C﹣2)=3,故本选项不合题意;D)(12,故本选项不合题意.故选:B .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b )(a-b )=a 2-b 2.2.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.B解析:B【分析】直接将已知分母有理化,进而代入求出答案.【详解】解:∵ x==1=, ∴ ()2x 2x x x 2-=- )112=- 21=-1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.4.B解析:B【分析】 根据最简二次根式的定义进行求解即可.【详解】=2==2个,故选:B .【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.D解析:D【分析】直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数;【详解】. 故选:D .【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键;6.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 7.B解析:B【分析】利用最简二次根式定义判断即可.【详解】A =BC 2=,不是最简二次根式,该选项不符合题意;D 3=,不是最简二次根式,该选项不符合题意; 故选:B .【点睛】本题考查了最简二次根式.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.A解析:A【分析】根据二次根式有意义的条件可推测0,0a b <≤,利用积的算术平方根以及商的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来即可.【详解】∵0a <,∴0b ≤,∴a -====- 故选A.【点睛】本题考查二次根式的性质与化简,掌握二次根式的意义以及化简方法为解题关键. 9.C解析:C【分析】是同类二次根式.【详解】解:A 2=不是同类二次根式;B 不是同类二次根式;C =是同类二次根式,正确;D =不是同类二次根式;故选:C .【点睛】本题考查了同类二次根式的定义.要化简为最简二次根式后再判断.10.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D 、2=,所以 故选:C .【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.11.B解析:B先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;2被开方数相同,故是同类二次根式.2个,故选:B .【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.B解析:B【分析】 将a =,b =进行分母有理化,再比较即可. 【详解】 解:451451515151a , 46262626262b , ∵<1<∴16+<+∴a b <.故选B .【点睛】本题考查了分母有理化,不等式的性质,实数比较大小等知识点,熟悉相关性质是解题的关键.二、填空题13.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.14.【分析】直接根据二次的性质进行化简即可【详解】解:因为>1所以=故答案为:【点睛】此题主要考查了二次根式的性质掌握是解答此题的关键1.【分析】直接根据二次的性质进行化简即可.【详解】>1,|1(11=-=1.【点睛】()(0)0(0)a a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键.15.1【分析】根据二次根式有意义的条件列出不等式求出am 根据指数为0得到答案【详解】解:根据题意得2020﹣a≥0a ﹣2020≥0解得a =2020则m =0∴am =20200=1故答案为:1【点睛】本题考解析:1【分析】根据二次根式有意义的条件列出不等式,求出a 、m ,根据指数为0,得到答案.【详解】解:根据题意得, 2020﹣a ≥0,a ﹣2020≥0,解得,a =2020,则m =0,∴a m =20200=1,故答案为: 1.【点睛】本题考查的是二次根式有意义的条件和0指数幂,掌握二次根式的被开方数是非负数是解题的关键.16.±3【分析】根据二次根式有意义的条件求出x进而求出y根据平方根的概念解答即可【详解】解:要使有意义则x-3≥0同理3-x≥0解得x=3则y=6∴xy=18∵18的平方根是±3∴xy的平方根为±3故答解析:.【分析】根据二次根式有意义的条件求出x,进而求出y,根据平方根的概念解答即可.【详解】有意义,则x-3≥0,同理,3-x≥0,解得,x=3,则y=6,∴xy=18,∵18的平方根是,∴xy的平方根为,故答案为:.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.17.2【分析】最简二次根式与可以合并即被开方数相同然后列出方程解出a 【详解】解:解得:故答案为:2【点睛】本题考查同类二次根式解一元一次方程等知识点掌握两个最简二次根式可以合并即被开方数相同是解题的关键解析:2【分析】与a.【详解】a-=解:213a=解得:2故答案为:2.【点睛】本题考查同类二次根式,解一元一次方程等知识点,掌握两个最简二次根式可以合并,即被开方数相同是解题的关键.18.【分析】逆用积的乘方法则和平方差公式计算即可【详解】解:原式=故答案为:【点睛】本题考查了二次根式的混合运算熟练掌握二次根式的运算法则是解答本题的关键整式的乘法的运算公式及运算法则对二次根式的运算同解析:【分析】逆用积的乘方法则和平方差公式计算即可.【详解】解:原式=20052005⋅⋅ 2005⎡⎤=⋅⋅⎣⎦=-=故答案为:-【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.19.-2【分析】先根据二次根式的定义判断出m 的范围从而化简绝对值再根据非负性分别求解mn 的具体值从而得出结果【详解】由题意:则∴原式化简为:即:根据非负性:∴故答案为:-2【点睛】本题考查二次根式的定义 解析:-2【分析】先根据二次根式的定义判断出m 的范围,从而化简绝对值,再根据非负性分别求解m ,n 的具体值,从而得出结果.【详解】由题意:()230m n -≥,则3m ≥,630m -<,∴原式化简为:236(5)36m n m -+-=-即:2(5)n -,根据非负性:()25030n m n -=-=,, ∴53n m ==,,352m n -=-=-,故答案为:-2.【点睛】本题考查二次根式的定义,及绝对值的非负性,熟练根据定义进行推理证明是解题关键. 20.1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0则x=2易得y=1然后把x 与y 的值代入计算即可【详解】由题意得∴∴故答案为:1【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件解析:1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0,则x=2,易得y=1,然后把x 与y 的值代入计算即可.【详解】由题意得2020x x -≥⎧⎨-≤⎩,∴2x =,0011y =++=,∴1x y -=.故答案为:1.【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数.三、解答题21.【分析】根据二次根式、绝对值、零指数幂、负整数指数幂的性质计算,即可得到答案.【详解】0111()2π--+=112-+= 【点睛】 本题考查了二次根式、绝对值、零指数幂、负整数指数幂的知识,解题的关键是熟练掌握二次根式、绝对值、零指数幂、负整数指数幂的性质,然后根据实数的运算法则计算,即可完成求解.22.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答案.(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.(12)2+;(3)21xy=⎧⎨=-⎩【分析】(1)先化简二次根式,再合并同类项即可解答;(2)先利用完全平方公式、平方差公式运算,再合并同类项即可解答;(3)根据加减消元法解二元一次方程组即可.【详解】(1)解:原式5=+2=+=(2)解:原式2134=++-2=+(3)3,43 5.x yx y-=⎧⎨+=⎩①②解:3⨯+①②,得714x=,解得2x=,把2x=代入①,得23y-=,解得1y=-,所以方程组的解为21xy=⎧⎨=-⎩.【点睛】本题考查二次根式的混合运算、完全平方公式、平方差公式、解二元一次方程组,熟记公式,掌握二次根式的性质和二元一次方程组的解法是解答的关键.24.(1)2)0,(3)1.【分析】(1)先化成最简二次根式,再加减即可;(2)先用平方差公式进行计算,再化简合并;(3)先求立方根,再按运算顺序计算即可.【详解】解:(1,=,=;(2)224=--,734=--,0=;(3,3=,3=- 32=-,1=.【点睛】本题考查了二次根式的运算和求立方根,正确运用法则是解题关键.25.2x +.【分析】先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可.【详解】 解:原式=2(1)11x x x x ⎛⎫+⨯- ⎪--⎝⎭=2(1)1x x x +⨯-- =x +2.把x .【点睛】本题主要考查分式的混合运算,二次根式的加法,掌握分式的混合运算顺序和运算法则是解答本题的关键.26.+1x x ,22-. 【分析】先根据平方差公式,完全平方公式和分式的运算法则对原式进行化简,然后将x 1代入即可.【详解】 解:2221111x x x x -+⎛⎫÷- ⎪-⎝⎭=()()()21111x x x x x--÷+- =()()()21111x x x x x -+--× =+1x x当x 1时,原式=22-. 【点睛】 本题考查了分式的化简求值,掌握平方差公式,完全平方公式和分式的运算法则是解题关键.。
人教版八年级数学下册二次根式全章复习与巩固(基础)典型例题讲解+练习及答案.doc
![人教版八年级数学下册二次根式全章复习与巩固(基础)典型例题讲解+练习及答案.doc](https://img.taocdn.com/s3/m/b82f9872cfc789eb172dc882.png)
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】《二次根式》全章复习与巩固--知识讲解(基础)责编:杜少波【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义. 2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 2a . (32a a ,再根据绝对值的意义来进行化简.(42a 2()a 的异同2a a 可以取任何实数,而2a 中的a 必须取非负数;2a a ,2a =a (0a ≥).相同点:被开方数都是非负数,当a 2a 2)a .3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.222,,3,ab x a b +次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.2882228显然是同类二次根式. 要点二、二次根式的运算 1. 乘除法(1)乘除法法则: 类型 法则逆用法则二次根式的乘法0,0)a b ab a b =≥≥积的算术平方根化简公式:(0,0)ab a b a b =≥≥二次根式的除法=(0,0)a aa b b b≥>商的算术平方根化简公式:0,0)a aa b b b=≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd = (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).(4)(9)49-⨯-≠--.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】类型一、二次根式的概念与性质1. 当________时,二次根式3x -在实数范围内有意义. 【答案】x ≥3.【解析】根据二次根式的性质,必须3x -≥0才有意义.【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥时a 才是二次根式. 举一反三【:二次根式 高清ID 号:388065 关联的位置名称:填空题5】 【变式】①242x x =-成立的条件是 . ②2233x x x x--=--成立的条件是 . 【答案】① x ≤0;(2422x x x x ==-∴≤0.)② 2≤3x <.(20,30,x x -->∴≥2≤3x <)2.当0≤x <1时,化简21x x +-的结果是__________.【答案】 1.【解析】因为x ≥0,所以2x =x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,所以21x x +-=x +1-x =1.【总结升华】利用二次根式的性质化简二次根式,即2a =a ,同时联系绝对值的意义正确解答. 举一反三【变式】(2015春•大冶市期末)已知﹣=2,则+的值为_____________. 【答案】5.解:∵﹣=2,∴=+2,两边平方得,25﹣x 2=4+15﹣x 2+4,∴2=3,两边平方得4(15﹣x 2)=9, 化简,得x 2=,∴+=+=5.故答案为:5.3.下列二次根式中属于最简二次根式的是( ).A. 14B. 48C. abD. 44a + 【答案】A.【解析】选项B :48=43;选项C :有分母;选项D :44a +=21a +,所以选A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;(2)被开方数中不含能开方的因式或因数. 类型二、二次根式的运算4.(2016•来宾)下列计算正确的是( ) A .﹣= B .3×2=6C .(2)2=16D .=1【答案】B.【解析】解:A 、不能化简,所以此选项错误;B 、3×=6,所以此选项正确;C 、(2)2=4×2=8,所以此选项错误;D 、==,所以此选项错误;故选B .【总结升华】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.举一反三 【变式】计算:48(54453)833-+⨯ 【答案】243610-.5.化简20102011(32)(32)+⋅-. 【答案与解析】201020102010=(32)(32)(32)(32)(32)(32)1(32)3 2.+⋅-⋅-⎡⎤=+⋅-⋅-⎣⎦=⋅-=-原式【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.6.已知2231,12x x x x=-+求.【答案与解析】2231,1=30,(1)133331=33x x x xx x x =+∴->∴=--+==原式当时,原式【总结升华】 化简求值时要注意x 的取值范围,如果未确定要注意分类讨论. 举一反三【:二次根式 高清ID 号:388065关联的位置名称:计算技巧6-7】 【变式】已知a b +=-3, ab =1,求ab b a +的值. 【答案】∵a b +=-3,ab =1,∴<0a ,<0b11++)=-=3ab ab a bb a ab∴原式.中考数学知识点代数式 一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
(完整版)八年级数学下册二次根式练习题及答案
![(完整版)八年级数学下册二次根式练习题及答案](https://img.taocdn.com/s3/m/6359b8a60066f5335b81210f.png)
八年级数学下册二次根式练习题及答案九年级数学科检测范围:二次根式完卷时间:45分钟满分:100分一、填空题。
1、当x ________时,2?x在实数范围内有意义。
2、计算: =________。
3、化简: = _______。
4、计算:2×=________。
5、化简:=_______。
6、计算:÷7、计算:-20-5=_______。
8化简: = ______。
1235=_______。
二、选择题。
、x为何值时,x在实数范围内有意义 x?1A、x > 1B、x ≥ 1C、x 10a = - a ,则a的取值范围是A、 a>0B、 a 11、若a?4=,则的值为A、B、1C、100 D、19612、下列二次根式中,最简二次根式的是A、17B、13C、±17D、±132)14、下列计算正确的是A、2+ =B、2+=22C、2=D、15、若x A、-1B、1C、2x-D、5-2x16、计算的结果是A、2+1B、3C、1D、-1三、解答题。
17、计算: -18、计算:00·00819、利用计算器探索填空:44?=_______; 444?8=_______;444444?88=_______;…… 由此猜想:n个8) =__________。
44444?881、≤、、、65、、、、-二、选择题9、A 10、D 11、C 12、B 13、B 14、C 15、D 16、A 三、解答题 17、解:原式=2-18、解:原式=[]200·=00·=-2219、解:;66;666;……;666…6。
20、解:∵x+ =,∴= 10,121∴x+2,∴x+=8,xx222- + =-21x1x1221∴ = x+2,xx∴x- = ±6。
1x5初中数学二次根式测试题判断题:.1.2=2.…….?1?x2是二次根式.……………2?122=2?2=13-12=1.4.a,ab2),c1a是同类二次根式.……5.a?b的有理化因式为填空题:6.等式a?b.…………选择题:3b1?x?x2=______________.4b?a是同类二次根式,则a=_________,b=__________.16.下列变形中,正确的是………2=2×3=25?=9?42=a+b=-2517.下列各式中,一定成立的是……+118.若式子=a2a2?1=?1?1ab=1bab2x?1-?2x+1有意义,则x的取值范围是 (111)x≥x≤x=以上都不对222a19.当a<0,b<0时,把化为最简二次根式,得…………………………………b111ab -ab -?ab bab bbb20.当a<0时,化简|2a-a|的结果是…a -a a -3a计算:23.-;24.÷;+-422?1+20;a3b-ab+2ba+ab)÷ba.求值:27.已知a=28.已知x=29.已知解答题:30.已知直角三角形斜边长为已知|1-x|- 12,b=14,求ba?-的值.1,求x2-x+的值.?2x?2y+3x?2y?8=0,求x的值.6+)cm,一直角边长为cm,求这个x2?8x?16=2x-5,求x的取值范围.- -试卷答案1.√;2.×;3.×;4.√;5.×..x≤1..二次根式8.∵a有意义的条件是什么?a≥0.≥3?4?2,∴ 119.2-2=?23.222a10.a.911.从数轴上看出a、b是什么数?[a<0,b>0.]3a -4b是正数还是负数? [3a-4b<0.]6a-4b.12.3.?2?0,2??0.<.x?8和y?2各表示什么?[x-8和y-2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x-8=0,y-2=0.]8,2.)=-11.3+25.11114.x2-2x+1=2;-x+x2=2.[x-1;-x.]当<x <1时,x-1422113与-x各是正数还是负数?[x-1是负数,-x也是负数.]-2x.2213..∴ 直角三角形的面积为:S=12×3×=- -326?答:这个直角三角形的面积为cm2.2=|1-x|-|x-右边=2x-5.x的取31.由已知,等式的左边=|1-x|-?1?x?0只有|1-x|=x-1,|x-4|=4-x时,左边=右边.这时?解得1≤x≤4.∴x?4?0.?值范围是1≤x≤4.- -人教版八年级上册测试数学试卷一、填空题1.______个.. 当x= 时,二次根式x?1取最小值,其最小值为。
人教版八年级数学下册二次根式典型例题讲解+练习及答案(提高).doc
![人教版八年级数学下册二次根式典型例题讲解+练习及答案(提高).doc](https://img.taocdn.com/s3/m/74cde58b76eeaeaad1f3308d.png)
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】二次根式(提高)责编:常春芳【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.【要点梳理】要点一、二次根式及代数式的概念1.二次根式:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号. 要点诠释: 二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质1、; 2.;3.. 要点诠释:1.二次根式(a ≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即2()(0a a a =≥).2.2a 与2()a 要注意区别与联系:1)a 的取值范围不同,2()a 中a ≥0,2a 中a 为任意值.2)a ≥0时,2()a =2a =a ;a <0时,2()a 无意义,2a =a -.【典型例题】类型一、二次根式的概念1.当x 是__________时,+在实数范围内有意义? 【答案】 x ≥-且x ≠-1 【解析】依题意,得23010≥①≠②x x +⎧⎨+⎩由①得:x ≥-由②得:x ≠-1当x ≥-且x ≠-1时,+在实数范围内有意义.【总结升华】本题综合考查了二次根式和分式的概念.举一反三:【变式】(2015•随州)若代数式11x x +-有意义,则实数x 的取值范围是( ) A .x≠1 B. x ≥0 C. x≠0 D. x ≥0且x≠1【答案】D提示:∵代数式+有意义,∴, 解得x ≥0且x ≠1.类型二、二次根式的性质2.根据下列条件,求字母x 的取值范围:(1); (2). 【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三:【:二次根式及其乘除法(上)例1(1)(2)】【变式】x 取何值时,下列函数在实数范围内有意义?(1)y=x --11+x ,___________________;(2)y=222+-x x ,______________________; 【答案】(1)01001x x x x -+≠∴≠-≥,≤且(2)2222(1)10,x x x x -+=-+>∴为任意实数.3. (2016•潍坊)实数a ,b 在数轴上对应点的位置如图所示,化简|a |+的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b【思路点拨】直接利用数轴上a ,b 的位置,进而得出a <0,a ﹣b <0,再利用绝对值以及二次根式的性质化简得出答案.【答案】A .【解析】解:如图所示:a <0,a ﹣b <0,则|a |+=﹣a ﹣(a ﹣b )=﹣2a +b .故选:A .【总结升华】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.【:二次根式及其乘除法(上)例4】4.已知c b a ,,为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=.【答案】a b c ++【解析】c b a ,,为三角形的三边,0,0,0a b c b c a b c a ∴+->--<+->即原式=a b c a c b b c a +-++-++-=a b c ++【总结升华】重点考查二次根式的性质:的同时,复习了三角形三边的性质.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
北京市人大附中八年级数学下册第十六章《二次根式》测试题(含答案解析)
![北京市人大附中八年级数学下册第十六章《二次根式》测试题(含答案解析)](https://img.taocdn.com/s3/m/00c79345960590c69fc376e7.png)
一、选择题1.是同类二次根式的是( )A B C D2.已知x+y =﹣5,xy =4,则 ) A .4B .﹣4C .2D .﹣2 3.若x=,则2x 2x -=( )A B .1 C .2D 14.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间5.如x 为实数,在“1)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A 1B 1C .D .1-6.( )A .1个B .2个C .3个D .4个 7.下列式子中是二次根式的是( )A B C D 8.下列运算正确的是 ( )A B C .1)2=3-1 D9.下列算式中,正确的是( )A .3=B =C =D 4= 10.下列各式中,一定是二次根式的个数为( )10),22a a a ⎫+<⎪⎭ A .3个 B .4个 C .5个 D .6个 11.下列运算正确的有( )个.①6-==7==2=④=⑤=5== A .1B .2C .3D .4 12.下列各式计算正确的是( )A +=B .26=(C 4=D =13.=x 可取的整数值有( ). A .1个B .2个C .3个D .4个 14.已知a =,b =,则a 与b 的大小关系是( ). A .a b > B .a b < C .a b = D .无法确定15.下列二次根式中,不能..合并的是( )A B C D 二、填空题16.计算((22⨯+的结果是_____.17.化简题中,有四个同学的解法如下:======== 他们的解法,正确的是___________.(填序号)18.x 的取值范围是____19.=_____.20.23()a -=______(a≠0),2-=______,1-=______.21._____.22.计算2+________.23.,则x 的取值范围是_____.24.若6y =,则xy 的平方根为________.25.若1y =,则x y -=_________.26.=________. 三、解答题27.(1;(2)计算:28.计算:(1(2)()()2332222a b b ab ⋅-+-29.已知1x =,x 的整数部分为a ,小数部分为b ,求a b 的值.30.()03.142π-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二(下)数学练习9《二次根式》单元验收
2012·5·16
一、选择题(每题3分,共36分)
1.下列各式一定是二次根式的是( )
7.-A a B . 1.2+a C 33.D
2.在二次根式,4,2,272a xy - 221,,4
a a y a +-中,最简二次根式有( ) A .2个 B .3个 C .4个 D .5个
3.若代数式1
-x x 在实数范围内有意义,则x 的取值范围为( ). A .x>0且x≠l B . x≥O C.x≠1 D .x>0且x≠1
4.计算:31
33⨯÷的结果为( )
3.A 9.B 1.C 33.D
5.式子25-的倒数是( )
25.+A 25.--B 252.+⋅C 225.+D
6.下列运算正确的是( )
x x x A 65..=⋅ 12223.=-B x x x C 275.-=⋅- 5252.=+D
7.下列各式中,一定能成立的有( ).
22)5.2()5.2(=-① 22)(a a =② 1122-=+-x x x ③ 3392+⋅-=-x x x ④
①.A ①④.B ①③④.C ①②③④.D
8.小明的作业本上有以下四题:
;41624a a =① ;.25105a a a =⨯② ;1.12a a
a a a
==③ a a a =-23④ 其中做错的题是( ) ①.A ②.B ③.C ④.D
9.已知a<b ,化简二次根式b a 3-的结果是( )
ab a A --. ab a B -. ab a C . ab a D -.
10.若n 24是整数,则正整数,n 的最小值是( )
A .4
B . 5
C . 6
D . 7
11.把m
m 1-根号外的因式移到根号内,得( ) m A . m B -. ⋅--m C . m D -.
12.化简212172232-+-等于( )
245.-A 124.-B 5.C 1.D
二、填空题(每题3分,共24分)
13.2
5-的倒数是 . 14.三角形的三边长分别为,45,40,20Cm Cm cm 则这个三角形的周长为 .
15.比较大小:①14-②12- 16.若,6632+++--=x x y 则x+y 的值是 .
17.当x= 时,二次根式12+x 取最小值,其最小值为 . 18.计算5)25.()25(20112010⋅-+-的值为 .
19.若3的整数部分是a ,小数部分是b ,则22b a +的值是 .
20.若一次函数y=ax+l-a 中,y 随x 的增大而增大,且它的图象与y 轴交于正半轴,则.)1(22=+-a a
三、解答题(21题每小题2分,22题每小题3分)
21.化简下列各式:
=1000① ; ;=-2)3.0(② ;=322
③ ;.)31(21=-④
,)0(182
=>m n m ⑤ ; =--a a 3⑥ 22.计算:
)459(4
3332-⨯hr ① )4831()15(2023-⋅-⋅②
)813(211-÷③ 48327
14122+-④
0212)1ˆ(ˆ818
-+-≡-t L
⑤ rh x x x x x 1246932-+⑥
23.(4分)已知,231+=
x 求121010x 2345++--+x x x x 的值.
24.(6分)阅读下面解题过程:化简13
58104++解: 原式=13
5813)58(135813)5048(13581042++-+=++-++=++I 13581358)1358)(1358(-+=++-++
+=
请回答下列问题:
l)利用上述方法化简532/
62++
2)认真分析化简过程,然后找出规律,并表示出其规律
四、附加题:
25.若有理数x 、y 、z 满足).,(2
121z y x z y x ++=-+-+则3)(yz x -的值是 . 26.化简.6
3121823346=+++++
27.化简 :=++++++++10991014334132231221。