小学奥数2017年希望杯培训一百题六年级第76题
2017年第十五届六年级希望杯100题培训题
2017第十五届六年级希望杯100题培训题17.已知a=2015×2017,b==2014×2018,c==2016×2016,将a、b、c从大到小排列。
18、在9个数:..70.,3.75,15,21.,1,45,7.8,52中,取一个数作被除数,再取另外两个数,用它们的和作除数,使商为整数,请写出3个算式。
(答案不唯一)19、定义:b 1a a@b +=,求2@(3@4)。
20、若n个互不相同的质数的平均数是15,求n的最大值。
21、若一位数c(c不等于0)是3的倍数,两位数____bc是7的倍数,三位数____abc是11的倍数,求所有符合条件的三位数____abc的和。
22、用a、b、c可以组成6个无重复数字的三位数,且这6个数的和是4662,这6个数都是3的倍数吗?23、已知n!=1×2×3×…×n,计算:1!×3-2!×4-4!×6+…+2015!×2017-2016!。
24、一串分数:, (13)1,101...,,108,109,...,103,102,101,71,72,73,74,75,76,75,74,73,72,71,41,42,43,42,41 求第2016个分数。
25、在不大于循环小数.912.的自然数中有几个质数?26、设n !=1×2×3×…×n ,问2016!的末尾有多少个连续的0?27、四位数_______abcd ,若_______abcd -10(a+b+c+d )=1404,求a+b+d 。
28、A ,a ,b 都是自然数,且A+50=2a ,A+97=2b ,求A.29、求20167的十位数字。
30、若A 是B 的31,B 是C 的52,求CA 。
31、求17个自然数的平均数,结果保留两位小数,甲得11.28,这个数百分位上的数字错了,求正确答案。
希望杯六年级考前培训100题电子版本
2016希望杯六年级考前培训100题2016年第十四届小学“希望杯”全国数学邀请赛培训题(六年级)4.观察下面的一列数,找出规律,求,a, b1,2,6,15,31,56,,141,a,286 ,b11.若一个分数的分子减少10%,分母增加20%,则新分数比原来分数减少了____%.12.一个分数,若分母减1,化简后得31;若分子加4,化简后得21,求这个分数.果新的三位数是原来的32,那么原来的三位数是____.14.某校学生报名参加“希望杯”全国数学邀请赛的人数是未报名的人数的51,后来又有180名同学报名31,此时报名的人数是未报名人数的.这个学校有学生____人.15.若x , y ,z 是彼此不同的非零数字,且396=-zyx xyz ,求两位数xz 的最小值.16. a ,b , c ,d ,e , f , g ,h 是按顺序排列的8 个数,它们的和是72.若其中任意4个相邻的数和都相等.求a +b+c+d 的值.17.从216.1,67%,80,1514,811,2.1,521,这七个数中选出三个数,分别记为A 、B 、C .使得CB A+最小,这时, A =____,B+C =____.18.如果a 是1~9 这九个数字中的某一个,那aaaaaaaaa aaaa aaa aa a +++++ 是a 的____倍.19.已知a 是质数,b 是偶数,且788a 22=+b ,则a ×b = ____.20.已知a ,b ,c 都是质数,并且a +b+c +ab+bc +ac =133,则abc = ____.21.有一列数1,1,2,3,5,…,从第2 个数起,后一个数是它前面两个数的和,求第101个数被3 除的余数.22.若35 个不同的自然数(不含0)的平均数是20,求这35 个自然数中最大的数.23.三个数79,95,107分别除以一个大于 2 的自然数M ,得到相同的余数N .求M ×N 的值.24.甲乙两班共76 人,两班男女人数之比分别为2:3和5: 7 ,若甲班男生比乙班多1 人,则乙班有女生多少人?25.有一个三位数,它分别除以1,2,3,4,5 这5 个自然数的余数互不相同,求满足题意的最大的三位数.26. A 、B 、C 、D 是2 到16 中的四个不同的奇数,BA和D C 都是最简真分数并且彼此不等,若 A+B=C+D ,则BA和D C 的值有几组?27.有一次数学竞赛中,小红的准考证号是一个四位数.其中,十位数字是个位数字的3 倍,百位数字是十位数字的21,百位数字和千位数字之和等于个位数字和十位数字之和,这四个数字的平均数是4,则小红的准考证号是____.28.分母是2016 的所有最简真分数的和是多少?29.从1 开始的n 个连续的自然数,从中去掉最大的3 个数,若剩下的自然数的平均数是30,求n 的值.30.从1,2,3,…,2016 中取出n 个数相乘,若乘积的个位数字是1,求n 的最大值.31.图1 是由16 根火柴和2 张卡片组成的算式,请你移动火柴,使式子成立.(给出一种方法即可)32.将1 到 16 这16个数填入4×4的网格中,将一个数与相邻(相邻,指前、后、左、右,角上的数只有2 个相邻的数)的数进行比较,如果最多只有1 个数比它大,那么就称这个数是“希望数”.求1 到16 这16 个数中最多有几个“希望数”.33.某班30 人参加跳绳比赛,记录员在记录成绩时漏写一个空(记录成绩如下表).每人跳绳的个数 12、 15 、20、 25,人数 10、 8 、5、 4 、3已知该班平均每人跳绳16 个,则记录员漏写的这个空的值为____.34.某项工程计划在80 天内完成.开始由6 人用35 天完成了全部工程的31,随后再增加6 人一起完成这项工程,那么,这项工程提前____天完成.35.一本故事书,小光5 天读完,小羽3 天读完;一本英语书,小羽5 天读完,小飞4 天读完.小光每天的读书量比小飞每天的读书量少百分之几?36.一本故事书的页码中,数字3 一共出现了333 次,则这本书共有多少页?37.现在的时刻是上午8 点30 分,从这个时刻开始,经过12956 分钟后,是几点几分?38.求四点到五点之间,时针与分针成90度角的时刻.39.某书店规定:会员买书可打八五折,但办理会员卡需交15 元.某单位现需购买若干本原价是14 元的书,已知办理会员卡划算,则该单位至少要买多少本书?40.有50 张数字卡片,在每张上面写一个3 的倍数,或5 的倍数,其中,是3 的倍数的卡片张数占60%,是5 的倍数的卡片张数占80%,那么,是15 的倍数的卡片有____张.41.假设水结成冰后体积会增加101,则一块176 立方分米的冰块融化75%后,剩下的冰水混合物的体积是多少?42.两杯相同重量的糖水,若糖与水的重量比分别是1: 4和3: 7 ,则将两杯糖水混合后,糖与糖水的重量之比是多少?(答案写成百分比的形式)43.某商品在进价 240 元的基础上提价a %后,再打八五折出售,可获利 72 元,求a 的值.(保留两位小数)44.买3 支鉛笔和4 支碳素笔共用10.80 元钱,若买4 支铅笔和3 支碳素笔可少付0.60 元,求铅笔和碳素笔各多少元一支?45.如图2 是由两个半径为2 的直角扇形和两个腰长为2 的等腰直角三角形组成,求图中阴影部分的面积.46.某自行车前轮的周长是531米,后轮的周长是541米,则当前轮转的圈数比后轮转的圈数多10 圏时,自行车行走了多少米?47.要制造甲、乙两批零件,张师傅单独制造甲零件要9 小时,单独制造乙零件要12 小时.王师傅单独制造甲零件要3 小时,单独制造乙零件要15 小时.如果两人合作制造这两批零件,最少需要____小时.48.有黑白混合但数量相同的三堆棋子,第一堆的黑棋子和第二堆的白棋子数量相同,第三堆白棋子数是黑棋子数的2 倍,求第三堆中的黑棋子占全部黑棋子的百分比.49.某养殖场养了鸡、鸭、猪、羊四种动物,数头共有300 个,数脚共有840 只,结合图3中的信息,养殖场养____只鸡.50.甲、乙两商店以同一价格购进一种商品,乙购进的件教比甲少81,而甲、乙分别按获利75%和80%的定价出售.两商店全部售完后,甲比乙多获得一部分利润,这部分利润又恰好够他再购进这种商品4 件,那么甲两次共购进这种商品____件.51.某建筑工地,有74的工人做任务A ,余下的工人中,65的人做任务B ,其余做任务C .两小时后,调走做任务A 和做任务C 的工人总数的181做任务D ,此时做任务A 和做任务C 的人共有51 人,求这个工地的工人总人数.52.数一数图4 中共有多少个长方形(不包括正方形).53.如图5,由若干个小等边三角形构成,其中每个三角形的顶点都被称为格点,则以图中的格点为顶点的等边三角形有多少个?54.如图 6,由18 个1×1×1的小正方体组成,在图中能找到多少个1×2×2的长方体?55.如图7 所示,在圆上有8 个点,把其中任意两点连接起来,求过A 点的线段与其他线段相交在圆的内部最多有多少个交点.56.如图 8,在5×5的网格中,每一个小正方形的面积为 1,点P 可以是每个小正方形的顶点,求满足2=∆PAB S 的点P 的个数.57.蓄水池有甲、乙、丙三个进水管,如果想灌满整池水,单独打开甲管需6 小时,单独打开乙管需8 小时,单独打开丙管需10 小时.上午8 点三个管同时打开,中间甲管因故关闭,结果到中午12 点水池被灌满.求甲管被关闭的时间.58.设边长为整数、面积为2016 的不同长方形有1n 个,边长为整数、面积为1n 的不同长方形有2n 个,求 2016÷(1n +2n )59.如图9 所示,一个大长方形被分成9 个小长方形.小长方形内的数字表示它的面积,小长方形外面的数字表示那个小长方形的那一条边的长.求大长方形的面积.60.有甲、乙、丙三人,已知甲和乙的平均年龄是26 岁,乙和丙的平均年龄是21 岁,甲和丙的平均年龄是19 岁,求三人的平均年龄.61.如图10,小正方形的95被阴影部分覆盖,大正方形的1615被阴影部分覆盖,求小正方形的阴影部分与大正方形阴影部分面积比.62.有人问毕达哥拉斯,他的学校中有多少学生,他回答说:“现在,有一半的学生学数学,四分之一的学生学音乐,七分之一的学生在休息,还剩三个女同学….”那么毕达哥拉斯的学校中有____名学生.63.如果一个圆的面积与它的周长的数值相等,求圆的半径.64.如图 11,在正方形 ABCD中,AB =2,以C为圆心,CD长为半径画弧,再以B为圆心,BA为半径画弧,与前一条弧交于E ,求扇形BAE 的面积.(圆周率π取3)65.如图 12, AB =BC= 2,且AB⊥BC, AOD与DOC都是半径为 1 的半圆弧,求这个图形的面积.66.天天、Cindy、Kimi、石头、Angela 五人按顺序依次取出21 个小球.Kimi:“我取了剩下的小球的个数的三分之二”,Cindy :“我取了剩下的小球的个数的一半”,天天:“我取了剩下的小球的个数的一半”,石头:“我取了剩下的全部小球”,Angela :“大家取小球的个数都不同哎!”请问:Kimi 是第____个取小球的,取了____个.67.在分子为7 的最简分数中,与0.2016 最接近的分数的分母是____.68.把一个圆柱体沿高的方向截短3 厘米,它的体积减少84.78 立方厘米,求这个圆柱体的底面半径.(圆周率π取3.14)69.规定a*b=b a 4131,若(4*3)*a=1,则a=?70. 现有一块边长为20cm 的正方形铁皮,若在四个角处各锯掉一个边长为自然数acm0<a <10的小正方形铁皮,将其折成一个无盖的正方体,求长方体的最大体积.71.一个圆锥形容器,若水面高度是圆锥高度的一半时装水的体积是201.6 立方厘米,求这个容器的体积.72.为计算一个底部是圆柱形瓶子的容积,将瓶子装一定体积的水放在桌面上,然后把瓶子倒置,测得部分数据如图13,则瓶子的容积是多少?(结果保留π,不考虑瓶身的厚度)73.8 个相同的小长方体可拼成如图14 所示的大长方体,若小长方体的表面积是10.8,求大长方体的体积.74.某班有3 个教学小组,第1 小组的人数是其余小组总人数的31,第2 小组的人数是其余小组总人数的41,第3 小组有22 人,求该班共有多少人.75.超市运来一批大米,第一天卖掉51,第二天卖掉余下部分的41,第三天卖掉余下部分的31,这时还剩下600 千克,求超市在前三天共卖掉了多少千克大米?76.某商场销售一种商品,由于进价降低5%,售价保持不变,使获利提高6%,则原利润率是____.77.甲乙两个容器中共有水810 毫升,先将甲容器中10%的水倒入乙容器,再将乙容器中10%的水倒入甲容器,这时甲乙两个容器中的水量相等,问:原来乙容器中有多少水?78.将2016 个红球、201 个白球排成一条直线,至少会有多少个红球连在一起?79.有5 角,1 元的两种硬币若干枚,把它们分成钱数相等的两堆,其中,第—堆中5 角硬币与1 元硬币的个数比为5:3,第二堆中5 角硬币与1 元硬币的钱数比为1: 2,则这袋硬币总共至少有____枚.80.不透明的袋中装有外形完全相同的红球6 个,黑球5 个,白球4 个,从中任取两球,求这两球都不是白球的概率.81. A 、B 、C 三人单独制作一个零件的时间分别为:20 分钟,30 分钟,35 分钟,单独维护一台机器的时间分别为:32 分钟,28 分钟,24 分钟.现需制作20 个零件,维护25 台机器,问三人合作至少需要多少时间才能完成?(要求:每个零件及每台机器必须由同一人负责)82.某校四、五、六三个年级的总人数在200 到300 之间,若四、五年级的人数比是4:3,五、六年级的人数比为7 :11,求三个年级的总人数.83. 小明、小雷、小乐三人参加“希望杯”全国数学邀请赛,其中小明、小雷的平均成绩比他们三个人的平均成绩少5 分.小雷、小乐的平均成绩比他们三个人的平均成绩多3 分.已知小雷的成绩是84 分,求他们三个人的平均成绩.84.六年级3 班有40 名学生,学号分别是1~40.除小明之外,将其余39 名学生分成5 组,可使每个小组的学生学号之和都相等;若将这39 名学生分成8 组,也可使每个小組的学生学号之和相等.问小明的学号是多少?85.王明、李华两人玩射击游戏,箭靶如图15 所示,规定:王明射中甲部分才算成功,李华射中乙部分才算成功.若∠AOB =90°,C 为弧 AB 的中点.问:王明、李华两人谁的成功率大些?86. A 、B 、C 、D 四人中有一个人手里有巧克力.四人的叙述如下:A :巧克力不在我这里;B :巧克力在D 那里;C :巧克力在B 那里;D :巧克力不在我这里.若其中只有一人说了假话,那么谁的手里有巧克力.87.—条绳子第一次剪掉1 米,第二次剪掉剩余部分的41,第三次剪掉1 米,第四次剪掉剩余部分的21,第五次剪掉1 米,第六次剪掉剩余部分的32,这根绳子还剩下1 米,则这根绳子原来有____米.88. A 、B 、C 、D 四人排成一排照相.其中A 与C 必须相邻,B 不排在第一个,D 不排在最后一个,则有几种排列方法?89.六年级1 到4 班的四间教室排成一排,如图16 所示.甲、乙、丙、丁四人分别走进四间教室,且每间教室恰好走进一人.已知乙未进2 班教室,求乙、丙两人走进相邻两班教室的方法有多少种?90.现要将35 颗糖果分给6 人,若每个人分得的糖果数各不相同,则分得糖果最多的那个人至少分得几颗?91.将放有乒乓球的2016 个盒子从左到右排成一行.如果最左边的盒子里放了8 个乒乓球,且每相邻的5 个盒子里球的总个数都是42,那么最右边的盒子里的乒乓球的个数为____.92.有分别标有1,2,3,4,5,6 的6 个小球和6 个盒子,现将小球全部放进盒子里,要求:盒子的编号不能比盒子里的小球的编号大,且编号为3 的盒子至少装1 个球.求共有多少种不同的方案?93.如果两个人每天工作2 小时,2 天生产2 件商品.那么,6 个人每天工作6 小时,6 天生产商品____件.94.列车A 通过180 米的隧道需15 秒,通过150 米的隧道需13 秒.列车B 的车长为120 米,它的行驶速度是36 千米/小时.则两辆车从相遇到错车而过需多少秒.95.甲、乙两人分别从不同的两地A 、B 同时同向朝C 地出发,且A 、B 两地在C 地的同一侧.行驶了20 分钟,甲从A 到达B ,此时甲、乙相距700 米;又行驶了30 分钟,乙到达C 地,此时甲距C 地还有100 米,求A 、B 两地相距多少米?96. M=1×2×3×…×2016,用M 除以 13,将所得的商再除以13,重复以上操作,直到所得的商不能被13 整除为止,求M 可整除多少次13?97. A 、B 两地相距1800 米,甲、乙两人分别从A 、B 两地同时出发相向而行,15 分钟后两人相遇,已知甲的速度是70 米/分钟.如果乙提速10%,甲、乙仍从A 、B 两地同时出发相向而行,则出发多少分钟后两人相遇.98.从甲港往下游相距24 千米的乙港运860 吨货物,大船每艘可装运120 吨,小船每艘可装运72 吨,大船、小船载货时在静水中的速度都是33 千米/时,水速是3 千米/时;大船、小船在空载时在静水中的速度都是39 千米/时.大船、小船上午8 点同时从甲港出发.求两船一起将货物运达乙港的时间.(装卸时间不计,大、小船每次都正好装满)99.100 人排队依次跑步经过某座桥,其中前面50 人,每两人之间相距1 米,后面50 人.每两人之间相距2 米,第50 人和51 人之间相距5 米,已知他们每分钟都跑150 米,整个队伍通过该桥用了3 分钟,求该桥长度.100.某唱片公司新推出5首歌,为检验这些歌曲的受欢迎程度,现邀请520名听众对这些歌曲进行评价.每首歌不喜欢的人数如表所示.又每人至少喜欢1首歌,其中,仅喜欢1首歌的有70人,5首歌都喜欢的有60人,喜欢2首歌和喜欢3首歌的人数一样多,那么仅喜欢4首歌的有多少人?。
第16届希望杯考前训练100题六年级
第 16 届希望杯考前训练100 题学前知识点梳理“希望杯”全国数学邀请赛进行考前特训,主要学习内容有:1. 分数的意义和性质,四则运算,巧算与估计。
2. 百分数,百分率。
3. 比和比率。
4. 计数问题,找规律,统计图表,可能性。
5. 圆的周长和面积,圆柱与圆锥。
6. 抽屉原理的简单应用。
7. 应用题(行程问题、工程问题、牛吃草问題、钟表问題等)。
8. 兼备问题,最值问题,逻辑推理。
考前 100 题选讲 1、已知 A1 1 1 1 1 1 1, 求 A 的整数部分。
2 3 4 5 6 7 822、将数 M 减去 1,乘,再加上 8,再除以 7 的商,获取 4,求 M 。
3、计算 :11 1 1 1 1 1 1 1 1 。
2 6 12 20 30 42 56 72 901104、计算: 113.8 348 20172520185201875、计算 : 20172017 2017 2017 。
1 5 5 9 9 13 2013 20176、计算:11 1 1 1 1 1 6023456 77、A、B、C、D四个数的平均数是150,A 与 B 的平均数是 200,B、C、D的平均数是 160,求 B。
8、111 111除以 6 的余数是几?2018个19、解方程:x x x x 2017 。
2 23 34 20171 201810、在括号中填入合适的自然数,使11 1成立。
201811、已知n2n n ,求 1222322016 22017 2的末位数字。
12、定义:P Q 3P 4Q ,若x 7 37,求1x 1 的值。
3 413、已知 [X] 表示不高出 X的最大整数,若 [X+]+[X+]+[X+]++[X+]=104 ,求 X 的最小值。
14、在以低等式中的三个括号中填入三个不同样样的自然数,使等式成立。
111 11215、将 1× 2× 3× × 2018 记作 2018!。
2017六年级希望杯100题答案--全无水印
第十五届(2017 年)希望杯 100 题 · 六年级
Байду номын сангаас
2 2 2 2 1 2 1 2 1 2 5 1 7 1 9 1 99 1 2 2 2 2 = 48 4 6 6 8 8 10 98 100 1 1 1 1 1 1 1 1 = 48 4 6 6 8 8 10 98 100 1 1 = 48 4 100 6 = 48 . 25 27 3 9.(1) 0.2 7 = = . 99 11 1206 12 199 = (2) 0.12 0 6 = . 9900 1650 428571 571428 999999 = =1. 10.原式 = 999999 999999 999999 3 4 7 1 , 0.571428 = ,所以 0.4 28571 0.5 71428 = 1 . 另解 0 . 4 2 8 5 = 7 7 142857 1 35 = 35 = 5 . 11.原式 = 999999 7 4 7 12.原式 = = 1 . 7 4 16 1 2 999 16 1 = 13.原式 = 2 16 1 19 34 999 20 999 2 22 90 90 90 2000 16 2 90 10 = = . 999 2014 111 234 2 84 232 168 400 495 = 990 990 = 990 = 10 . 14.原式 = 990 568 56 56 512 112 400 11 900 450 900 900 900 15.原式 = 1 2 3 9 0.12 0.23 0.34 0.90 0.01 90 1 12 23 34 = 45 99 99 99 99 99 495 = 45 = 45 5 = 50 . 99 3 n 11 3 n 11 27 33 3 1 16. ,即 72 72 72 , 27 4n 66 , n , 6 n 16 ,所以满 8 18 12 8 18 12 4 2 4 2 3 n 11 足 的自然数 n 有 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ,共 10 个. 8 18 12 = 1
希望杯培训题精编打印版六年级.pdf
2017年第十五届小学“希望杯”全国数学邀请赛六年级培训题1.计算:671⨯672⨯673-670⨯672⨯674.2.若a ,b 是非0的自然数,并且a <b ,则b b a +的值(填序号)A .是0和1之间的数.B .是1和2之间的数.C .可以是2.D .可以大于23.若p ,q 是非0的自然数,并且p <q ,则四个式子:q p ,p p q -,p q p +,qq p +中,值在1和2之间的是哪一个?4.求三个分数2015201520142014201420142013201320132013,20122012 ,中值最大的.5.计算:2.016⨯1123+2⨯20.16⨯112.4+2⨯201.6⨯11.25+2⨯2016⨯1.126+20160⨯0.1127.6.计算10981 (5431)43213211⨯⨯+⨯⨯+⨯⨯+⨯⨯7.计算20182017201620162016+÷8.计算1-99199......1-9191-7171-51522222222+++++++9.化循环小数为分数:(1)∙∙72.0(2)∙∙6012.010.计算∙∙∙∙+871425.0128574.011.计算35742851.0⨯∙∙12.计算75.1871425.0⨯∙∙13.计算⎪⎭⎫⎝⎛+÷∙∙∙2019261.20610.214.计算45056-856.049584432.0∙∙∙+15.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙+++++++++10.909.898.787.676.565.454.343.232.121.012111883<n<n 有几个?17.已知20162016,20182014,20172015⨯=⨯=⨯=c b a ,将a,b,c 从大到小排列。
18.在9个数:52,7,8,45,1,1.2,15,3.75,0.7中取一个数作被除数,再取另外两个数,用它们的和作除数,使商为整数,请写出3个算式.(答案不唯一)19.定义:a ☆b =ba 1+,求2☆(3☆4).20.若n 个互不相同的质数的平均数是15,求n 的最大值.21.若一位数c (c ≠0)是3的倍数,两位数bc 是7的倍数,三位数abc 是11的倍数,求所有符合条件的三位数abc 的和.22.用a ,b ,c 能组成6个无重复数字的三位数,如abc ,acb 等,且这6个数的和是4662,问:这6个数部是3的倍教吗?23.已知n !=1⨯2⨯3⨯..........⨯ n ,计算:1!⨯ 3 - 2!⨯ 4 + 3!⨯ 5 - 4!⨯ 6 +......+ 2015!⨯ 2017 - 2016!.24.一串分数:,,,,,,,,,,,,,,,,,,,,,,132131101....108109.....10310210171727374757675747372714142434241求第2016个分数.25.在不大于循环小数12.9的自然数中有几个质数?26.设n !=1⨯2⨯3⨯.........⨯ n ,问: 2016! 的末尾连续有多少个 0 ?27.四位数abcd ,若abcd -10(a +b +c +d )=1404,求a +b +d .28.A,a,b都是自然数,且A+50=a2,A+97=b2,求A 29.求72016的十位数字.30.若A是B的1,B是C的352,求CA.31.求17个自然数的平均数,结果保留两位小数,甲得到11.28,这个数百分位上的数字错了,求正确答案.32.从100以内的25个质数中任取两个构成其分数,这样的其分数有几个?假分数有几个。
小学“希望杯”培训100题(六年级)及解析
小学“希望杯”培训100题(六年级)一、解答题(共100小题)1.计算:=.2.计算:2012×2014×().3..4.计算:(0.+0.3)×0.×0.7×=.5.计算:=.6.计算:=7.兄弟俩都有点傻,一位只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是岁,岁.8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有粒.9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=.(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长米,井深米.15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到个梨.16.31500的约数中与6互质的共有个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=.18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要分钟.20.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点km.22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了元.24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是,最大是.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.29.甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是________米/秒.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.36.在1到2013这2013个数中,共有个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是.38.若整数x满足不等式,则x=.39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是.40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(,).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是 .42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有 天.43.计算:.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).45.如图,在△ABC 中,,E ,G 分别是AD ,ED 的中点,若△EFG 的面积为1,则△ABC 的面积是 .46.如图 (1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是 .47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了 厘米.48.建筑公司计划修一条隧道.当完成任务的时,公司引进新设备,修建速度提高了20%,每天的工作时间缩短为原来的80%,实际185天完成了任务.若按原计划,则 天可完成任务.49.如果一个自然数能表示成两个非零自然数的平方差,则称这个数为”吉祥数”,如:9=52﹣42,9是”吉祥数”.那么从1开始的自然数中,第2013个”吉祥数”是 .50.有3个整数,如果第2个数的5倍是第1个数与1的差的4倍,第3个整数的5倍是第2个数与1的差的4倍,那么第1个数的最小值是.51.春蕊班的每位同学都参加了课外体操班或围棋班,有的同学还同时参加了两个班.如果同时参加两个班的人数是参加围棋班的,是参加体操班人数的.那么这个班只参加体操与只参加围棋班的人数之比是.52.甲乙两个硬盘的成本共1600元,甲按30%的利润定价,乙按40%的利润定价,甲按定价的90%出售,乙按定价的85%出售,供货的利润290元.那么甲的成本是元.53.已知,其中a,b,c,d,e都是整数,则其中最大的数的值是.54.咖啡店新推出一款杯子,定价是88元/个,实际销售时降了价,结果销量比预计的增加了,收入增加了,则每个杯子被降价元.55.若三个连续自然数的平方的和等于245,则这三个连续自然数的和是.56.已知长方体表面积是148cm2,底面面积是30cm2,底面的周长是22cm,则这个长方体的体积是cm3.57.用棱长为2厘米的小正方体,如图所示层层重叠放置.则当重叠了5层时,这个立方体的表面积是平方厘米.58.由长度分别为2,3,4,5,6的五条线段为边,可以组成个不同的三角形.59.若字母a,b,c分别表示不同的非零数字,则由a,b,c组成的各个数位上数字不同的三位数共有个,若除三位数外,其余几个的和为2874,则=.60.如图,边长为2a的正方形ABCD内有一个最大的圆圆O,圆O内有一个最大的正方形EFGH.用S1,S2,S3依次表示△EOF的面积,弓形EmF的面积,带弧边EmF的△EBF的面积,则S1*S2*S3=.(圆周率π取3)61.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.62.已知一列数:1,1,2,3,5,8,13,21,34,55,89,144,233,…,若第n个数比第n+2个数小233,则n=.63.一只蚂蚁沿边长为240cm的等边三角形ABC的三条边由A点顺时针爬行一周.它在三条边上的速度分别是每秒3cm,4cm,5cm(如图).且当它到达拐点(A,B,C)时会休息26秒,当它爬完一周回到点A时,行程结束.这期间,蚂蚁的平均速度是cm/s.64.至多含有一个奇数数字且能被25整除的四位数共有个.65.观察下面的数表:(横排为行,竖排为列)表中第1列都是单位分数,分母依次为1,2,3…,每行自第2个分数起,每个分数的分子等于左边分数的分子加1,分母等于左边分数的分母减1,直到分数的分母等于1.则位于第行,第列.66.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则n 最小是.67.现有3个互不相等的数,甲说是2,a+1,b+2;乙说是2b﹣1,3,a.若两人都说对了,则这三个数的乘积是.68.若×=6657,其中x,y,z都代表非零数字,则=.69.两个直角三角板如图放置,则∠BFE的度数是∠CAF的倍.70.一个长方体相邻的两个面的面积之和是130,它的长,宽,高都是不超过13的整数,且均为互不相等的质数,则这个长方体的体积是.71.如图,一个物体由2个圆柱组成,它们的半径分别是3厘米和6厘米,而高分别是5厘米和10厘米,则这个物体的表面积是平方厘米.72.植树节,5名小朋友给5棵树浇水,每个小朋友至少浇一棵树,但一个小朋友不能重复给同一棵树浇水,一桶水也只能浇一棵树.活动结束后,5个小朋友分别浇了2,2,3,5,x桶水,5棵树分别被浇了1,1,2,4,y 桶水,那么x=,y=.73.小明出去散步前看了一下手表,回来时又看了一下手表,发现此时手表的时针,分针的位置正好与出去时的分针,时针位置相同.若他在外逗留的时间不足一小时,则他在外待了分钟.74.如图所示,共有个三角形.75.一个长为4,宽为3的长方形如图竖直放置,在其右上角有一个红点A,长方形绕右下角旋转90°,成为一个横放的长方形,再绕右下角旋转90°,成为一个竖放的长方形,…,当小红点A第一次回到右上角时所走过的路程是.76.书架第一层有依次排列的10本不同的故事书,现将2本不同的漫画书也放入第一层,则不同的放法共有种.77.分母是385的所有最简真分数的和等于.78.有价值总和为174万元的三批货物,这三批货物的质量比是3:4:5,单位质量的价格比是6:5:4.这三批货物各价值万元.79.将分数化成小数后,如果小数点后第一位起连续N个数位上数字之和等于2013,那么N=.80.如图所示是一个边长为120m的等边三角形,甲乙同时分别从A点,B点按顺时针方向出发,甲每分钟走120m,乙每分钟走180m,但经过每个顶点时,因转弯都要耽误5s,则乙出发s后第一次追上甲.81.原来,单独打开进水管3小时能将水池注满,单独打开出水管4小时可排完一池水.后来,这个水池漏水了,同时打开进水管与出水管14小时才能将水池注满,则只打开进水管需要小时可以注满这个漏的水池.82.图书馆,游泳馆,少年宫三个站在一条笔直的公路上,且游泳馆到图书馆,少年宫两站的距离相等.小明和小华分别从图书馆,少年宫两站同时出发相向而行.小明超过游泳馆站100米后与小华相遇.然后二人继续前进.小明到达少年宫站后立即沿原路返回,经过游泳馆站后300米追上小华.则图书馆,少年宫两站相距米.83.马和狗约好去牛哥家做客,牛哥说他忘了去超市买面包,狗说他去,一会儿,马到了牛哥家,听说狗去买东西了,他急了,他说,狗跑5步的时间我能跑6步,我跑4步的距离相当于狗跑7步.而且我比他力气大,买东西的活儿我去,于是马也奔超市去了,此时狗已跑出550米了.超市离牛哥家有2000米,则马要跑米才能追上狗,此时离超市还有米.84.12和60是很有趣的两个数,这两个数的积恰好是这两个数的和的10倍:12×60=720=10×(12+60).满足这两个条件的非零自然数对还有:.85.明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量(填:多或少)道.86.一块木片沿河漂流,从河边的A地到B地,用了24小时.一只快艇在静水中的速度是18千米/小时,它从A驶到B所用的时间是从B驶到A所用时间的.则AB间的距离是千米.87.如图,AB∥CE,AC∥DE,且CE=DE=2AB=2AC,则=.88.小明和小林是两个集邮爱好者,他们共有邮票400多张,如果小明给小林a张邮票,小明就比小林少;如果小林给小明a张邮票,则小林就比小明少.那么小明原有张邮票,小林原有张邮票.89.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.90.为确保信息安全,信息需加密传输,发送方将明文加密成密文,接收方收到密文后解密可得明文.已知有一种加密方式是将英文26个小写字母a,b,c,…,依次对应0,1,2,…,25这26个整数(见下表),当明文中的字母对应的序号为a时,将a+10除以26后所得的余数作为密文中的字母对应的序号,例如明文”a”对应密文”k”.””91.如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.92.某校有960套桌凳需要维修.现有甲乙两个木工,甲单独修理这批桌凳比乙多用20天;乙每天比甲多修8套;甲乙每天的修理费分别是80元,120元.在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案共选择:①由甲单独修理;②由乙单独修理;③由甲乙共同合作修理.你认为哪种方案即省时又省钱?试比较说明.93.甲乙丙三辆汽车分别从A地开往千里之外的B地.乙比甲晚出发40分钟,出发后160分钟后能追上甲;丙比乙晚出发20分钟,出发后5小时追上乙.那么如果甲比乙先出发10分钟,乙比丙先出发10分钟,那么乙追上甲之后过多久丙能追上甲?94.已知甲乙丙三位同学在北京,广州,上海的大学学习软件设计,服装设计,城市规划.有下列判断:①甲不在北京学习;②乙不在广州学习;③在北京学习的同学不学城市规划;④在广州学习的同学是学软件设计的;⑤乙不学服装设计.三位同学各在什么城市学习什么专业?95.如图,长方形ABCD,ABEF,AGHF的长与宽的比相同,且,长方形BEHG的周长是22,求长方形ECDF的面积.96.在小于30的所有质数中,是否存在差与平方和都是质数的两个质数?若存在,有几组?若不存在,请说明理由.97.甲容器内有物质A和物质B,其质量比是2:3,乙容器内有物质B和物质C,其质量比是1:2,丙容器内有物质A和物质C.现将甲乙丙三容器中的物质以1:2:3的比例取出,混合,则所得新的混合物中,A,B,C三种物质的质量比是183:152:385.求丙容器内物质A和物质C的质量比.98.程序员设计了一款新游戏,共20级.小刚一次晋级2级游戏,或一次晋级3级游戏,那么他从入门(0级)晋级到第20级共有多少种不同的方法?10月份,小强的家里用了23m的居民用水,他开的餐厅,用了102m的餐饮用水,则这个月他应该交多少元水费?100.0.买一盒牙膏,一瓶沐浴露和一瓶洗发露共付款100元.若1瓶沐浴露比2盒牙膏贵,2瓶洗发露比7瓶沐浴露贵,8盒牙膏比1瓶洗发露贵,且每个产品的单价都是整数元,分别求一盒牙膏,一瓶沐浴露,一瓶洗发露的价格.小学“希望杯”培训100题(六年级)参考答案与试题解析一、解答题(共100小题,满分0分)1.计算:=.2.计算:2012×2014×()=2.3.(2010•成都校级自主招生).解:++…+,=×(﹣+﹣+…+﹣),=×(﹣)=×()=×=.4.计算:(0.+0.3)×0.×0.7×=.+0.3)×0.7×,(+×××,×××(×××,=××=×=5.=102.解:,=(1+3+5+..+19)+3×=102+3×(1﹣)=100+=102.6.=.解:设n=++,m=,则:(1+++)×(+++)﹣(1++++)×(++),=(1+n)×m﹣(1+m)×n=m+mn﹣n﹣mn=m﹣n,=()﹣(++)=.7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是6岁,9岁.解:弟弟:(3+3)÷(2﹣1)=6(岁);哥哥:6+3=9(岁).8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有180粒.解:取了:20÷(6﹣5)=20(次),共有:20×3×(1+2)=180(粒);9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=48cm2.(π取3)S1﹣S2=(S1+S阴)﹣(S2+S阴)=S圆﹣S正=3×(16÷2)2﹣122=192﹣144=48(平方厘米);10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是23×34×52×72×11×13.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有121块糖,丙最多有19块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.)×=3﹣×=3班的人数与总人数的比值是;故答案为:.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是84.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长42米,井深12米.对应的分率的差额是:﹣)()15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到15个梨.16.31500的约数中与6互质的共有8个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=4.S=S18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是153,154,155.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要27分钟.则苏老师与公车速度和为问题;苏老师与公车速度差为,因为这时是相遇问题;那么苏老师速度(+),所以苏老师与公车速度比:,,+),公车速度(﹣),苏老师与公车速度比:=520.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是3.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点136.96km.t=﹣,22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有12个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了120元.=,丙占总数的;;﹣﹣)÷,24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是24,最大是72.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现51个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以102次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=81.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有6组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是45:61.29.(2011•成都)甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是乙丙丁甲.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是米/秒.,那么上坡的时间就是,下坡的时间就是;用总路程+)÷,(米故答案为:.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是48.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是123.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的75%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有102座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是600.36.在1到2013这2013个数中,共有51个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是18.38.若整数x满足不等式,则x=3.因为不等式,<3,2,39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是1:3.厘米的圆面积的厘米的圆面积的,圆中,据此40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(4,60).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是18.42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有132天.43.计算:.2+))﹣,)2+)2+),.,2012+.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).的分子、分母同时扩大倍,变成的分子、分母同时扩大倍,变成===﹣=﹣﹣,==++++,==﹣﹣=+,45.如图,在△ABC中,,E,G分别是AD,ED的中点,若△EFG的面积为1,则△ABC的面积是18.中,,且,据此利用分数除法的意义即可解答问题.中,的面积的,÷=1846.如图(1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S1,S2,S3,则S1,S2,S3的大小关系是相等.47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了厘米.。
2017年希望杯六年级考前培训100题-几何答案
62. (1)当 D 点是 BC 上靠近 B 点的三等分点时,如图,连接 AD ,因为 AE = 所 以 A E=
5 1 1 1 1 = AB A B, BF = AB , 所 以 E F = 1 A B , 于 是 S△DEF 12 3 4 3 4 1 5 1 5 S△DEF = S△ ABC = 36 = 5 ; S△ A B D= S△ A B,所以 C 3 12 3 36
1 1 AB , BF = AB , 3 4 5 = S△ ABD , 又 因 为 12
(2) 当 D 点是 BC 上靠近 C 点三等分点时, 如图. 同 (1) , 得 S△DEF = 所以 S△DEF =
5 2 10 S△ ABC = 36 = 10 .故 S△DEF = 5 或 10 . 12 3 36
第十五届(2017 年)希望杯 100 题 · 六年级
73 . 设 四 个 鱼 形 的 半 径 分 别 为 ra , rb , rc , rd . 则
1 2 5 2 1 3 πra = πrc , πrb2 = πrc2 , 2 2 2 2
1 2 1 2 1 2 1 2 5 2 3 2 1 2 9 2 πrd = πra πrb πrc = πrc πrb πrc = πrc ,即 rd2 = 9rc2 = 3rc 3rc ,故 rd = 3rc . 2 2 2 2 2 2 2 2
S阴影 = S 1= 6 大正方形 S 小正方形 = 2 0 2 0 1 6
. 144
58.如图,过三角形的公共顶点分别作长方形四条边的高,分别记为 a1 厘米, b1 厘米, a2 厘米,
1 1 1 1 1 2 b2 厘米.则阴影三角形的面积分别是 9 a1 平方厘米; 9 a2 平方厘米; 15 b1 平方 2 3 2 3 2 3
小学奥数2017年希望杯培训一百题六年级第77题
77:小笨以60元的价格卖了两块猪肉,其中一块盈利20%,另一块 亏损20%,则小笨最后盈利或亏损了多少元?
77:小笨以60元的价格卖了两块猪肉,其中一块盈利20%,另一块 亏损20%,则小笨最后盈利或亏损了多少元?
原价
卖出价
77:小笨以60元的价格卖了两块猪肉,其中一块盈利20%,另一块 亏损20%,则小笨最后盈利或亏损了多少元?
77:小笨以60元的价格卖了两块猪肉,其中一块盈利20%,另一块 亏损20%,则小笨最后盈利或亏损了多少元?
77:小笨以60元的价格卖了两块猪肉,其中一块盈利20%,另一块 亏损20%,则小笨最后盈利或亏损了多少元?
77:小笨以60元的价格卖了两块猪肉,其中一块盈利20%,另一块 亏损20%,则小笨最后盈利或亏损了多少元?
小学奥数2017年希望杯培训一百题六年级第99题
99:小明通常步行上学,有一天他想锻炼身体,前1/3路程快跑,快跑速度是步 行速度的4倍,后一段慢跑,慢跑速度是步行速度的2倍,这样小明比平时早35分 钟到校。问小明步行上学需要多少分钟?
99:小明通常步行上学,有一天他想锻炼身体,前1/3路程快跑,快跑速度是步 行速度的4倍,后一段慢跑,慢跑速度是步行速度的2倍,这样小明比平时早35分 钟到校。问小明步行上学需要多少分钟?
99:小明通常步行上学,有一天他想锻炼身体,前1/3路程快跑,快跑速度是步 行速度的4倍,后一段慢跑,慢跑速度是步行速度的2倍,这样小明比平时早35分 钟到校。问小明步行上学需要多少分钟?
99:小明通常步行上学,有一天他想锻炼身体,前1/3路程快跑,快跑速度是步 行速度的4倍,后一段慢跑,慢跑速度是步行速度的2倍,这样小明比平时早35分 钟到校。问小明步行上学需要多少分钟?
ห้องสมุดไป่ตู้
99:小明通常步行上学,有一天他想锻炼身体,前1/3路程快跑,快跑速度是步 行速度的4倍,后一段慢跑,慢跑速度是步行速度的2倍,这样小明比平时早35分 钟到校。问小明步行上学需要多少分钟?
六年级数学希望杯竞赛培训试题100题
希望杯六年级培训题1、211⨯+321⨯+431⨯+…+200720061⨯= 。
2、(1+20021+20041+20061)×(20021+20041+20061+20081)-(1+20021+20041+20061+20081)×(20021+20041+20061)3、(220071×3.6+353×720072006)÷43÷534、从21+41+61+81+101+121 中去掉 和 ,余下的分数之和为1.5、99…9×55…5乘积的各位数字之和是 。
6、20031200412005120061 200711±±±±的整数部分是 。
(分母中只有加号)7、已知除法算式:12345678910111213÷31211101987654321,它的计算结果的小数点后的前三位分别是 。
8、一个整数与它的倒数和等于20.05,这个数是 ,它的倒数是 。
2007个9 2007个59、在如图1的加法算式中,每个汉字分别代表1至9中的一个数字,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么这个加法算式的和是 。
我 爱 希 望 杯 数 学 竞 赛 + 8 6 4 1 9 7 5 3 2 赛 竞 学 数 杯 望 希 爱 我 10、有一个分数,它的分子加2,可以约简为74;它的分母减2,可以约简为2514。
这个分数是 。
11、四个非零自然数的和为38,这四个自然数的乘积的最小值是 ,最大值是 。
12、已知a 是质数,b 是偶数,且a 2+b=2008,则a+b+1= 。
13、当a =2007时,a-1,a,a+1,a+2中的合数有 个。
14、从1到30这30个自然数连乘各的末尾共 个连续的数码0.15、一个质数p ,使得p+2,p+4同时都是质数,则p1+21±p +41±p = .16、三个质数的倒数之和是20061155,则这三个质数中最大的是17、彼此不等且大于0的偶数a,b,c,d 满足a+b+c+d=20,样的偶数组(a,b,c,d )共有 组。
小学奥数2017年希望杯培训一百题六年级第96题
96:10个海盗分一袋金币,从第一个海盗开始按照以下规则分配:第n个海盗拿 走的金币数量是袋子中存有的金币数量的n/10,现在发现每个海盗拿走的金币数 量都是整数,问最后一个海盗最少拿到多一个海盗开始按照以下规则分配:第n个海盗拿 走的金币数量是袋子中存有的金币数量的n/10,现在发现每个海盗拿走的金币数 量都是整数,问最后一个海盗最少拿到多少枚金币?
96:10个海盗分一袋金币,从第一个海盗开始按照以下规则分配:第n个海盗拿 走的金币数量是袋子中存有的金币数量的n/10,现在发现每个海盗拿走的金币数 量都是整数,问最后一个海盗最少拿到多少枚金币?
96:10个海盗分一袋金币,从第一个海盗开始按照以下规则分配:第n个海盗拿 走的金币数量是袋子中存有的金币数量的n/10,现在发现每个海盗拿走的金币数 量都是整数,问最后一个海盗最少拿到多少枚金币?
96:10个海盗分一袋金币,从第一个海盗开始按照以下规则分配:第n个海盗拿 走的金币数量是袋子中存有的金币数量的n/10,现在发现每个海盗拿走的金币数 量都是整数,问最后一个海盗最少拿到多少枚金币?
96:10个海盗分一袋金币,从第一个海盗开始按照以下规则分配:第n个海盗拿 走的金币数量是袋子中存有的金币数量的n/10,现在发现每个海盗拿走的金币数 量都是整数,问最后一个海盗最少拿到多少枚金币?
96:10个海盗分一袋金币,从第一个海盗开始按照以下规则分配:第n个海盗拿 走的金币数量是袋子中存有的金币数量的n/10,现在发现每个海盗拿走的金币数 量都是整数,问最后一个海盗最少拿到多少枚金币?
96:10个海盗分一袋金币,从第一个海盗开始按照以下规则分配:第n个海盗拿 走的金币数量是袋子中存有的金币数量的n/10,现在发现每个海盗拿走的金币数 量都是整数,问最后一个海盗最少拿到多少枚金币?
2017年第15届希望杯全国数学邀请赛培训100题
5.计算:2.016x 1123 + 2 x 20.16 x 112.4 + 2 x 201.6 x 11.25 + 2 x 2016 x 1.126 + 20160 x 0.1127
6.计算: + + + … +
7.计算:2016÷2016 +
8.算: + + +... +
69.如图18所示,圆O的周长是16.4厘米,圆O的面积与长方形OBCD的面积正好相等。求图中阴影部分的周长。
70.如图19所示,已知乙图的半径为2厘米,求甲、丙两个圆的周长相差多少厘米?(∏取3.14)
71.如图20所示,连接正六边形的各个顶点的线段组成一个“六角星”(阴影部分),若六角星的面积是2016,求正六边形的面积。
80.已知甲校学生数是乙校学生数的40%,甲校女生数是甲校男生数的30%,乙校男生数是乙校女生数的42%。求两校女生总数占两校学生总数的百分比。
81.A、B、C三个分数,它们的分子和分母都是整数,并且分子之比为2:1:3,分母之比为1:2:5,三个分数之和是 ,求C。
45.一个牧民买了一头母羊,每年能生2只公羊、4中母羊。每只小母羊两年后,每年又可以生6只羊,其中2只公羊、4中母羊。这样从今年开始到第5年底,一共有多少只羊?
46.有一批花盆,若每隔一米放置在长方形广场的四周(广场的四个角落都恰好放了花盆),则花盆多25个;若放在广场地面的每块瓷砖(一平方米的正方形)的中央,则花盆少12个。问:有多少花盆?
55.如图4所示,求∠A+∠B +∠C +∠D +∠E +∠F +∠G的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้开始
76:小明放学回家,休息了一会儿开始做作业,此时他看到钟面上 分针略超过时针,完成作业时,小明发现分针与时针恰好互换了位 置,小明做家庭作业用了多少分钟?
开始
结束
76:小明放学回家,休息了一会儿开始做作业,此时他看到钟面上 分针略超过时针,完成作业时,小明发现分针与时针恰好互换了位 置,小明做家庭作业用了多少分钟?
76:小明放学回家,休息了一会儿开始做作业,此时他看到钟面上 分针略超过时针,完成作业时,小明发现分针与时针恰好互换了位 置,小明做家庭作业用了多少分钟?
76:小明放学回家,休息了一会儿开始做作业,此时他看到钟面上 分针略超过时针,完成作业时,小明发现分针与时针恰好互换了位 置,小明做家庭作业用了多少分钟?
开始
结束
分针走过的路程是时针的12倍
76:小明放学回家,休息了一会儿开始做作业,此时他看到钟面上 分针略超过时针,完成作业时,小明发现分针与时针恰好互换了位 置,小明做家庭作业用了多少分钟?