生物化学简明教程--第三章核酸
生物化学第三章核酸PPT课件
DNA与RNA结构差异
五碳糖不同
DNA中的五碳糖是脱氧核糖,而 RNA中的五碳糖是核糖。
碱基不同
DNA中的碱基包括腺嘌呤(A) 、鸟嘌呤(G)、胸腺嘧啶(T) 和胞嘧啶(C),而RNA中的碱 基包括腺嘌呤(A)、鸟嘌呤( G)、尿嘧啶(U)和胞嘧啶(C
)。
空间结构不同
DNA通常是双链结构,而RNA 通常是单链结构。
核酸药物设计思路及前景展望
核酸药物设计思路
核酸药物是一类以核酸为靶点的药物,通过 特异性地与核酸结合,调节基因表达或抑制 病原体复制,从而达到治疗疾病的目的。设 计核酸药物时需要考虑靶点选择、药物稳定 性、特异性、安全性等因素。
前景展望
随着基因组学和生物信息学的发展,越来越 多的疾病相关基因和靶点被发现,为核酸药 物的研发提供了广阔的空间。未来,核酸药 物有望在肿瘤、遗传性疾病、病毒感染等领 域发挥重要作用,成为一类重要的治疗药物 。同时,随着技术的不断进步和成本的降低 ,核酸药物的研发和应用将更加普及和便捷
DNA拓扑异构酶的作用
拓扑异构酶能够改变DNA的超螺旋状态,从而调节DNA的拓扑结构和功能。拓扑异构酶 在DNA复制、转录、修复和重组等过程中发挥重要作用。
RNA结构与性质
03
tRNA三叶草结构特点
01
02
03
三叶草二级结构
由DHU环、反密码环、 TΨC环、额外环和可接受 茎组成,形似三叶草。
反密码环
人类基因组计划与意义
1 2 3
人类基因组计划的目标
破译人类全部遗传信息,解读人类基因组所蕴含 的生命奥秘。
研究成果及应用
揭示了人类基因组的组成、结构和功能,为医学 、生物技术和制药等领域提供了重要的科学基础 。
生物化学-核酸的代谢
感谢您的观看
THANKS
RNA的合成和降解
RNA合成
RNA的合成是指以DNA的一条链为模板,合成RNA的过程。在RNA聚合酶的作用下,按照碱基互补配对原则, 逐个添加核糖核苷酸形成RNA链。
RNA降解
RNA降解是指RNA在细胞内的分解过程。RNA降解由多种酶催化,包括核糖核酸酶和脱氨酶等。这些酶能够将 RNA分解成单核苷酸或更小的片段,以便重新利用或排出体外。
核酸具有紫外吸收特性,最大吸收峰 在260nm处,可用于核酸的定量分析。
核酸分子具有变性和复性的特点,在 一定条件下可以发生解旋和复性过程。
核酸分子具有黏性,可以形成DNA双 螺旋结构,这种黏性与DNA的长度和 浓度有关。
02
核酸的合成
DNA的复制
01
02
03
复制的起始
DNA复制起始于特定的起 始点,称为复制子或复制 起始点。
通过研究DNA损伤修复机制 的异常,可以更好地了解癌 症的发病机制,并开发出更 有效的预防和早期诊断方法 。此外,这种机制的研究也 有助于发现新的治疗靶点, 为癌症治疗提供新的思路。
病毒感染与RNA复制
要点一
总结词
RNA复制是病毒生命周期的重要环节,也是抗病毒药物的 主要作用靶点。
要点二
详细描述
病毒是一种非细胞生物,它们必须寄生在宿主细胞内才能 进行复制和繁殖。RNA复制是病毒生命周期中的关键步骤 之一,它涉及到病毒RNA的合成和转录。这个过程是由病 毒自身的酶催化完成的,而这些酶也成为抗病毒药物的主 要作用靶点。通过抑制病毒RNA复制酶的活性,可以有效 地阻止病毒的复制和传播,从而达到治疗疾病的目的。
05
核酸代谢异常与疾病
基因突变与疾病
生物化学3-核酸作业参考答案
Chapter 4 Nucleic acids专业________ 学号_________ 姓名________ 成绩________一、填空题(20分,每空0.5分)1. 核酸可分为和两大类,前者主要存在于真核细胞的和原核细胞的部位,后者主要存在细胞的部位。
(DNA,RNA,细胞核,拟核区,细胞质) 2. 构成核酸的基本单位是,由,和连接而成。
(核苷酸,碱基,戊糖,磷酸)3. 在各种RNA中,含量最多,含稀有碱基最多,半寿期最短。
(rRNA,tRNA,mRNA)4. 维持DNA的双螺旋结构稳定的作用力有,,。
(碱基堆积力,氢键,离子键)5. 组成DNA的两条多核苷酸链是的,两链的碱基序列,其中与配对,形成两对氢键,与配对,形成三对氢键。
(反向平行,互补配对,A,T,C,G)6. 当温度逐渐升高到一定的高度时,DNA双链,称为。
当“退火”时,DNA的两条链,称为。
(打开,变性,重新配对,复性)7. 核酸在复性后260nm波长的紫外吸收,这种现象称为效应。
(变性,减小,减色)8. tRNA的二级结构呈形,三级结构的形状象。
(三叶草。
倒“L”)9. 富含的DNA比富含的DNA具有更高的溶解温度。
(GC,AT)10.DNA的双螺旋结构模型是和于1953年提出的。
(Watson,Crick)11.DNA的T m值大小与三个因素有关,它们是,,。
(GC对,DNA均一性,溶液离子强度)12.PCR是通过、和三个步骤循环进行DNA扩增的。
(变性,退火,延伸)二、选择题(20分)1. 细胞内游离核苷酸分子的磷酸基团通常连接在糖的什么位置上?()aa. C5’b. C3’c. C2’d. C1’2. 关于双链DNA碱基含量的关系哪个是错误的?( )ba. A=Tb. A+T=G+Cc. C=Gd. A+G=C+T3. 下列关于DNA的叙述哪项是错误的?( )ba. 两条链反向平行b. 所有生物中DNA均为双链结构c. 自然界存在3股螺旋DNAd. 分子中稀有碱基很少4. Southern印记法是利用DNA与下列何种物质之间进行分子杂交的原理?()da. RNAb. 蛋白质c. 氨基酸d. DNA5. RNA分子中常见的结构成分是()ba. AMP、CMP和脱氧核糖b. GMP、UMP和核糖c. TMP、AMP和核糖d. UMP、CMP和脱氧核糖6. 热变性的DNA()aa. 紫外吸收增加b. 磷酸二酯键断裂c. 形成三股螺旋d. (G+C)含量增加7. DNA的Tm与介质的离子强度有关,所以DNA制品应保存在()aa. 高浓度的缓冲液中b. 低浓度的缓冲液中c. 纯水中d. 有机溶液中8. 下面关于核酸的叙述中不正确的是( )ca. 在嘌呤和嘧啶之间存在着碱基对b. 当胸腺嘧啶与嘌呤配对时,由于甲基阻止氢键形成而导致碱基配对效率下降c. NaOH溶液只能水解DNA,不能水解RNAd. 在DNA分子总有氢键连接的碱基平面与螺旋平行9. 在适宜条件下,核酸分子的两条链能否自行杂交,取决于:()da. DNA的熔点b. 序列的重复程度c. 核酸链的长短d. 碱基序列的互补10.DNA与RNA两类核酸分类的主要依据是:()ca. 空间结构不同b. 所含碱基不同c. 所含戊糖不同d. 细胞中的位置不同11. 在核酸分子中核苷酸残基之间的连接方式为()ca. 2’,3’-磷酸二酯键b. 氢键c. 3’,5’-磷酸二酯键d. 糖苷键12.DNA复性的重要标志是()da. 溶解度降低b. 溶液黏度降低c. 紫外吸收增大d. 紫外吸收降低13.分离出某病毒核酸的碱基组成为A=27%,G=30%,C=22%,T=21%,该病毒为()aa. 单链DNAb. 双链DNAc. 单链RNAd. 双链RNA14.DNA复制时,序列5’-TpApGpAp-3’将合成下列哪种互补结构?()aa. 5’-TpCpTpAp-3’b. 5’ApTpCpTp-3’c.5’-UpCpUpAp-3’d.5’-GpCpGpAp-3’15.核酸对紫外线的吸收是由哪一结构所产生的()ca. 磷酸二酯键b. 核糖c. 嘌呤嘧啶环上的共轭双键d. 核苷键16.在Watson-Crick的DNA结构模型中,下列正确的是()aa. 双股链的走向是反向平行的b. 嘌呤和嘌呤配对,嘧啶和嘧啶配对c. 碱基之间共价结合d. 磷酸戊糖主链位于螺旋内侧17.DNA变性的原因是()da. 磷酸二酯键断裂b. 多核苷酸解聚c. 碱基的甲基化修饰d. 互补碱基之间的氢键断裂18.下列关于RNA的叙述哪一项是错误的()ca. RNA不仅只有是单链的形式存在的b. tRNA是最小的一种RNAc. 胞质中只有一种RNA,即mRNAd. 组成核糖体的主要是rRNA19. 原核生物核体为()aa.70Sb.80Sc.60Sd.50S20.下列核酸中稀有碱基或修饰核苷相对含量最高的是()ca. DNAb. rRNAc. tRNAd. mRNA三、是非题(5分)√()1. DNA和RNA都易溶于水而难溶于有机溶剂√()2. 不同生物的DNA碱基组成各不相同,同种生物的不同组织器官中DNA组成均相同()3. 在1mol/L NaOH溶液中,RNA和DNA同样不稳定,易被水解成单核苷酸。
生物化学简明教程重点
1、氨基酸:就是含有一个碱性氨基与一个酸性羧基的有机化合物,氨基一般连在α-碳上2、等电点:使氨基酸分子处于兼性离子状态,即分子的所带静电荷为零,在电场中不发生迁移的pH值。
等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了3、肽键:一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。
肽:两个或两个以上氨基通过肽键共价连接形成的聚合物4、构形:有机分子中各个原子特有的固定的空间排列。
这种排列不经过共价键的断裂与重新形成就是不会改变的。
构形的改变往往使分子的光学活性发生变化。
5、构象:指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。
一种构象改变为另一种构象时,不要求共价键的断裂与重新形成。
构象改变不会改变分子的光学活性6、蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
7、酶:就是生物细胞产生的具有催化能力的生物催化剂。
8、全酶:具有催化活性的酶,包括所有必需的亚基,辅基与其它辅助因子。
同工酶:具有不同分子形式但却催化相同的化学反应,这种酶就称为同工酶。
限速酶:整条代谢通路中催化反应速度最慢的酶,它不但可影响整条代谢途径的总速度,还可以改变代谢方向9、结构域:在蛋白质的三级结构内的独立折叠单元。
10、蛋白质变性:生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。
蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。
11、蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中与其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用12、复性:在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象13、别构效应:又称为变构效应,就是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象14、活化能:将1mol反应底物中所有分子由其常态转化为过度态所需要的能量15、核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。
生物化学简明教程第四版课后答案.
2 蛋白质化学 1.用于测定蛋白质多肽链N端、C端的常用方法有哪些?基本原理是什么?解答:(1) N-末端测定法:常采用―二硝基氟苯法、Edman降解法、丹磺酰氯法。
① ―二硝基氟苯(DNFB或FDNB法:多肽或蛋白质的游离末端氨基与―二硝基氟苯(―DNFB)反应(Sanger反应),生成DNP―多肽或DNP―蛋白质。
由于DNFB与氨基形成的键对酸水解远比肽键稳定,因此DNP―多肽经酸水解后,只有N―末端氨基酸为黄色DNP―氨基酸衍生物,其余的都是游离氨基酸。
②丹磺酰氯(DNS法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS―Cl)反应生成DNS―多肽或DNS―蛋白质。
由于DNS与氨基形成的键对酸水解远比肽键稳定,因此DNS―多肽经酸水解后,只有N―末端氨基酸为强烈的荧光物质DNS―氨基酸,其余的都是游离氨基酸。
③苯异硫氰酸脂(PITC或Edman降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC)反应(Edman反应),生成苯氨基硫甲酰多肽或蛋白质。
在酸性有机溶剂中加热时,N―末端的PTC―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N―末端氨基酸后剩下的肽链仍然是完整的。
④氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N端逐个地向里切。
根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N端残基序列。
(2)C―末端测定法:常采用肼解法、还原法、羧肽酶法。
肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除C端氨基酸以游离形式存在外,其他氨基酸都转变为相应的氨基酸酰肼化物。
②还原法:肽链C端氨基酸可用硼氢化锂还原成相应的α―氨基醇。
肽链完全水解后,代表原来C―末端氨基酸的α―氨基醇,可用层析法加以鉴别。
③羧肽酶法:是一类肽链外切酶,专一的从肽链的C―末端开始逐个降解,释放出游离的氨基酸。
被释放的氨基酸数目与种类随反应时间的而变化。
【生物化学简明教程】第四版03章 核酸
3 核酸1.①电泳分离四种核苷酸时,通常将缓冲液调到什么pH?此时它们是向哪极移动?移动的快慢顺序如何? ②将四种核苷酸吸附于阴离子交换柱上时,应将溶液调到什么pH?③如果用逐渐降低pH的洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离,其洗脱顺序如何?为什么?解答:①电泳分离4种核苷酸时应取pH3.5 的缓冲液,在该pH时,这4种单核苷酸之间所带负电荷差异较大,它们都向正极移动,但移动的速度不同,依次为:UMP>GMP>AMP>CMP;②应取pH8.0,这样可使核苷酸带较多负电荷,利于吸附于阴离子交换树脂柱。
虽然pH 11.4时核苷酸带有更多的负电荷,但pH过高对分离不利。
③当不考虑树脂的非极性吸附时,根据核苷酸负电荷的多少来决定洗脱速度,则洗脱顺序为CMP>AMP> GMP > UMP,但实际上核苷酸和聚苯乙烯阴离子交换树脂之间存在着非极性吸附,嘌呤碱基的非极性吸附是嘧啶碱基的3倍。
静电吸附与非极性吸附共同作用的结果使洗脱顺序为:CMP> AMP > UMP >GMP。
2.为什么DNA不易被碱水解,而RNA容易被碱水解?解答:因为RNA的核糖上有2'-OH基,在碱作用下形成2',3'-环磷酸酯,继续水解产生2'-核苷酸和3'-核苷酸。
DNA的脱氧核糖上无2'-OH基,不能形成碱水解的中间产物,故对碱有一定抗性。
3.一个双螺旋DNA分子中有一条链的成分[A] = 0.30,[G] = 0.24,①请推测这一条链上的[T]和[C]的情况。
②互补链的[A],[G],[T]和[C]的情况。
解答:①[T] + [C] = 1–0.30–0.24 = 0.46;②[T] = 0.30,[C] = 0.24,[A] + [G] = 0.46。
4.对双链DNA而言,①若一条链中(A + G)/(T + C)= 0.7,则互补链中和整个DNA分子中(A+G)/(T+C)分别等于多少?②若一条链中(A + T)/(G + C)= 0.7,则互补链中和整个DNA分子中(A + T)/(G + C)分别等于多少?解答:①设DNA的两条链分别为α和β则:Aα= Tβ,Tα= Aβ,Gα= Cβ,Cα= Gβ,因为:(Aα+ Gα)/(Tα+ Cα)= (Tβ+ Cβ)/(Aβ+ Gβ)= 0.7,所以互补链中(Aβ+ Gβ)/(Tβ+ Cβ)= 1/0.7 =1.43;在整个DNA分子中,因为A = T,G = C,所以,A + G = T + C,(A + G)/(T + C)= 1;②假设同(1),则Aα+ Tα= Tβ+ Aβ,Gα+ Cα= Cβ+ Gβ,所以,(Aα+ Tα)/(Gα+ Cα)=(Aβ+ Tβ)/(Gβ+ Cβ)= 0.7 ;在整个DNA分子中,(Aα+ Tα+ Aβ+ Tβ)/(Gα+Cα+ Gβ+Cβ)= 2(Aα+ Tα)/2(Gα+Cα)= 0.75.T7噬菌体DNA(双链B-DNA)的相对分子质量为2.5×107,计算DNA链的长度(设核苷酸对的平均相对分子质量为640)。
生物化学第三章核酸
第三节 RNA的结构与功能
Structure and Function of RNA
• DNA和RNA的区别
不同点 戊糖 碱基 二级结构 碱基互补配对 种类 RNA 核糖 G C A U 单链 忠实性较低 多 (mRNA,rRNA, tRNA 等) DNA 脱氧核糖 G C A T 双链 忠实性高 少
碱基互补配对: 腺嘌呤/胸腺嘧啶(A-T)
4.双螺旋表面存在大沟和小沟
小沟
大沟
(二) DNA二级结构的多样性
• 三种DNA构型的比较
螺距 旋向 (nm) 每圈碱 基数 螺旋直径 (nm) 骨架 走行
存在条件
A型 右手 B型 右手
2.3 3.54
11 10.5
2.5 2.4
平滑 平滑
体外脱水 生理条件
(二)碱基
碱基(base)是含氮的杂环化合物。
腺嘌呤
嘌呤 碱基 嘧啶 鸟嘌呤 存在于DNA和RNA中
胞嘧啶
尿嘧啶 胸腺嘧啶 仅存在于RNA中 仅存在于DNA中
NH2
嘌呤(purine,Pu)
N 7 8 9 NH
N
N
NH
5 4
6 3 N
1N 2
腺嘌呤(adenine, A)
O N
N
NH
NH
鸟嘌呤(guanine, G)
(二) 原核生物DNA的环状超螺旋结构
原核生物DNA多为环状,以负超螺旋的形 式存在,平均每200碱基就有一个超螺旋形成。
DNA超螺旋结构的电镜图象
(三) DNA在真核生物细胞核内的组装
真核生物染色体由DNA和蛋白质构成
基本单位是核小体
DNA染色质呈现出的串珠样结构。 染色质的基本单位是核小体(nucleosome)。
生物化学简明教程
生物化学简明教程
第一章蛋白质化学(于洺)第一节蛋白质通论
第二节氨基酸
第三节蛋白质结构
第四节蛋白质结构与功能
第五节蛋白质性质
第六节分离方法与测定
第二章酶化学(于洺)
第一节酶的分类和命名
第二节酶结构基础和催化策略
第三节酶促反应的动力学
第四节重要的酶类
第五节酶的分离纯化和活力测定
第三章维生素化学(王翔)第一节维生素的分类和命名
第二节重要的脂溶性维生素
第三节重要的水溶性维生素
第四章激素化学(王翔)
第一节激素概念和分类
第二节重要动物激素
第三节激素调控体系
第四节激素的作用原理和细胞信号传递
第五章糖与糖代谢(王翔)
第一节代谢通论和研究方法
第二节糖化学
第三节糖的分解代谢
第四节糖的合成代谢
第五节糖代谢调节
第六节生物氧化
第六章核酸化学(王翔)
第一节DNA结构
第二节核酸变性、复性和杂交
第三节限制性内切酶和DNA测序
第四节染色体结构
第七章DNA的复制、修复
第一节
第八章RNA转录、剪接和修饰第九章蛋白质的合成、修饰附录:生物化学实验(于洺)。
生物化学第三章核酸化学
核糖核酸酶类
牛胰核糖核酸酶:存在于牛胰中,简称为 RNaseⅠ,只作用于RNA,十分耐热,是具 有极高专一性的内切酶。 核糖核酸酶T1:从米曲霉中获得的,耐热, 耐酸,专一性更强。 核糖核酸酶T2:来源同T1,核酸酶:也叫做DNaseⅠ, 需要镁离子参与,切断双链DNA或者单链 DNA为寡聚核苷酸,平均长度为4个核苷酸。 ② 牛脾脱氧核糖核酸酶:也叫做DNaseⅡ, 需要钠离子激活,镁离子抑制活性。 ③ 限制性内切酶:主要降解外源性DNA,目 前发现有数千种,是基因工程最重要的工 具酶。
RNA功能的多样性
① ② ③ ④ ⑤ 控制蛋白质的生物合成; 作用于RNA转录后的加工与修饰; 基因表达与细胞功能调节; 生物催化与其他的细胞功能 遗传信息的加工与进化
第三节
核酸的分子结构
一. 核酸中核苷酸的连 接方式 二. DNA的分子结构 三. RNA的分子结构
核酸中核苷酸的连接方式
1. 核苷酸可以被酸、碱 和酶水解,水解后产 生寡核苷酸、核苷酸、 核苷和碱基。 2. 实验证明,核苷酸是 通过磷酸二酯键彼此 相连,并且形成的是 3’-5’磷酸二酯键(后 面核酸降解中详细说 明)。
tRNA的一级结构特点
① 一般由73-78个核苷酸组成; ② 碱基中有较多的稀有碱基; ③ 3’末端均有CCA-OH结构,用以携带氨基 酸,5’多为pG或者pC。
tRNA的二级结构特点
① 氨基酸臂,由3’和5’末端的7对互补碱基构 成,携带氨基酸,富含G,形成双螺旋; ② 二氢尿嘧啶环,8-12个核苷酸组成,由34对碱基构成双螺旋; ③ 反密码子环,7个核苷酸组成,其中3个组 成反密码子环; ④ 额外环,是tRNA分类的重要标志 ⑤ TψC环,是tRNA中起连接作用的。
生物化学-核酸
核糖 + H +
Δ
糠醛 Δ
甲基间苯二酚 FeCl3
绿色产物
RNA和DNA定性、定量测定 脱氧核糖 + H+ ω-羟基-γ-酮 戊醛
二苯胺
蓝色产物
15
(二)嘌呤碱和嘧啶碱
6
嘌呤碱 (purine):
NH2 N N
1N 2 N 3
5 N7
DNA和RNA均含 有腺嘌呤、鸟 嘌呤
8
4 N 9 H HN
2HN
哺乳动物的b-珠蛋白的基因长度
内含子(intron):基因中不为多肽编码,不在mRNA中出现。 外显子(exons):为多肽编码的基因片段。
43
2、二级结构:
DNA的二级结构是指DNA的双螺旋结构(double helix model),又称Watson-Crick结构。是Watson与 Crick于1953年提出的。
17
稀有碱基(修饰碱基)
NH2
5
NH2
3
O
5
C
4
CH3
3
C
4
CH2OH
3
C
4
5
N C O
2
C CH
6
N C O
2
C CH
6
HN C O
2
CH2 CH2
6
1
1
1
N H
N H
N H
5-甲基胞嘧啶
5-羟甲基胞嘧啶
二氢尿嘧啶
18
OH H N HO N H 烯醇式 酮式
O
H
H
H N O N H 酮式
H H
• 约占全部RNA的80%, • 是核糖核蛋白体的主要组成部分。 • rRNA 的功能与蛋白质生物合成相关。
生物化学笔记(完整版)
第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-C O-NH-)。
生物化学3-核酸作业参考答案
Chapter 4 Nucleic acids专业________ 学号_________ 姓名________ 成绩________一、填空题(20分,每空0.5分)1. 核酸可分为和两大类,前者主要存在于真核细胞的和原核细胞的部位,后者主要存在细胞的部位。
(DNA,RNA,细胞核,拟核区,细胞质) 2. 构成核酸的基本单位是,由,和连接而成。
(核苷酸,碱基,戊糖,磷酸)3. 在各种RNA中,含量最多,含稀有碱基最多,半寿期最短。
(rRNA,tRNA,mRNA)4. 维持DNA的双螺旋结构稳定的作用力有,,。
(碱基堆积力,氢键,离子键)5. 组成DNA的两条多核苷酸链是的,两链的碱基序列,其中与配对,形成两对氢键,与配对,形成三对氢键。
(反向平行,互补配对,A,T,C,G)6. 当温度逐渐升高到一定的高度时,DNA双链,称为。
当“退火”时,DNA的两条链,称为。
(打开,变性,重新配对,复性)7. 核酸在复性后260nm波长的紫外吸收,这种现象称为效应。
(变性,减小,减色)8. tRNA的二级结构呈形,三级结构的形状象。
(三叶草。
倒“L”)9. 富含的DNA比富含的DNA具有更高的溶解温度。
(GC,AT)10.DNA的双螺旋结构模型是和于1953年提出的。
(Watson,Crick)11.DNA的T m值大小与三个因素有关,它们是,,。
(GC对,DNA均一性,溶液离子强度)12.PCR是通过、和三个步骤循环进行DNA扩增的。
(变性,退火,延伸)二、选择题(20分)1. 细胞内游离核苷酸分子的磷酸基团通常连接在糖的什么位置上?()aa. C5’b. C3’c. C2’d. C1’2. 关于双链DNA碱基含量的关系哪个是错误的?( )ba. A=Tb. A+T=G+Cc. C=Gd. A+G=C+T3. 下列关于DNA的叙述哪项是错误的?( )ba. 两条链反向平行b. 所有生物中DNA均为双链结构c. 自然界存在3股螺旋DNAd. 分子中稀有碱基很少4. Southern印记法是利用DNA与下列何种物质之间进行分子杂交的原理?()da. RNAb. 蛋白质c. 氨基酸d. DNA5. RNA分子中常见的结构成分是()ba. AMP、CMP和脱氧核糖b. GMP、UMP和核糖c. TMP、AMP和核糖d. UMP、CMP和脱氧核糖6. 热变性的DNA()aa. 紫外吸收增加b. 磷酸二酯键断裂c. 形成三股螺旋d. (G+C)含量增加7. DNA的Tm与介质的离子强度有关,所以DNA制品应保存在()aa. 高浓度的缓冲液中b. 低浓度的缓冲液中c. 纯水中d. 有机溶液中8. 下面关于核酸的叙述中不正确的是( )ca. 在嘌呤和嘧啶之间存在着碱基对b. 当胸腺嘧啶与嘌呤配对时,由于甲基阻止氢键形成而导致碱基配对效率下降c. NaOH溶液只能水解DNA,不能水解RNAd. 在DNA分子总有氢键连接的碱基平面与螺旋平行9. 在适宜条件下,核酸分子的两条链能否自行杂交,取决于:()da. DNA的熔点b. 序列的重复程度c. 核酸链的长短d. 碱基序列的互补10.DNA与RNA两类核酸分类的主要依据是:()ca. 空间结构不同b. 所含碱基不同c. 所含戊糖不同d. 细胞中的位置不同11. 在核酸分子中核苷酸残基之间的连接方式为()ca. 2’,3’-磷酸二酯键b. 氢键c. 3’,5’-磷酸二酯键d. 糖苷键12.DNA复性的重要标志是()da. 溶解度降低b. 溶液黏度降低c. 紫外吸收增大d. 紫外吸收降低13.分离出某病毒核酸的碱基组成为A=27%,G=30%,C=22%,T=21%,该病毒为()aa. 单链DNAb. 双链DNAc. 单链RNAd. 双链RNA14.DNA复制时,序列5’-TpApGpAp-3’将合成下列哪种互补结构?()aa. 5’-TpCpTpAp-3’b. 5’ApTpCpTp-3’c.5’-UpCpUpAp-3’d.5’-GpCpGpAp-3’15.核酸对紫外线的吸收是由哪一结构所产生的()ca. 磷酸二酯键b. 核糖c. 嘌呤嘧啶环上的共轭双键d. 核苷键16.在Watson-Crick的DNA结构模型中,下列正确的是()aa. 双股链的走向是反向平行的b. 嘌呤和嘌呤配对,嘧啶和嘧啶配对c. 碱基之间共价结合d. 磷酸戊糖主链位于螺旋内侧17.DNA变性的原因是()da. 磷酸二酯键断裂b. 多核苷酸解聚c. 碱基的甲基化修饰d. 互补碱基之间的氢键断裂18.下列关于RNA的叙述哪一项是错误的()ca. RNA不仅只有是单链的形式存在的b. tRNA是最小的一种RNAc. 胞质中只有一种RNA,即mRNAd. 组成核糖体的主要是rRNA19. 原核生物核体为()aa.70Sb.80Sc.60Sd.50S20.下列核酸中稀有碱基或修饰核苷相对含量最高的是()ca. DNAb. rRNAc. tRNAd. mRNA三、是非题(5分)√()1. DNA和RNA都易溶于水而难溶于有机溶剂√()2. 不同生物的DNA碱基组成各不相同,同种生物的不同组织器官中DNA组成均相同()3. 在1mol/L NaOH溶液中,RNA和DNA同样不稳定,易被水解成单核苷酸。
生物化学-核酸
4.分子杂交
DNA单链与在某些区域有互补序列的异源DNA单链 或RNA链形成双螺旋结构的过程。这样形成的新 分子称为杂交DNA分子。
核酸的杂交在分子生物学和遗传学的研究中具有 重要意义。
Southern 杂交(Southern bolting) Northern 杂交(Northern bolting) Western 杂交 (Western bolting)
1. 变性
稳定核酸双螺旋次级键断裂,空间结构破坏,变成单链 结构的过程。核酸的的一级结构(碱基顺序)保持不变。
变性表征 生物活性部分丧失、粘度下降、浮力密度升高、紫外吸 收增加(增色效应)
变性因素 pH(>11.3或<5.0) 变性剂(脲、甲酰胺、甲醛) 低离子强度 加热
2. 热变性和Tm
的聚腺苷酸(polyA),称为 “尾结构” ,5’ -末端 有一个甲基化的鸟苷酸,称为” 帽结构“ 。
五、snRNA (small nucleic RNA 核小RNA)
scRNA (small cytoplasmic RNA) asRNA (antisense RNA)
第五节 核酸的性质
一、一般的理化性质
5
二氢尿嘧啶核苷 D
取代核苷的表示方式
OH
7-甲基鸟苷 m5G
四、核苷酸(nucleotide)
核苷酸
核苷+磷酸 戊糖+碱基+磷酸
HH
五、核苷酸衍生物
1. 继续磷酸化
NH2
N
N
O O- P
O-
O O- P
O-
O O- P
生物化学讲义(3)讲述
⽣物化学讲义(3)讲述第三章核酸(6学时)核酸是⽣命最重要的分⼦,最简单的⽣命仅含有核酸(病毒)。
1868年⾸次在绷带上的脓细胞核中发现⼀种富含磷酸呈酸性⼜不溶于酸溶液的分⼦,命名为核素,其实是核蛋⽩,1898年从⼩⽜的胸腺中提取了⼀种溶于碱性溶液中的纯净物,这才是真正的核酸,从此,对核酸的研究全⾯展开,揭开了⽣物化学领域惊天动地的⼀页。
1944年Avery等所完成的著名肺炎双球菌转化试验,证明了DNA是遗传物质,⽽不是蛋⽩质。
1953年Watson-Crick提出DNA的双螺旋结构模型,从分⼦结构上阐明了DNA的遗传功能。
核酸(nucleic acid)是重要的⽣物⼤分⼦,它的构件分⼦是核苷酸(nucleotide),天然存在的核酸可分为脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)两类。
DNA贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。
RNA中参与蛋⽩质合成的有三类:转移RNA(transfer RNA,tRNA),核糖体RNA(ribosomal RNA,rRNA)和信使RNA(messenger RNA,mRNA)。
20世纪末,发现许多新的具有特殊功能的RNA,⼏乎涉及细胞功能的各个⽅⾯。
第⼀节碱基、核苷和核苷酸⼀、核酸的种类、分布和化学组成核酸分为两⼤类:脱氧核糖核酸(DNA)、核糖核酸(RNA)。
98%核中(染⾊体中)真核线粒体(mDNA)核外叶绿(ctDNA)DNA 拟核原核核外:质粒(plasmid)病毒:DNA病毒RNA主要存在于细胞质中。
信使RNA --mRNA核糖体RNA--rRNA转移RNA--tRNA核酸的化学组成:对核酸的⽔解发现(脱氧)核酸—--→(脱氧)核苷酸—------→P+(脱氧)核苷----→戊糖+碱基由上⾯可知,核酸的结构单位是(脱氧)核苷酸,核苷酸由戊糖、磷酸和含氮碱三部分构成。
生物化学简明教程
单击此处添加副标题
目录
生物化学概述 生物膜的结构和功能 生物化学与医学的关系
生物分子的结构和性质 生物代谢的调控 生物化学实验技术简介
01
生物化学概述
生物化学的定义和研究对象
生物化学是研究生物体中化学过程的科学。 研究对象包括蛋白质、酶、核酸、糖类等。 生物化学是生物学和化学的交叉学科。 生物化学的研究有助于了解生物体的生命活动规律。
生物化学在医学领域的发展前景
疾病预防和治疗:通过对生物化学的研究,可以更好地了解疾病的发病机 制,为预防和治疗提供理论依据。
新药研发:生物化学对药物研发具有重要指导作用,可以揭示药物作用机 制,为新药的研发提供理论支持。
医学检验:生物化学在医学检验中扮演着重要角色,通过对血液、尿液等 样本的生物化学分析,可以协助医生进行疾病诊断和监测。
信号分子:细胞间信息传 递的媒介
受体:识别信号分ห้องสมุดไป่ตู้的分 子
信号转导途径:将信号传 递至细胞效应器的过程
细胞反应:对信号做出反 应并产生效应
05
生物化学与医学的 关系
生物化学在医学领域的应用
疾病诊断:通过生物化学指标,辅助医生诊断 疾病
营养与代谢性疾病防治:研究营养物质代谢和 能量平衡的调控机制,为防治肥胖、糖尿病等 代谢性疾病提供支持
基因研究:通过 分析基因表达和 突变,对人类健 康和疾病进行深 入研究。
环境监测:检测 环境中污染物的 含量,以保护环 境和人类健康。
生物化学实验技术的主要类型和方法
层析法:利用不 同物质在固定相 和流动相之间的 分配系数不同, 实现物质的分离
电泳法:利用不 同带电粒子在电 场中的迁移速度 不同,实现物质 的分离
生物化学简名教程第六版
生物化学简名教程第六版《生物化学简明教程第六版》是一本介绍生物化学的教材,它旨在帮助读者了解生物体内的化学过程和分子机制。
本文将简要介绍该教程的内容,重点涉及生物分子、代谢、遗传信息和信号传导等方面。
第一章介绍了生物化学的基本概念和研究方法。
生物化学是研究生物体内化学反应和分子结构的学科,通过分析生物分子的组成和功能,揭示生命现象的化学基础。
在研究方法方面,生物化学借鉴了物理化学和分析化学的技术,如质谱、核磁共振等。
第二章讨论了生物分子的结构和功能。
生物体内存在许多重要的生物分子,如蛋白质、核酸、糖类和脂类等。
这些分子在生物体内扮演着重要的角色,如蛋白质作为酶催化化学反应,核酸承载遗传信息,糖类提供能量,脂类构建细胞膜等。
了解这些分子的结构和功能,有助于理解生物体内的化学过程。
第三章介绍了生物体内的代谢过程。
代谢是生物体利用外源物质合成自身分子或产生能量的过程。
代谢过程包括碳水化合物、脂肪和蛋白质的分解和合成。
其中,糖酵解和三酸甘油酯合成是能量代谢的重要过程。
了解代谢过程可以帮助我们理解生物体如何利用营养物质维持生命活动。
第四章讨论了遗传信息的传递和表达。
遗传信息包括DNA和RNA的序列,通过遗传物质的复制、转录和翻译等过程进行传递和表达。
DNA复制是遗传信息传递的基础,而转录和翻译则是遗传信息表达的关键步骤。
理解遗传信息的传递和表达有助于我们认识到基因是如何决定生物体的性状和功能。
第五章介绍了信号传导和细胞通讯。
生物体内的细胞之间通过分子信号进行通讯,这些信号可以是激素、神经递质或细胞外基质分子等。
信号传导包括信号的接受、传递和响应等过程,涉及到细胞膜受体、信号转导通路和转录因子等分子的参与。
了解信号传导有助于我们理解细胞内外信息交流的机制。
《生物化学简明教程第六版》是一本系统而全面的生物化学教材,适用于生物化学、生物学、医学等专业的学生和研究者。
通过学习该教材,读者可以获得对生物化学基本概念和原理的理解,从而更好地理解生物体内的化学过程和分子机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H3C CH3
假尿苷() 二氢尿嘧啶(DHU)
CH3
Am
m26G
碱基、核苷、核苷酸的关系
Pyrimidines
Purihes
CT
U
A
G
Cytosine Thymine Uracil
Adenine
Guanine
Phosphate
Nitrogenous base
Pentose sugar
HOCH2
OH
为核酸(nucleic acid)
•1944 Avery 等通过肺炎球菌转化试验证明DNA是
遗传物质
•1953 Watson和Crick提出DNA结构的双螺旋模型
•1958 Crick提出遗传信息传递的中心法则
•70年代 建立DNA重组技术
•80年代以后 分子生物学、分子遗传学等学科突飞
猛进发展,实施人类基因组计划(HGP)
(A)
Guanine
(G)
Cytosine
(C)
Uracil Thymine
(U) (T)
核糖和脱氧核糖
(二)、核苷(核糖+碱基)
戊糖 C-1 上的羟基与嘧啶碱上的 N-1 或嘌呤碱的 N-9 连接而成的糖苷键
(三)、核苷酸(核苷+磷酸)
5‘-磷酸酯,类型有:AMP、GMP、CMP UMP、dAMP、dGMP、dCMP、dTMP
4
核酸功能、分类和分布
•脱氧核糖核酸(deoxyribonucleic acid, DNA):遗传信息的
贮存和携带者,生物的主要遗传物质。在真核细胞中,DNA主 要集中在细胞核内,线粒体和叶绿体中均有各自的DNA。原核 细胞没有明显的细胞核结构,DNA存在于称为类核的结构区。 每个原核细胞只有一个染色体,每个染色体含一个双链环状 DNA。
PPT课件
2
核酸研究简史
1869年 Miescher博士 论文工作中测 定淋巴细胞蛋 白质组成时, 发现了不溶于 稀酸和盐溶液 的沉淀物, 并 在所有细胞的 核里都找到了 此物质, 故命 名核质 (Nuclein)。
1879年Kossel经过10年的努力, 搞清楚核 质中有四种不同的组成部分: A,T, C和G。
PPT课件
20
• (3)螺旋横截面的直径约为2 nm,每条 链相邻两个碱基平面之间的距离为0.34 nm,每10个核苷酸形成一个螺旋,其螺 矩(即螺旋旋转一圈)高度为3.4 nm。
PPT课件
21
(4)双螺旋的力是链间的碱 基对所形成的氢键。
• 碱基的相互结合具有严格的 配对规律,A-T,G-C结合, 这种配对关系,称为碱基互 补。A T间形成两个氢键, G C 间 三个氢键。
HOCH2
OH
HO
H
Ribose (in RNA) Doxyribose (in DNA)
第二节 脱氧核糖核酸的结构
一、DNA的一级结构 1、定义---各核苷酸残基沿多核苷酸链排
列的顺序。
2、特征: 3’-5’磷酸二酯键 3、核酸的表示方法:线条式、文字式、字母式
PPT课件
14
DNA 的一级结构
PPT课件
10
P
P
P
P
腺嘌呤核苷酸 (AMP)
鸟嘌呤核苷酸 (GMP)
尿嘧啶核苷酸 (UMP)
胞嘧啶核苷酸 (CMP)
P
P
P
P
脱氧腺嘌呤核苷酸 (dAMP)
脱氧鸟嘌呤核苷酸 脱氧胸腺嘧啶核苷酸
(dGMP)
(dTMP)
脱氧胞嘧啶核苷酸 (dCMP)
常见(脱氧)核苷酸的结构和命名
几种稀有核苷酸
H H 5
PPT课件
5
第一节 核酸的组成成份
一、核酸组成
核蛋白
蛋白质
磷酸
核酸 核苷酸
戊糖:核糖/脱
(n个) 核苷
氧核糖
碱基:嘌呤/嘧啶
PPT课件
6
(一)、化学组成 嘧啶碱
1、碱基
嘌呤碱
胞嘧啶C 胸腺嘧啶T 尿嘧啶U 腺嘌呤A
鸟嘌呤G
核糖
2、戊糖 脱氧核糖
PPT课件
7
基本碱基结构和命名
嘌呤
嘧啶
Adenine
1889年Altman建议将核质改名为“核 酸”, 并且已经认识到“核质” 乃“核酸” 与蛋白质的复合体。
PPT课件
3
1944年Avery重做1928 年Griffith的细菌转化实 验,证明DNA是遗传物质。
1952年
Hershey &
Chase的噬菌
体感染实验
进一步证明
DNA是遗传物
质。
PPT课件
•核糖核酸(ribonucleic acid, RNA):主要参与遗传信息的
传递和表达过程,细胞内的RNA主要存在于细胞质中,少量存
在于细胞核中,病毒中RNA本身就是遗传信息的储存者。另外
在植物中还发现了一类比病毒还小得多的侵染性致病因子称为
类病毒,它是不含蛋白质的游离的 RNA分子,还发现有些
RNA具生物催化作用(ribozyme)。
18
1、DNA双螺旋结构模型的要点
• (1)DNA分子由两条多聚脱氧核糖核苷酸链 (简称DNA单链)组成。两条链沿着同一根轴平 行盘绕,形成右手双螺旋结构。螺旋中的两条 链方向相反,即其中一条链的方向为5′→3′, 而另一条链的方向为3′→5′。
Pቤተ መጻሕፍቲ ባይዱT课件
19
• (2)嘌呤碱和 嘧啶碱基位于螺 旋的内侧,磷酸 和脱氧核糖基位 于螺旋外侧。碱 基环平面与螺旋 轴垂直,糖基环 平面与碱基环平 面成90°角。
• DNA分子中各脱氧核苷酸
之间的连接方式(3´-5´磷酸二
酯 键 ) 和 排 列 顺 序 叫 做 DNA 的
一级结构,简称为碱基序列。一
级结构的走向的规定为5´→3´。
5 ´
不 同 的 DNA 分 子 具 有 不 同 的 核
3´
苷酸排列顺序,因此携带有不同
的遗传信息。
PPT课件
15
DNA一级结构的表示法
第三章 核酸化学
主要内容:介绍核酸的分类和化学组成
,重点讨论DNA和RNA的结构特征,初步认识核 酸的结构特征与其功能的相关性;介绍核酸的 主要理化性质和核酸研究的一般方法。
PPT课件
1
核酸的发现和研究历史
•1869 Miescher从脓细胞的细胞核中分离出了一 种
含磷酸的有机物,当时称为核素(nuclein),后称
• 在DNA分子中,嘌呤碱基 的总数与嘧啶碱基的总数相 等。
PPT课件
22
(5)、大沟和小沟
PPT课件
23
5 ´
3´
结构式
AC T G
1´
3´
5´ p
p
p
p
OH 3´
线条式
5´ ACTGCATAGCTCGA 3´ 字母式
第三节 DNA的空间结构 (一)、DNA的二级结构
Watson和Crick于1952年提出的 双螺旋结构模型
1、双螺旋结构模型的主要证据
X—光衍射数据、碱基成对的原则
PPT课件
17
PPT课件