酶工程2微生物发酵产酶
酶工程期末复习题
第一章绪论问题:试述木瓜蛋白酶的生产方法?答:木瓜蛋白酶可以采用提取分离法、基因工程菌发酵法、植物细胞培养法等多种方法进行生产。
(1)提取分离法:从木瓜的果皮中获得木瓜乳汁,通过各种分离纯化技术获得木瓜蛋白酶。
(2)发酵法:通过DNA重组技术将木瓜蛋白酶的基因克隆到大肠杆菌等微生物中,获得基因工程菌,在通过基因工程菌发酵获得木瓜蛋白酶。
(3)植物细胞培养法:通过愈伤组织诱导获得木瓜细胞,在通过植物细胞培养获得木瓜蛋白酶。
第二章微生物发酵产酶1、解释酶的发酵生产、酶的诱导、酶的反馈阻遏(产物阻遏)、分解代谢物阻遏。
诱导物的种类?答:酶的发酵生产:利用微生物的生命活动获得所需的酶的技术过程;酶的诱导:加进某些物质,使酶的生物合成开始或加速的现象,称为诱导作用;产物阻遏(反馈阻遏):指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象。
分解代谢物阻遏(营养源阻遏):是指某些物质经过分解代谢产生的物质阻遏其他酶合成的现象。
诱导物的种类:诱导物一般是酶催化作用的底物或其底物类似物,有的也是反应产物。
2、微生物产酶模式几种?特点?最理想的合成模式是什么?答:(1)同步合成型特点:a.发酵开始,细胞生长,酶也开始合成,说明不受分解代谢物和终产物阻遏。
b.生长至平衡期后,酶浓度不再增长,说明mRNA很不稳定。
(2)延续合成型特点:a.该类酶一般不受分解代谢产物阻遏和终产物阻遏。
b.该酶对应的mRNA是相当稳定的。
(3)中期合成型特点:a.该类酶的合成受分解代谢物阻遏和终产物阻遏。
b.该酶对应的mRNA不稳定。
(4)滞后合成型特点:a.该类酶受分解代谢物阻遏和终产物阻遏作用的影响,阻遏解除后,酶才大量合成。
b.该酶对应的mRNA稳定性高。
选择:在酶的工业生产中,为了提高酶产率和缩短发酵周期,最理想的合成模式是延续合成型。
3、可以添加什么解除分解代谢物阻遏?表面活性剂的作用?答:(1)一些酶的发酵生产时要控制容易降解物质的量或添加一定量的cAMP,均可减少或解除分解代谢物阻遏作用。
酶工程习题(答案全)
第一章绪论一、名词解释1、酶: 是具有生物催化功能的生物大分子2、酶工程:酶的生产与应用的技术过程称为酶工程。
它是利用酶的催化作用进行物质转化的技术,是将酶学理论与化工技术、微生物技术结合而形成的新技术,是借助工程学手段利用酶或细胞、细胞器的特定功能提供产品的一门科学3、核酸类酶:为一类具有生物催化功能的核糖核酸分子。
它可以催化本身RNA 剪切或剪接作用,还可以催化其他RNA,DNA多糖,酯类等分子进行反应4、蛋白类酶:为一类具有生物催化功能的蛋白质分子,它只能催化其他分子进行反应。
5、酶的生产:是指通过人工操作获得所需酶的技术过程。
主要包括微生物发酵产酶,动植物培养产酶,酶提取和分离纯化等6、酶的改性是通过各种方法改进酶的催化特性的技术过程,主要包括酶分子的修饰,酶固定化,酶非水相催化等7、酶的应用:是通过酶的催化作用获得人们所需要的物质或者不良物质的技术过程,主要包括酶反应器的选择和设计以及酶在各领域的应用等。
8、酶的专一性:又称为特异性,是指酶在催化生化反应时对底物的选择性,即在一定条件下,一种酶只能催化一种或一类结构相似的底物进行某种类型反应的特性。
亦即酶只能催化某一类或某一种化学反应.9、酶的转换数:酶的转换数Kp。
又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数二、填空题1、根据分子中起催化作用的主要组分的不同,酶可以分为_________和____________两大类。
2、核酸类酶分子中起催化作用的主要组分是__________,蛋白类酶分子中起催化作用的主要组分是________________.3、进行分子内催化作用的核酸类酶可以分为________________,_________________。
4、酶活力是_______________的量度指标,酶的比活力是_______________的量度指标,酶的转换数的主要组分是________________的度量指标。
第二章 (酶工程)微生物发酵产酶ppt课件
分解代谢物阻遏现象:
实验:细菌在含有葡萄糖和乳糖的培养基上生长,优先 利用葡萄糖。待葡萄糖耗尽后才开始利用乳糖,产生 了两个对数生长期中间隔开一个生长延滞期的“二次 生长现象”(diauxie或biphasic growth)。
这一现象又称葡萄糖效应, 产生的原因是由于葡萄糖降解 物阻遏了分解乳糖酶系的合成。 此调节基因的产物是环腺苷酸 受体蛋白(CRP),亦称降解物 基因活化蛋白(CAP)。
腺苷酸 环化酶 cAMP
抑制
CAP:降解物基因活化蛋白(catabolic gene activation protein)
5'-AMP
磷酸二酯 酶 激活
分解代 谢产物
三、提高酶产量的策略
(一)菌种选育(一劳永逸) 1.诱变育种
(1) 使诱导型变为组成型——选育组成型突变株
(2)使阻遏型变为去阻遏型
C R P c A M P 复 合 物
C R P + c A M P
cAMP-CRP复合物的作用示意图
操纵基因(Operater gene):
位于启动基因和结构基因之间的一段碱基 顺序,能特异性地与调节基因产生的变构蛋 白结合,操纵酶合成的时机与速度。
结构基因(Structural gene):
决定某一多肽的DNA模板,与酶有各自 的对应关系,其中的遗传信息可转录为 mRNA,再翻译为蛋白质。
阻遏蛋白
蛋白质
诱导剂
调节基因(regulator gene):
可产生一种组成型调节蛋白(regulatory protein) (一种变构蛋白),通过与效应物 (effector) (包括诱导物和辅阻遏物)的特异结合 而发生变构作用,从而改变它与操纵基因的结合力。 调节基因常位于调控区的上游。
酶工程2-2 常用的产酶微生物
3. 红曲霉(Monascus)
• 红曲霉: 菌落初期白色, 老熟后变为淡粉色、紫 红色或灰黑色,通常形成红色色素。菌丝具有隔膜, 多核, 分支甚繁。分生孢子着生在菌丝及其分支 的顶端, 单生或成链, 闭囊壳球形, 有柄, 其内 散生10 多个子囊, 子囊球形, 内含8 个子囊孢子, 成熟后子囊壁解体, 孢子则留在闭囊壳内。
细 菌
1. 大肠杆菌( Escherichia coli)
• 形态:呈杆状, 有的近似球状, 大小为0. 5μm ×1~3 μm , 一般无荚膜, 无芽孢, 运动或不运动, 运动者周生鞭毛。菌 落从白色到黄白色, 光滑闪光, 扩展。
• 革兰氏染色阴性。 • 产生的酶一般都属于胞内酶, 需要经过细胞破碎才能分离 得到。 • 采用大肠杆菌生产的限制性核酸内切酶、D N A 聚合酶、 D N A 连接酶、核酸外切酶等, 在基因工程等方面广泛应 用。
• 枯草杆菌是应用最广泛的产酶微生物, 可以用于生产α-淀 粉酶、蛋白酶、β-葡聚糖酶、5′-核苷酸酶和碱性磷酸酶 等。 例如,枯草杆菌BF7658 是国内用于生产α-淀粉酶的 主要菌株;枯草杆菌AS1.398用于生产中性蛋白酶和碱性磷酸 酶。 • 枯草杆菌生产的α-淀粉酶和蛋白酶等都是胞外酶, 而其产 生的碱性磷酸酶存在于细胞间质之中。
霉 菌
1. 黑曲霉( Aspergillus niger)
• 是曲霉属黑曲霉群霉菌。
• 菌丝体由具有横隔的分支菌丝构成, 菌丛黑褐色, 顶囊大球形, 小梗双层, 分生孢子球形, 平滑或 粗糙。 • 黑曲酶可用于生产多种酶, 有胞外酶也有胞内酶。 例如, 糖化酶、α-淀粉酶、酸性蛋白酶、果胶酶、 葡萄糖氧化酶、过氧化氢酶、核糖核酸酶、脂肪 酶、纤维素酶、橙皮苷酶和柚苷酶等。
第二章 微生物发酵产酶
细胞发酵产酶的最适温度与最适生长温度有所 不同,而且往往低于最适生长温度,这是由于在较 低的温度条件下,可提高酶的稳定性,延长细胞产 酶时间。
在细胞生长和发酵产酶过程中,由于细胞的新 陈代谢作用,不断放出热量,会使培养基的温度升 高,同时,热量不断扩散和散失,又会使培养基温 度降低,两者综合,决定了培养基的温度. 温度控制的方法一般采用热水升温,冷水降温, 故此在发酵罐中,均设计有足够传热面积的热交换 装置,如排管、蛇管、夹套、喷淋管等。
8、 毛霉(Mucor)
毛霉的菌丝体在基质上或基质内广泛蔓延,菌 丝体上直接生出孢子囊梗,分枝较小或单生,孢子 囊梗顶端有膨大成球形的孢子囊,囊壁上常带有针 状的草酸钙结晶。
毛霉用于生产蛋白酶、糖化酶、α—淀粉酶、脂 肪酶、果胶酶、凝乳酶等。
9、 链霉菌(Streptomyces)
链霉菌是生产葡萄糖异构酶的主要菌株,还可以用于生 产青霉素酰化酶、纤维素酶、碱性蛋白酶、中性蛋白酶、 几丁质酶等。此外,链霉菌还含有丰富的16α羟化酶,可 用于甾体转化。
3.无机盐
无机盐的主要作用是提供细胞生命活动不可缺少 的无机元素,并对培养基的pH值、氧化还原电位 和渗透压起调节作用。 主要元素有:磷、硫、钾、钠、镁、钙等。 微量元素有:铜、锰、锌、钼、钴、碘等。 微量元素是细胞生命活动不可缺少的,但 需要量很少,过量反而会引起不良效果, 必须严加控制
4.生长因素(酵母膏、玉米浆、麦芽糖)
4、 提高酶产量的措施
–除了选育优良的产酶细胞,保证发酵工艺条 件并根据需要和变化情况及时加以调节控制 以外,还可以来取某些行之有效的措施,诸 如添加诱导物,控制阻遏物浓度,添加表面 活性剂或其他产酶促进剂等。
• 1)添加诱导物
– 对于诱导酶的发酵生产,在发酵培养基中添 加适当的诱导物,可使产酶量显著提高。
酶工程第二章微生物发酵产酶
精品医学ppt
6
精品医学ppt
7
参与白酒生产中的微生物
1.霉菌
白酒生产常见的霉菌菌种:曲霉、根霉、念珠霉、青
霉、链孢霉等。
2.酵母菌
常见的酵母菌菌种:酒精酵母、产酯酵母、假丝酵母
采用固态配醅发酵,发酵物料的含水量较低,常 控制在55%~65%;
在较低温度下边糖化边发酵,保证酶和酵母的活 性,有利于香味物质的形成和累积;
多种微生物混合发酵,保证有益微生物正常生长 繁殖和发酵代谢;
固态甑桶蒸馏提取成品酒。大曲酒酿造分为清渣 法和续渣法两种。
精品医学ppt
22
精品医学ppt
精品医学ppt
10
大曲分类(按微生物来源)
传统大曲,菌种来源于大自然。 强化大曲,人工接入某些特殊菌种,使大曲在
糖化力、发酵力或产香方面更加突出。 纯种大曲,采用多菌纯种培养大曲,该大曲出
酒率高,是今后发展方向。
精品医学ppt
11
大曲分类(按制曲温度分)
高温大曲,培养制曲的最高温度在60℃以上,酱 香型和部分浓香型大曲酒,采用此大曲。
用的碳源等)经过分解代谢产生的物质阻遏某 些酶(主要是诱导酶)生物合成的现象。 例如:葡萄糖阻遏 – 半乳糖苷酶的生物合成。
精品医学ppt
30
转录水平的调节——操纵子学说
转录水平的调节机制 2、酶生物合成的诱导作用 加入某些物质使酶的生物合成开始或加速进行
的现象,成为酶生物合成的诱导作用,简称为 诱导作用。 如:乳糖诱导分解乳糖相关酶的产生。
第二章 微生物发酵产酶
酶工程习题集LLQ
第一章绪论【内容提要】1.重点介绍酶和酶工程的研究简史和发展概况;2.简要回顾酶催化特点、影响酶活性的因素、测定酶活力方法以及酶反应动力学。
【习题】一、名词解释酶工程;转换数;催化周期;比活力;酶活力;酶活国际单位;酶反应动力学异构酶变构酶核酶抗体酶竞争性抑制反竞争性抑制非竞争性抑制酶结合效率酶活力回收率固定化酶的相对酶活力二、填空1.酶是具有功能的生物大分子。
2.酶催化作用的专一性包括和。
3.影响酶催化作用的因素有、、、、、。
4.按照酶分子中起催化作用的主要组分不同可分为和。
5.分子内催化的R酶可分为和。
6.分子间催化的R酶可分为、、、、、。
7.固定化酶的活力测定方法主要有、和。
8.固定化酶的比活力一般用所具有的酶活力单位数来表示。
9.酶的生产方法主要有、和。
三、判断1.核酸类酶的作用底物均为核酸2.核酸类酶仅能作用于其他分子3.核酸类酶可以以DNA为底物4.酶的化学本质是蛋白质五、简答题1. 简述酶的研究简史。
2. 简述酶工程的发展概况。
3. 简要回答酶的催化特点。
4. 简要回答影响酶催化作用的因素。
5. 简要回答米氏方程的意义。
6. 简述酶工程的研究内容及主要任务。
答案:酶的生产与应用的技术过程称为酶工程,其主要内容包括酶的生产、分离纯化、酶的固定化、酶及固定化的反应器、酶和固定化酶的应用。
7. 举例说明酶活力的测定在酶的研究、生产和应用过程中的重要性。
酶活力是指在一定条件下,酶催化某一反应的反应速度(一般测初速度)。
酶促反应速度是指单位时间、单位体积中底物的减少量或产物的增加量。
单位:浓度/单位时间(2分)酶的活力单位(U)国际单位(IU单位):在最适反应条件下,每分钟催化1umol底物转化为产物所需的酶量,称一个国际单位(IU),1 IU = 1umol /min国际单位(Katal, Kat单位):在在最适反应条件下,每秒钟催化1mol底物转化为产物所需的酶量,称Kat单位。
1 Kat=60 X 106 IU酶活力的测定方法:分光光度法;荧光法;同位素法;电化学法。
酶工程教学大纲
《酶工程》课程教学大纲总学时数:30一、课程的地位、性质和任务酶工程(enzyme engneering)是生物技术专业的主干必修课,是酶学、微生物学的基本原理与化学工程有机结合而产生的一门新的科学技术,在生物技术人才培养中处于至关重要的地位。
它涉及细胞工程、基因工程、发酵工程、生物分离工程和化学工程等诸多学科,主要内容包括酶的发酵生产、酶的分离纯化、酶和细胞固定化以及酶的分子工程。
学生通过酶工程的学习,能够掌握酶的生产与分离纯化的基本理论、基本技术以及自然酶、化学修饰酶、固定化酶的研究和应用,了解酶在各行各业中的最新发展及研究趋势。
二、课程教学的基本要求学生通过酶工程的学习,应熟悉从应用目的出发研究酶,在一定生物反应装置中利用酶的催化性质的研究路线,掌握酶的生产与应用的基本理论、基本技术、酶的分离纯化、固定化酶以及酶的化学修饰的研究和应用,进一步了解酶在各行各业中实际应用的最新发展和发展趋势,在以后的毕业环节和工作中能够自觉地应用这些技术方法来指导自己的工作。
本课程理论课30学时,于本科三年级第二学期开设。
讲授方式:1.讲授2.利用CAI课件三、各章主要内容、学时分配及教学要求第一章绪论 2学时【单元目标】1.了解酶工程的研究意义;2.掌握酶工程的概念及研究内容。
【授课内容】一.酶与酶工程发展简史(一)酶学研究简史(二)酶工程研究简史二. 酶工程简介1.酶工程2.组成3.分类第二章微生物发酵产酶 4学时【单元目标】1.掌握酶生物合成的调节类型及调节机制2.了解产酶微生物的分离和选育方法3.了解动植物细胞与微生物细胞发酵产酶的异同【授课内容】第一节酶生物合成及调节一、酶的生物合成(一)RNA的生物合成--转录(transcription) (二)蛋白质的生物合成--翻译(translation) 1.翻译2.翻译过程即蛋白质的合成过程二、酶生物合成的调节(一)基因调控理论(二)酶合成调节的类型1.诱导 (induction)2.阻遏 (repression)(三)酶合成的调节机制三、提高酶产量的策略(一)菌种选育1.诱变育种2.基因工程育种(二)条件控制第二节酶发酵动力学一、细胞生长动力学(Monod方程)二、产酶动力学(一) 酶生物合成的模式1.生长偶联型2.部分生长偶联型3.非生长偶联型(二) 产酶动力学第三节微生物发酵产酶一、产酶微生物的分离和选育二、微生物发酵产酶方法1.固体培养2.液体培养3.固定化细胞三、微生物酶的类型1.胞外酶2.胞内酶第三章动、植物细胞培养产酶2学时一、动植物细胞与微生物细胞主要特性差异二、植物细胞培养产酶1.植物细胞培养的特点、提取法缺点2.培养基特点3.培养方法4.培养条件的影响与控制5.植物细胞培养产酶实例三、动物细胞培养产酶1.动物细胞培养的特点2.培养基3.培养方法4.培养条件的影响与控制第四章酶的提取与分离纯化 12学时【单元目标】1.掌握酶分离纯化的常用方法及其原理2.掌握几种常用的电泳方法及操作步骤2.了解酶的纯化方案的设计【授课内容】第一节酶的分离4学时一、发酵液预处理(一)发酵液的相对纯化(二)发酵液的固液分离二、细胞破碎(一)细胞壁组成(二)细胞破碎的方法(三)细胞破碎确认三、酶的提取(extraction)(一)理想提取液具备的条件、目标原则(二)提取方法四、离心分离(一)基本原理(二)离心机的种类(三)常用离心方法1.差速离心2.密度梯度离心3. 等密度梯度离心又称沉降平衡离心(四)应用五、沉淀分离(根据溶解度的不同)(一)盐析沉淀法(改变离子强度)(二)有机溶剂沉淀(降低介电常数)(三)等电点沉淀(isoelectric precipitation) (四)有机聚合物沉淀法(五)选择性变性沉淀法六、萃取(extraction)分离(一)溶剂萃取法(二)双水相萃取技术(三)超临界流体萃取(四)反胶团萃取第二节酶的精制5学时一、膜分离技术(一)扩散膜分离(二)加压膜分离(三)电场膜分离二、层析法(一)吸附层析(adsorption chromatography)1.原理2.吸附剂3.洗脱剂4.应用(二)凝胶过滤层析)(gel filtration chromatography)1.基本原理2.凝胶的种类和性质3.操作4.应用(三)离子交换层析(ion exchange chromatography,IEC)1. 原理2. 阴离子交换剂分离蛋白质的过程3. 操作4. 应用- 制备纯化生物大分子(四)疏水层析(hydrophobic interaction)1、原理2. 吸附剂3. 操作4. 应用(五)亲和层析(affinity chromatography)1. 原理2. 基质的选择3. 配体的选择4. 偶联(亲和吸附剂的制备)5. 操作及应用(六) 高效(压)液相层析(HPLC:high performance(pressure)liquid chromatography)1. 基本原理2. 分类3. 色谱仪组成第三节电泳一、电泳的基本理论1. 原理2. 电泳的分类3. 电泳常用设备二、聚丙烯酰胺凝胶电泳1.原理2.分离效应三、SDS-聚丙烯酰胺凝胶电泳1. 原理2. 操作四、等电聚焦 ( isoelectric focusing,IEF )1. 原理2. 操作3. 应用第四节酶的浓缩、干燥与结晶2学时一、酶的浓缩(一)蒸发浓缩(二)超滤浓缩(三)吸水剂(四)反复冻融浓缩(五)沉淀法二、酶的干燥三、酶的结晶(一)结晶的条件(二)结晶的方法第五节纯化方案的设计与评价1学时一、纯化方案的设计(一)纯化方法的选择依据(二)纯化方法的排序二、纯化方案的评价(一)酶活力测定(二)蛋白质浓度测定(三)提纯倍数与回收率第五章酶分子的化学修饰 2学时【单元目标】1.掌握酶活性中心的概念及共性2.了解酶化学修饰的目的及原理3.了解酶化学修饰的种类及应用【授课内容】第一节酶的活性中心一、活性中心的概念二、活性中心的共性三、研究酶活性中心的方法1.物理学方法2.化学修饰法3.蛋白质工程第二节酶化学修饰及修饰目的一、酶化学修饰1.限制酶大规模应用的原因2.改变酶特性有两种主要的方法3.酶化学修饰的概念二、酶化学修饰的目的1.研究酶的结构与功能的关系2.人为改变天然酶的某些性质,扩大酶的应用范围第三节酶化学修饰的原理一、如何增强酶天然构象的稳定性与耐热性二、如何保护酶活性部位与抗抑制剂三、如何维持酶功能结构的完整性与抗蛋白水解酶四、如何消除酶的抗原性及稳定酶的微环境第四节酶化学修饰的设计一、充分认识酶分子的特性二、修饰剂的选择三、反应条件的选择第五节酶化学修饰的种类及应用一、酶的表面化学修饰(一)大分子修饰(大分子结合修饰)1.定义2.修饰剂3.应用(二)小分子修饰(酶蛋白侧链基团修饰)1.定义2.侧链基团修饰剂3.几种重要的修饰反应(三)交联修饰(交联法)(四)固定化修饰(共价偶联法)二、酶分子内部修饰(一)蛋白主链修饰(肽链有限水解修饰)(二)氨基酸置换修饰(三)金属离子置换修饰第六章酶与细胞的固定化 2学时【单元目标】1.掌握固定化酶和固定化细胞的定义及特点2.了解固定化酶和固定化细胞的性质及应用【授课内容】第一节酶与细胞的固定化一、固定化酶和固定化细胞的定义及特点1.固定化酶 (immobilized enzyme)2.固定化细胞(immobilized cell)二、固定化方法(一)酶的固定化方法1.吸附法(adsorption)2.共价偶联法(covalent binding or covalent coupling)3.交联法(crosslinking)4.包埋法(encapsulation)(二)各种固定化方法的优缺点比较(三)细胞的固定化方法1.固定化细胞的分类2.固定化方法(四)原生质体的固定化方法第二节固定化酶和固定化细胞的性质与表征一、固定化酶的性质二、固定化细胞的性质三、固定化酶(细胞)的评价指标第三节固定化酶与固定化细胞的应用一、在工业生产上的应用1.氨基酰化酶(Aminoacylase)2.葡萄糖异构酶二、固定化酶在医学上的应用1.消血栓2. 人工肾三、在分析检测中的应用1. 酶传感器1)酶传感器的原理2)酶传感器的应用2. 酶联免疫测定第七章酶反应器 2学时【单元目标】1.了解酶反应器的几种类型2.了解酶反应器的设计原理及操作【授课内容】第一节酶反应器的特点与类型一、酶反应器的类型(一)搅拌罐型(Stirred Tank Reacter, STR)(二)固定床型(也称填充床,Packed Bed Reactor, PBR )(三)流化床型(Fludized Bed Reactor, FBR)(四)膜式反应器(Membrane Reactor)(五)鼓泡塔型反应器二、酶反应器的发展第二节酶反应器的设计与选择一、酶反应器的设计1.设计目的2.设计原理(依据)二、酶反应器的选择(一)酶的应用形式(二)底物的物理性质(三)反应操作要求(四)酶的稳定性(五)应用的可塑性及成本三、酶反应器的操作第八章酶的应用 4学时【单元目标】1.了解酶在医药方面的应用2.了解酶在食品方面的应用3.了解酶在化工方面的应用4. 了解酶在环境保护方面的应用5. 了解酶在生物技术领域的应用【授课内容】第一节酶在医药方面的应用第二节酶在食品方面的应用第三节酶在化工方面的应用第四节酶在环境保护方面的应用第五节酶在生物技术领域的应用四、使用教材与主要参考书目录1教材《酶工程》(第二版)作者:郭勇科学出版社 20042 主要参考书目郭勇现代生化技术,华南理工大学出版社, 1996郭勇酶的生产与应用,化学工业出版社个,2003罗贵民酶工程,化学工业出版社,2002张树政酶制剂工业,科学出版社,1984邹国林酶学,武汉大学出版社, 1997五、考核方法和成绩构成本课程为考试考核,包括两部分:期中及平时为30%,期末70%。
[工学]《酶工程》教案
《酶工程》教案安排:本课总学时为48,其中理论课40,实验课8,周学时为3学时。
要求:要求同学们课前预习教材,带着问题听课,这样学习效果好;学生上课作笔记,动动脑;学生课后复习和整理笔记,教师作课后小结和布置作业,达到教学相长的目的。
绪论1教学目标:使学生掌握酶、酶工程的概念,酶的化学性质与催化特性,了解酶的分类与命、酶活力测定、酶的生产方法。
2教学内容:主要讲酶和酶工程的基本概念与发展史、影响酶催化作用的因素、酶的分类与命名、酶的化学性质与催化特性、酶活力测定、酶的生产方法。
3重点和难点:酶、酶工程、酶活力有关的概念;酶的化学性质与催化特性、酶活力测定。
4教学方法:采用讲授式、启发式、图示法、问答式相结合的教学方法。
5板书设计:从上至下,从左至右;大标题始终留在黑板的左边;书写规范。
6学时分配:理论3学时,实验2学时。
7教学进程:第一节酶和酶工程的基本概念与发展史1酶的基本概念酶是生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化能力的生物催化剂。
按化学组成分:蛋白类酶(Enzyme proteins)和核酸类酶(Ribozyme RNAs)。
a蛋白类酶(Enzyme proteins)酶是由生物体产生的具有催化活性的蛋白质。
b核酸类酶(Ribozyme RNAs)本身就是一段RNA,不需要额外的蛋白酶就可以对自身进行剪切。
提问:酶一定是蛋白质吗?2酶的发展史1.2.1酶在中国的发展史人们对酶的认识起源于生产与生活实践。
夏禹时代,人们掌握了酿酒技术。
公元前12世纪周朝,人们酿酒,制作饴糖和酱。
春秋战国时期已知用麴(曲)治疗消化不良的疾病。
酶者,酒母也。
1.2.2酶在西方的发展史1878年, 给酶一个统一的名词,叫Enzyme,这个字来自希腊文,其意思“在酵母中”。
1896年,日本的高峰让吉首先从米曲霉中制得高峰淀粉酶,用作消化剂,开创了有目的的进行酶生产和应用的先例。
西方国家19世纪对酿酒发酵过程进行了大量研究。
酶工程--酶的微生物发酵生产 ppt课件
酶发酵生产的一般工艺流程图
保藏菌种
试管斜面培养(活化)
摇瓶扩大培养
种子罐培养 培养基 发酵罐
分离纯化 酶
无菌空气
二、酶生产菌种 (一)产酶菌种的要求
(1)产酶量高; (2)繁殖快,发酵周期短;
(3)产酶稳定性好,不易退化,不易被感染;
(4)能够利用廉价原料,容易培养和管理; (5)安全性可靠,非致病菌。
液体培养基,经灭菌、冷却后,接入产酶细胞,在一定条件 下发酵。
2、固体培养发酵
培养基以麸皮、米糠等为主要原料,经灭菌后,接入产酶菌 株,在一定条件下发酵。
3、固定化细胞发酵(70年代后期发展)
将细胞固定在载体上后,进行发酵生产。
4、固定化原生质体发酵(80年代中期发展)
原生质体是指除去了细胞壁的微生物细胞或植物细胞。
酶合成的基因调控类型:诱导和阻遏
1、酶合成的诱导作用
加进某些物质,使酶的生物合成开始或加速的现象,称为 诱导作用。 诱导物一般是酶催化作用的底物或其底物类似物。 例:乳糖诱导ß-半乳糖苷酶的合成 淀粉诱导a-淀粉酶的合成
2、酶合成的阻遏 (1)终产物阻遏
指酶催化反应的产物或代谢途 径的末端产物使该酶的生物合成受 到阻遏的现象。
二、应用微生物来开发酶的优点 1、微生物种类多,酶种丰富; 2、微生物生长繁殖快,易提取酶,特别是胞外酶; 3、微生物培养基来源广泛,价格便宜; 4、可采用微电脑等新技术,控制酶发酵生产过程; 5、可利用以基因工程为主的近代分子生物学技术选 育菌种,增加酶的产率和开发新酶种。
三、酶发酵生产的类型 1、液体深层发酵:
第二节 酶生物合成的基本理论
一、酶生物合成的过程
DNA
转录
RNA
《酶工程》课件-微生物发酵产酶
05
微生物发酵产酶存在问题与挑战
产量问题
微生物发酵产酶产量低
由于微生物发酵过程中受到多种因素 的影响,如营养物质的供应、发酵条 件、微生物菌种等,导致酶的产量较 低。
发酵周期长
微生物发酵产酶通常需要较长的发酵 周期,这增加了生产成本和时间成本。
稳定性问题
酶稳定性差
许多酶在发酵过程中容易受到温度、pH值、金属离子等因素的影响,导致酶的稳定性降低。
04
微生物发酵产酶应用实例
工业应用
洗涤剂制造
微生物发酵产生的酶可用于制造 洗涤剂,如蛋白酶用于去除蛋白 质污渍,淀粉酶用于去除淀粉污
渍。
纺织工业
利用微生物发酵产生的酶处理纺织 品,可以改善其质地、手感和外观, 如纤维素酶用于棉织物的生物抛光。
造纸工业
通过微生物发酵产酶技术,可以改 进造纸工艺,提高纸张质量和降低 环境污染,如木聚糖酶用于纸浆漂 白。
过程优化与控制
通过人工智能技术,对微生物发酵产酶过程进行建模和优化,提高 目标酶的产量和质量。
个性化定制酶
结合人工智能和基因工程技术,实现个性化定制酶的合成,满足不 同领域的需求。
THANKS
感谢观看
《酶工程》课件-微生物发酵 产酶
• 微生物发酵产酶概述 • 微生物发酵产酶原理与过程 • 微生物发酵产酶技术与方法
• 微生物发酵产酶应用实例 • 微生物发酵产酶存在问题与挑战 • 未来发展趋势与展望
01
微生物发酵产酶概述
酶工程简介
酶工程定义
酶工程是生物工程的重要组成部分,是利用酶或者微生物细胞、动植物细胞、 细胞器等具有的生物催化功能,借助工程手段来生产有用物质、设计改造酶或 者生产细胞、器官乃至整个生物体的一门科学技术。
酶工程终结版名词解释
酶:有催化功能的生物大分子分为:蛋白酶(P酶)和核酸类酶(R酶)(主要由RNA组成)酶的特点:催化效率高、专一性强、作用条件温和酶工程主要内容:微生物细胞发酵产酶、动植物细胞培养产酶、酶的提取与分离纯化,酶分子的修饰,酶,细胞和原生质体固定化、酶的非水相催化、酶反应器和酶的应用酶的催化效率比非酶催化反应高107~1013倍酶催化作用的影响因素:底物浓度、酶浓度、温度、Ph 值、激活剂浓度、抑制剂浓度酶在60度以上易失活常见激活剂:ca、mg 、co、zn 、mn 、cl(α——淀粉酶),钴离子和镁离子是葡萄糖异构酶的激活剂酶的命名:国际酶学委员会ICE :推荐名和系统名推荐名:底物名+催化反应类型+酶(水解酶类可省略反应类型名,只在底物后加酶字即可)系统名:作用底物+酶的作用基团+催化反应类型按酶的催化作用类型将蛋白酶分为6大类:氧化还原酶,转移酶,水解酶,裂解酶,异构酶,合成酶将R酶分为:剪切酶、剪接酶、多功能酶还可以由酶的底物是RNA分子还是其他分子,可将R酶分为分子内催化和分子间催化酶活力:是指在一定条件下,酶所催化的反应初速度。
酶催化反应速度,通常用单位时间t内底物S的减少量或产物P的增加量来表示1961年国际生物化学与分子生物学联合会规定:在特定的条件下(温度可采用25摄氏度,pH值等条件均采用最适条件),酶1min催化1umol的底物转化为产物的酶量定义为1个酶活力单位,这个单位称为国际单位(IU)。
国际上另一个常用的酶活力单位是卡特(kat),在特定条件下酶1s催化1mol底物转化为产物的酶量定义为1kat 酶的比活力,是指在特定的条件下,单位重量(mg)蛋白质或RNA所具有的酶活力单位数。
固定化酶:与水不溶性载体结合,在一定的空间范围内起催化作用的酶酶的提取:在一定条件下,用适当的溶剂处理含酶原料,使酶充分溶解到溶剂中的过程。
酶提取注意事项:1、目标酶分子的特性及其物理、化学特性,2、酶分子和杂质的主要性质差异,3、酶的使用目的和要求,4技术实施的的难易程度,5、分离成本的高低,6、是否会造成环境污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章内容
酶的发酵生产的概念——→优良菌种的筛 选——→发酵的基本类型——→发酵工艺 过程及条件控制 *酶的生物合成模式
在酶制剂发展的早期,酶多是从动植物原 料中提取的。但是由于它们的生长周期长, 酶在动植物组织中的含量低,又受地理、 气候和季节等因素的影响,来源受到限制, 不适于大规模的工业生产,因此除了部分 用于医疗、疾病诊断及食品工业的酶外, 目前基本都是以微生物作为生产酶的酶源, 产酶微生物的发酵技术在酶生产中是极为 重要的。
2、延续合成型:
(1)酶的合成伴随着细胞的生长开始,但在细胞生长进 入平衡期后,酶还可以延续合成较长的一段时间。 (2)属于延续合成型的酶可受诱导但不受分解代谢物阻 遏和产物阻遏,而且该酶所对应的mRNA是相当稳定的, 在生长平衡期以后相当长所一段时间内继续用于酶的合 成。
5、高产菌株的选育 目前,优良菌种的获得一般有三条途 径:一是从自然界分离筛选;二是用物理 或化学方法处理、诱变;三是用基因重组 或细胞融合技术。
5、常用的产酶微生物
(1)细菌 大肠杆菌:应用最广泛的产酶菌因为其遗传背 景清楚而广泛应用于遗传工程改造微生物的宿主, 被改造成表达优良性状的“工程菌”。大肠杆菌可 生产多种酶,如,谷氨酸脱羧酶、天门冬氨酸酶、 β-半乳糖苷酶、限制性核酸内切酶、DNA聚合酶、 DNA连接酶、核酸外切酶等。 枯草杆菌:用途很广,可用于生产α-淀粉酶、 蛋白酶、β-葡聚糖酶、碱性磷酸酶等。 (2)放线菌 链霉菌:生产葡萄糖异构酶的主要微生物
2、控制阻遏物浓度 微生物酶的生产受到代谢末端产物的 阻遏和分解代谢物阻遏的调节。为避免分 解代谢物的阻遏作用,可采用难于利用的 碳源,或采用分次添加碳源的方法使培养 基中的碳源保持在不致于引起分解代谢物 阻遏的浓度。
3、添加表面活性剂 在发酵生产中,非离子型的表面活性 剂常被用作产酶促进剂,但它的作用机理 尚未搞清;可能是由于它的作用改变了细 胞的通透性,使更多的酶从细胞内透过细 胞膜泄漏出来,从而打破了胞内酶合成的 反馈平衡,提高了酶的产量。此外,有些 表面活性剂对酶分子有一定的稳定作用, 可以提高酶的活力,例如在霉菌的发酵生 产中添加 1%的吐温可使纤维素酶的产量提 高几倍到几十倍。
第二节 酶的生产方式
按发酵方法可分为:
一、固体发酵法(传统方法)
固体培养发酵的培养基,以麸皮、米糠等为主要原料,加入其他 必要的营养成分,制成固体或半固体的麸曲,经灭菌、冷却后, 加入产酶菌株,在一定条件下进行发酵。 主要用于真菌的酶生产,其中用米曲霉生产淀粉酶,以及用曲霉 和毛霉生产蛋白酶在我国已有悠久历史。我国传统的各种酒曲、 酱油曲等都采用这种方式进行生产,其主要目的是获得淀粉酶和 蛋白酶。
五、溶解氧的调节控制 微生物对氧的需要不同,是由于依赖获得能量的 代谢方面的差异。好气性菌主要是有氧呼吸或氧 化代谢,厌气菌为厌气发酵(分子间呼吸),兼性 厌气菌则两者兼而有之。 在培养基中生长和发酵产酶的细胞,一般只能利 用溶解在培养基中的氧气——溶解氧。由于氧是 难溶于水的气体,培养基中含有的溶解氧并不多, 很快就会被细胞利用完。为此,必须在发酵过程 中连续不断地供给无菌空气,使培养基中的溶解 氧保持在一定水平,以满足细胞生长和产酶的需 要。
三、固定化细胞或固定化原生质体发酵
1、固定化细胞发酵(70年代后期发展起来) 固定化细胞指固定在水不溶性载体上,在一定的空间范围内 进行生命活动(生长、繁殖和新陈代谢)的细胞。 优点: (1)固定化细胞的密度较高,反应器水平的生产强度较大,可提高 生产能力; (2)发酵稳定性好,可反复使用或连续使用较长的时间,易于连续 化、自动化生产; (3)细胞固定在载体上,流失较少,可在高稀释率的情况下连续发 酵,大大提高设备利用率; (4)发酵液中含菌体较少,利于产品分离纯化,提高产品质量等。 缺点: 历史不长,技术要求较高,需要特殊的固定化细胞反应器, 只适用于胞外酶的生产等。
发展微生物作为酶生产的来源主要有 以下原因:
①微生物生长繁殖快,生活周期短,产量高。
②微生物培养方法简单。 ③微生物菌株种类繁多,酶的品种齐全。
④微生物有较强的适应性和应变能力。
经过预先设计,通过人工操作控制,利用 细胞(包括微生物细胞、植物细胞和动物 细胞)的生命活动,产生人们所需的酶的 过程,称为酶的发酵生产。
四、温度的调节控制 细胞发酵产酶的最适温度与最适生长温度有 所不同,而且往往低于最适生长温度,这是由于 在较低的温度条件下,可提高酶的稳定性,延长 细胞产酶时间。 有些酶的发酵生产,要在不同阶段控制不同 的温度条件。在生长繁殖阶段控制在细胞生长最 适温度范围内,以利于细胞生长繁殖,而在产酶 阶段,则需控制在产酶的最适温度。
保藏细胞 ↓ 细胞活化 ↓ 原生质体←细胞扩大培养→固定化细胞 ↓ ↓ ↓ 固定化原生质体 →发酵 预培养 ↓ 培养基 分离纯化 无菌空气 ↓ 酶
一、细胞活化与扩大培养 保藏细胞在使用之前必须接种于新鲜的 斜面培养基上,在一定的条件下进行培养, 以恢复细胞的生命活动能力,这就叫细胞 活化。 为了保证发酵时有足够数量的优质细胞, 活化了的细胞一般要经过一级至数级的扩 大培养。用于细胞扩大培养的培养基称为 种子培养基。
4、添加产酶促进剂 产酶促进剂是指那些能提高酶产量但作 用机理尚未阐明的物质,它可能是酶的激 活剂或稳定剂,也可能是产酶微生物的生 长因子,或有害金属的螫合剂,例如添加 植酸钙可使多种霉菌的蛋白酶和橘青霉的 5’-磷酸二酯酶的产量提高2—20倍。
第四节 酶生物合成模式
1、 同步合成型: (1)酶的合成与细胞生长同 步进行。当细胞进入对数生 长期,酶大量产生,细胞生 长进入平衡期后,酶的合成 随着停止。 (2)同步合成型又称生长偶 联型。其生物合成可以诱导, 但不受分解代谢物阻遏和反 应产物阻遏。 (3)当除去诱导物或细胞进 入平衡期后,酶的合成立即 停止,这表明这类酶所对应 的mRNA是很不稳定的。
首先必须选择合适的产酶菌株 然后采用适当的培养基和培养方式进行发 酵,使微生物生长繁殖并合成大量所需的 酶 最后将酶分离纯化,制成一定的酶制剂。
第一节 优良产酶菌种的筛选
酶的发酵生产的前提之一,是根据产酶的 需要,选育到性能优良的产酶细胞。 优良的产酶菌种是提高酶产量的关键,筛 选符合生产需要的菌种是发酵生产酶的首 要环节,一个优良的产酶菌种应具备以下 几点:
4、生长因素 凡是微生物生长不可缺少的微量有机物质 都称为生长因子(又称生长素),包括氨基酸、 嘌呤、嘧啶、维生素等。 与微生物有关的维生素主要是B族维生素, 这些维生素是各种酶的活性基的组成部分, 没有它们,酶就不能活动。
三、pH值的调节控制
不同细胞生长繁殖的最适 pH值有所不同。一 般情况下,多数细菌、放线菌生长的最适pH为中性 至微碱性(pH 6.5~8.0);而霉菌、酵母则偏好微 酸性(pH 4.0~6.0);植物细胞生长的最适pH为 5~6。 培养基pH在发酵过程中能被菌体代谢所改变。 若阴离子 ( 如醋酸根、磷酸根 ) 被吸收或氮源被利用 后产生NH3 ,则pH上升;阳离子(如NH4、K+ )被吸 收或有机酸的积累,使pH下降。
2、固定化原生质体发酵(80年代中期发展起来) 原生质体是除去细胞壁后由细胞膜及胞内物 质组成的微球体。 优点: (1)变胞内产物为胞外产物。 (2)提高酶产率。 (3)稳定性较好。 (4)易于分离纯化。 缺点: 制备较复杂,发酵培养基中需要维持较高的 渗透压,而且还要防止细胞壁的再生等。
第三节 发酵工艺条件及其控制
(3)霉菌 黑曲霉:生产糖化酶、α-淀粉酶、果胶酶、酸性蛋 白酶、过氧化氢酶、核糖核酸酶、脂肪酶等 米曲霉:生产糖化酶和蛋白酶,在我国传统的酒曲 和酱油曲中得到广泛应用 红曲霉、青霉、木霉、根霉、毛霉 (4)酵母 啤酒酵母:主要用于酿造啤酒、酒精、饮料酒和面 包制造。用于转化酶、丙酮酸脱羧酶、醇脱氢酶 等的生产 假丝酵母:单细胞蛋白的主要生产菌
优点:设备简单,操作方便,麸曲中酶浓度较高,特别 适用于各种霉菌的培养和发酵产酶。 缺点:劳动强度较大,原料利用率较底,固体发酵条件 控制不易均匀,生产周期较长。
二、液体深层通气发酵法(最广泛应用)
采用液体培养基,置于发酵容器中,经灭菌、冷却后 接入产酶细胞,在一定条件下进行发酵。 液体深层发酵是目前酶发酵生产的主要方式。 优点: ⑴不仅适用于微生物细胞,也可用于各种植物细胞和 动物细胞的悬浮培养和发酵。 ⑵机械化程度较高,技术管理较严,酶产率较高,质 量较好,产品回收率较高。 ⑶易于为人为控制。
二、培养基的配制
培养基是指人工配制的用于细胞培养和发酵 的各种营养物质的混合物。 由于酶是蛋白质,酶的形成也是蛋白质的合 成过程,因此微生物产酶的培养基要有利于蛋白 质的合成。
1、碳源 构成菌体成分的重要元素, 产生各种代谢产物和细胞内贮藏物质的主要原料, 同时又是化能异养型微生物的能量来源。
在酶的发酵生产中,除了要从营养的角度考虑碳源的选 择以外,还要考虑到碳源对酶生物合成的调节作用。 2、氮源 不同的细胞对各种氮源的要求各不相同,应根据要 求进行选择和配制。一般说来,动物细胞要求有机氮, 植物细胞主要要求无机氮,微生物细胞中,异氧型微生 物用有机氮,自氧型微生物用无机氮。
3、无机盐类 ①构成菌体成分; ②作为酶活性基的组成部分或维持酶的活性; ③调节渗透压、pH值、氧化还原电位等; ④作为自养菌的能源。 当盐浓度太高时,对微生物生长有抑制作用,而 在较低浓度时却能刺激生长。 在微生物的发酵生产中,应特别注意有些金属离 子是酶的组成成分,如钙离子是淀粉酶的成分之 一,也是芽孢形成所必需的。
a 繁殖快,产酶量高,有利于缩短生产周期。
b 容易培养和管理,能在便宜的底物上良好生长。 c 产酶性能稳定,菌株不易退化,不易受噬菌体 侵袭。 d 产生的酶容易分离纯化。