不等关系与不等式(2课时)

合集下载

高中数学重点《不等关系与不等式》教案

高中数学重点《不等关系与不等式》教案

高中数学重点《不等关系与不等式》教案高中数学重点《不等关系与不等式》教案主要关注学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升。

下面就和课件网一起来看看有关高中数学重点《不等关系与不等式》教案。

高中数学必修5《不等关系与不等式》教案1教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的證明二1.若,,則下列不等始終正確的是()2.設a,b為實數,且,則的最小值是()4.求證:對任何式數x,y,z,下述三個不等式不可能同時成立高中数学必修5《不等关系与不等式》教案2整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题(1)回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系(2)在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗(3)数轴上的任意两点与对应的两实数具有怎样的关系(4)任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“ ne;”“ ge;”“ le;”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B 的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x le;6,a+2 ge;0,3 ne;4,0 le;5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃ le;t le;32 ℃.实例3,若用x表示一个非负数,则x ge;0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v le;40 km/h.实例7,f ge;2.5%,p ge;2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f ge;2.5%或p ge;2.3%,这是不对的.但可表示为f ge;2.5%且pge;2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b<0 a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g (x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1 ge;1>0,there4;f(x)>g(x).2.已知x ne;0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x ne;0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a ne;b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=(a+b)2-4ab2(a+b)=(a-b)22(a+b).∵a>0,b>0且a ne;b, there4;a+b>0,(a-b)2>0. there4;(a-b)22(a+b)>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2 ge;0(当且仅当a=b=0时取等号),又a ne;b, there4;(a-b)2>0,2a2+(a+b)2>0. there4;-(a-b)2[2a2+(a+b)2]<0.there4;a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y ne;0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y, there4;x-y>0.当y<0时,x-yy<0,即xy-1<0. there4;xy<1;当y>0时,x-yy>0,即xy-1>0. there4;xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m(b-a)b(b+m)>0,于是a+mb+m>ab.又ab ge;10%,因此a+mb+m>ab ge;10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q ne;1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零, there4;q>0,即1+q>0.又∵q ne;1, there4;(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C 解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2 ge;0,③x2+y2-2xy=(x-y)2 ge;0.there4;只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x .4.若x5.设a>0,b>0,且a ne;b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,there4;(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2 ge;0, there4;(m2-2m+5)-(-2m+5) ge;0. there4;m2-2m+5 ge;-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2 ge;0, there4;a2+2 ge;2>0.there4;a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0, there4;x24>0.there4;(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.there4;-2xy(x-y)>0.there4;(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a ne;b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abb a.综上所述,对于不相等的正数a、b,都有aabb>abba.。

人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用

人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用

第三章 不等式 3.1 不等关系与不等式 第2课时不等式的性质与应用A 级 基础巩固一、选择题1.若a >0,b >0,则不等式-b <1x <a 等价于( )A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析:由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a ;(2)当x <0时,-b <1x <a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a .答案:D2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b <2a <2D .a 2<ab <1答案:C3.已知实数x,y,满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y 的取值范围是()A.[-7,26] B.[-1,20]C.[4,15] D.[1,15]答案:B4.已知a<b<0,那么下列不等式成立的是()A.a3<b3B.a2<b2C.(-a)3<(-b)3D.(-a)2<(-b)2解析:取a=-2.b=-1.验证知B,C,D均错,故选A.答案:A5.如下图所示,y=f(x)反映了某公司的销售收入y与销量x之间的函数关系,y=g(x)反映了该公司产品的销售成本与销售量之间的函数关系,当销量x满足下列哪个条件时,该公司盈利()A.x>a B.x<aC.x≥a D.0≤x≤a解析:当x<a时,f(x)<g(x);当x=a时,f(x)=g(x);当x>a 时,f(x)>g(x),故选A.答案:A二、填空题6.若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a这四个式子中,恒成立的序号是________. 答案:②④7.若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.答案:(-56π,0)8.设x >1,-1<y <0,试将x ,y ,-y 按从小到大的顺序排列如下________.答案:y <-y <x 三、解答题9.已知a >b >0,c <d <0,判断b a -c 与ab -d 的大小.解:因为a >b >0,c <d <0,所以-c >-d >0,所以a -c >b -d >0, 所以0<1a -c <1b -d,又因为a >b >0,所以b a -c <ab -d.10.已知0<x <1,0<a <1,试比较|log a (1-x )|和 |log a (1+x )|的大小.解:法一:|log a (1-x )|2-|log a (1+x )|2=[log a (1-x )+log a (1+x )]·[log a (1-x )-log a (1+x )]=log a (1-x )2log a 1-x 1+x.因为0<1-x 2<1,0<1-x1+x<1,所以log a (1-x 2)log a 1-x1+x>0.所以|log a (1-x )|>|log a (1+x )|.法二:⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log 1+x (1-x )|= -log 1+x (1-x )=log 1+x 11-x =log 1+x 1+x 1-x 2=1-log 1+x (1-x 2). 因为0<1-x 2<1,1+x >1, 所以log 1+x (1-x 2)<0. 所以1-log 1+x (1-x 2)>1. 所以|log a (1-x )|>|log a (1+x )|. 法三:因为0<x <1,所以0<1-x <1,1<1+x <2, 所以log a (1-x )>0,log a (1+x )<0. 所以|log a (1-x )|-|log a (1+x )|= log a (1-x )+log a (1+x )=log a (1-x 2). 因为0<1-x 2<1,且0<a <1, 所以log a (1-x 2)>0.所以|log a (1-x )|>|log a (1+x )|.B 级 能力提升1.对下列不等式的推论中: ①a >b ⇒c -a >c -b ; ②a >b +c ⇒(a -c )2>b 2; ③a >b ⇒ac >bc ;④a >b >c >0⇒(a -c )b >(b -c )b ;⑤a >b ,1a >1b ⇒a >0,b <0.其中正确的个数是( ) A .2 B .3 C .4 D .5 答案:A2.若-2<c <-1<a <b <1,则(c -a )(a -b )的取值范围为________.答案:(0,6)3.若二次函数f (x )的图象关于y 轴对称,且1≤f (1)≤2;3≤f (2)≤4,求f (3)的取值范围.解:由题意设f (x )=ax 2+c (a ≠0),则⎩⎪⎨⎪⎧f (1)=a +c ,f (2)=4a +c ,所以⎩⎨⎧a =f (2)-f (1)3,c =4f (1)-f (2)3,而f (3)=9a +c =3f (2)-3f (1)+4f (1)-f (2)3=8f (2)-5f (1)3,因为1≤f (1)≤2,3≤f (2)≤4, 所以5≤5f (1)≤10,24≤8f (2)≤32, 所以-10≤-5f (1)≤-5, 所以14≤8f (2)-5f (1)≤27, 所以143≤8f (2)-5f (1)3≤9,即143≤f (3)≤9.。

不等关系与不等式

不等关系与不等式
1.2 不等关系与不等式
1.掌握不等式的性质及其推论,并能证明这些结论. 2.利用不等式的有关基本性质研究不等关系.
不等式:用不等号连接的式子,叫作不等式. 说明: (1)不等号的种类:>、<、≥、≤、≠. (2) 不等式研究的范围是实数集R.
对于任意两个实数 a、b,在“a>b,a = b,a<b”
用“<”或“>”填空
(1) 如果 a b, c d ,则 a c __>__ b d ; (2) 如果 a b 0, c d 0 ,则 ac _>___ bd ; (3) 如果 a b 0 ,则 a2 _>___ b2 ; (4) 如果 a b 0 ,则 a _>___ b .
解: 设住宅窗户面积和地板面积分别为 a,b ,同时增加的面积为 m ,
根据问题的要求 a b, 且 a 10% . b
由于 a m a m(b a) 0, b m b b(b m)
于是 a m a , 又 a 10%, bm b b
因此, a m a 10%. bm b
初中时我们曾经学过哪些不等式的性质?
1(对称性):如果a>b,那么b<a;如果b<a,那么a>b. 2(传递性):如果a>b,b>c,那么a>c.
3(可加性):如果a>b,则a+c>b+c. 不等式的两边都加上同一个实数,不等号方向不变.
4(可乘性):如果a>b,c>0,则ac>bc; 如果a>b,c<0,则ac<bc.
所以,同时增加相 等的窗户面积和地板面积后,住宅的 采光条件变好了!
一般地,设 a,b 为正实数,且 a b, m 0 ,则 am a. bm b 日常生活中,还有哪些实例满足例3中的不等式?

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

目录不等关系与不等式 ................................................................................................. 错误!未定义书签。

考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)专题03 不等关系与不等式 考点1:不等关系与不等式知识点一 基本事实两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .思考 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小吗?正确答案 作差:x 2+1-2x =( x -1)2≥0,所以x 2+1≥2x . 知识点二 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.题型1:用不等式( 组)表示不等关系例1 《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票( 以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票. ……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h ( 米),物品外部长、宽、高尺寸之和为P ( 厘米),请用不等式表示下表中的不等关系.解 由题意可获取以下主要信息:( 1)身高用h ( 米)表示,物体长、宽、高尺寸之和为P ( 厘米);( 2)题中要求用不等式表示不等关系.参考解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20( 2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-( a 2b +ab 2)=( a 3-a 2b )+( b 3-ab 2) =a 2( a -b )+b 2( b -a )=( a -b )( a 2-b 2)=( a -b )2( a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,( a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵( x 3-1)-( 2x 2-2x )=x 3-2x 2+2x -1 =( x 3-x 2)-( x 2-2x +1)=x 2( x -1)-( x -1)2 =( x -1)( x 2-x +1)=( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 正确答案 C详细解析 对于A,x 应满足x ≤2 000,故A 错误;对于B,x ,y 应满足x <y ,故B 错误;C 正确;对于D,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x ( cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100正确答案 C详细解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关正确答案 A详细解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化 正确答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .( a +4)( b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 正确答案 C详细解析 由题意知a >4b ,根据面积公式可以得到( a +4)( b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.( 不用化简)正确答案 5x -2( 19-x )≥80,x ∈N *详细解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2( 19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 正确答案 |x -500|≤1详细解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________. 正确答案x 1+x 2≤12详细解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2( a -b )+a -b =( a -b )( a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y ,得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .无法确定正确答案 B详细解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-( a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1( a 2-1)-( a 2-1)=( a 1-1)( a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12正确答案 A详细解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式( 组)将题中的不等关系表示为________.正确答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *)详细解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.( 填“>”“<”“=”) 正确答案 >详细解析 a 1b 1+a 2b 2-( a 1b 2+a 2b 1) =a 1( b 1-b 2)+a 2( b 2-b 1) =( b 1-b 2)( a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即( b 1-b 2)( a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 ( 1)如果a =b ,那么b =a . ( 2)如果a =b ,b =c ,那么a =c . ( 3)如果a =b ,那么a ±c =b ±c . ( 4)如果a =b ,那么ac =bc . ( 5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 ( 1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.正确答案 ①③详细解析 对于①,若ab >0,则1ab >0,又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-( -10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a ( b +m )<b ( a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.( 2)已知a >b >0,c <d <0.求证:3ad<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-a d>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 正确答案 C详细解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8( a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定正确答案 C详细解析 P 2=2a +13+2(a +6)(a +7),Q 2=2a +13+2(a +5)(a +8),因为( a +6)( a +7)-( a +5)( a +8)=a 2+13a +42-( a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b,则a >0,b <0B .若a >b ,b ≠0,则a b>1 C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d正确答案 A详细解析 对于A,∵1a >1b ,∴b -a ab>0, 又a >b ,∴b -a <0,∴ab <0,∴a >0,b <0,故A 正确;对于B,当a >0,b <0时,有a b<1,故B 错; 对于C,当a =10,b =2时,有10+1>2+3,但1<3,故C 错;对于D,当a =-1,b =-2时,有( -1)×( -1)>( -2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15,∴12-36<a -b <60-15,即-24<a -b <45.又136<1b <115,∴1236<a b <6015,即13<a b<4. 故-24<a -b <45,13<a b<4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________.正确答案 -32<2a -b <52详细解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12( a +b )-32( -a +b ), 结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |正确答案 A详细解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .( a -b )c 2≥0正确答案 D详细解析 ∵a >b ,∴a -b >0,∴( a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数正确答案 A详细解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 正确答案 C详细解析 利用性质可得A,B,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 正确答案 D详细解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 正确答案 a >0>b详细解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.正确答案 ②③详细解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=( a -b )( a 2+ab +b 2)=( a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<( -3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.正确答案 z >y >x详细解析 ∵a >b >c >0,y 2-x 2=b 2+( c +a )2-a 2-( b +c )2=2ac -2bc=2c ( a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.( 1)若a <b ,c <0,则c a <c b; ( 2)a c 3<b c 3,则a >b ; ( 3)若a >b ,且k ∈N *,则a k >b k ;( 4)若a >b ,b >c ,则a -b >b -c .解 ( 1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. ( 2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.( 3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.( 4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x ( a +b )+y ( a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52( a +b )<152,-2<-12( a -b )<-1,所以-92<52( a +b )-12( a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b正确答案 D详细解析 对于A,若c <0,其不成立;对于B,若a ,b 均小于0或a <0,其不成立;对于C,若a >0,b <0,其不成立;对于D,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 正确答案 C详细解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0. 所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 正确答案 C详细解析 对于A,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立;对于D,当c=0时,a|c|=b|c|,∴D不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>b+c,a+c<b,则这四个小球由重到轻的排列顺序是( )A.d>b>a>c B.b>c>d>aC.d>b>c>a D.c>a>d>b正确答案A详细解析∵a+b=c+d,a+d>b+c,∴a+d+( a+b)>b+c+( c+d),即a>c.∴b<d.又a+c<b,∴a<b.综上可得,d>b>a>c.。

不等关系与不等式 课件

不等关系与不等式 课件
(2)要注意“箭头”是单向的还是双向的,也就是说每条 性质是否具有可逆性.
用不等式(组)表示不等关系
[典例] 某家电生产企业计划在每周工时不超过40 h的情 况下,生产空调、彩电、冰箱共120台,且冰箱至少生产20 台.已知生产这些家电产品每台所需工时如下表:
家电名称 空调
彩电
冰箱
工时(h)
1 2
用不等式性质求解取值范围 [典例] 已知1<a<4,2<b<8,试求2a+3b与a-b的取值 范围. [解] ∵1<a<4,2<b<8,∴2<2a<8,6<3b<24. ∴8<2a+3b<32. ∵2<b<8,∴-8<-b<-2. 又∵1<a<4,∴1+(-8)<a+(-b)<4+(-2), 即-7<a-b<2. 故2a+3b的取值范围是(8,32),a-b的取值范围是(-7,2).
数式的大小比较
[典例] (1)已知x<1,比较x3-1与2x2-2x的大小;
(2)已知a>0,试比较a与1a的大小. [解] (1)(x3-1)-(2x2-2x) =(x-1)(x2+x+1)-2x(x-1) =(x-1)(x2-x+1)
=(x-1)x-122+34. ∵x<1,∴x-1<0.又x-122+34>0, ∴(x-1)x-122+34<0. ∴x3-1<2x2-2x.
(2)因为a-1a=a2-a 1=a-1aa+1, 因为a>0,所以当a>1时,a-1aa+1>0,有a>1a; 当a=1时,a-1aa+1=0,有a=1a; 当0<a<1时,a-1aa+1<0,有a<1a. 综上,当a>1时,a>1a; 当a=1时,a=1a; 当0<a<1时,a<1a.

15-16版:1.2 不等关系与不等式(二)(创新设计)

15-16版:1.2  不等关系与不等式(二)(创新设计)

1.2 不等关系与不等式(二)[学习目标] 1.掌握不等式的性质.2.能利用不等式的性质进行数或式的大小比较及证明不等式.[知识链接]下面关于不等式的几个命题正确的有________.(1)若a >b ,则a +c >b +c ;(2) 若a >b ,则ac >bc ;(3)若a >b ,则ac 2>bc 2;(4)若-2x +3<0,则2x >3.答案 (1)(4)解析 对于(2),当c ≤0时,不成立;对于(3),当c =0时,不成立.[预习导引]常用的不等式的基本性质(1)a >b ⇔b <a (对称性);(2)a >b ,b >c ⇒a >c (传递性);(3)a >b ⇒a +c >b +c (可加性);(4)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;(5)a >b ,c >d ⇒a +c >b +d ;(6)a >b >0,c >d >0⇒ac >bd ;(7)a >b >0,n ∈N +,n ≥2⇒a n >b n ;(8)a >b >0,n ∈N +,n ≥2要点一 利用不等式性质判断命题的真假例1 判断下列不等式关系是否正确,并说明理由.(1)若a c 2>b c2,则a >b ; (2)若a >b ,ab ≠0,则1a <1b; (3)若a >b ,c >d ,则ac >bd .解 (1)正确.∵c 2≠0且c 2>0,∴在a c 2>b c 2两边同乘以c 2不等式方向不变.∴a >b . (2)错误.a >b ⇔1a <1b成立的条件是ab >0. (3)错误.a >b ,c >d ⇒ac >bd ,当a ,b ,c ,d 均为正数时成立.规律方法 判断一个命题不成立的常用方法(1)从条件入手,推出与结论相反的结论;(2)举出反例予以否定.跟踪演练1 已知三个不等式:①ab >0,②c a >d b,③bc >ad .以其中两个作条件,余下一个作结论,则可组成________个正确命题.答案 3解析 将②作等价变形:c a >d b ⇔bc -ad ab>0. 由ab >0,bc >ad ,可得②成立,即①③⇒②若ab >0,bc -ad ab>0,则bc >ad ,故①②⇒③; 若bc >ad ,bc -ad ab>0,则ab >0,故②③⇒①. ∴可组成3个正确命题.要点二 利用不等式性质证明简单不等式例2 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc ;(2)已知a >1,m >n >0,求证:a m +1a m >a n +1a n . 证明 (1)因为a >b ,c >0,所以ac >bc ,即-ac <-bc .又e >f ,所以f -ac <e -bc .(2)(a m+1a m )-(a n +1a n )=(a m -a n )(a m +n -1)a m +n , 因为a >1,m >n >0,所以a m >a n ,a m +n >1, 即a m -a n >0,a m +n -1>0,故(a m +1a m )-(a n +1a n )>0, 所以a m +1a m >a n +1a n . 规律方法 (1)简单不等式的证明可直接由已知条件,利用不等式的性质,通过对不等式变形得证.(2)对于不等式两边都比较复杂的式子,直接利用不等式的性质不易证得,可考虑将不等式两边作差,然后进行变形,根据条件确定每一个因式的符号,利用符号法则判断最终的符号,完成证明.跟踪演练2 已知a >b >0,c <d <0,e <0,求证:e (a -c )2>e (b -d )2. 证明 ∵c <d <0,∴-c >-d >0,∵a >b >0,∴a -c >b -d >0,∴(a -c )2>(b -d )2>0.两边同乘以1(a -c )2(b -d )2,得1(a -c )2<1(b -d )2, 又∵e <0,∴e (a -c )2>e (b -d )2. 要点三 利用不等式的性质求范围例3 已知12<a <60,15<b <36.求:a -b ,a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15.∴12-36<a -b <60-15,∴-24<a -b <45.又136<1b <115,∴1236<a b <6015. ∴13<a b<4. 规律方法 利用性质求范围问题的基本要求(1)利用不等式性质时,要特别注意性质成立的条件,如同向不等式相加,不等号方向不变,两边都是正数的同向不等式才能相乘等.(2)要充分利用所给条件进行适当变形来求范围,注意变形的等价性.跟踪演练3 已知-π2≤α<β≤π2,求α+β2,α-β2的取值范围. 解 ∵-π2≤α<β≤π2, ∴-π4≤α2<π4,-π4<β2≤π4. 将两式相加,得-π2<α+β2<π2. ∵-π4<β2≤π4,∴-π4≤-β2<π4, ∴-π2≤α-β2<π2. 又知α<β,∴α-β2<0,故-π2≤α-β2<0.1.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( )A .a >b >-b >-aB .a >-b >-a >bC .a >-b >b >-aD .a >b >-a >-b答案 C解析 由a +b >0知a >-b ,∴-a <b <0.又b <0,∴-b >0,∴a >-b >b >-a .2.已知a >b ,不等式:①a 2>b 2;②1a >1b ;③1a -b >1a成立的个数是( ) A .0B .1C .2D .3答案 A解析 由题意可令a =1,b =-1,此时①不对;令a =3,b =2,此时13<12,故②不对;令a =1,b =-1,a -b =2,此时有1a -b <1a,故③不对.故选A. 3.已知a ,b ,c ,d ∈R 且ab >0,-c a >-d b,则( ) A .bc <adB .bc >ad C.a c >b dD.a c <b d 答案 A解析 ∵ab >0,∴在-c a >-d b两侧乘ab 不变号,即-bc >-ad ,即bc <ad . 4.若α∈(0,π2),β∈(0,π2),那么2α-β3的范围是________. 答案 (-π6,π) 解析 α∈(0,π2),∴2α∈(0,π),β∈(0,π2), ∴-β3∈(-π6,0),∴-π6<2α-β3<π.1.不等式的性质(1)不等式的性质有很多是不可逆的,特别对同向不等式,只有同向不等式才可以相加,但不能相减,而且性质不可逆.只有同向且是正项的不等式才能相乘,且性质不可逆.(2)不等式的性质是解(证)不等式的基础,要依据不等式的性质进行推导,不能自己“制造”性质运算.2.在利用不等式的性质进行证明、判断或者推理过程中,要注意性质成立的条件,不能出现同向不等式相减、相除的情况,要特别注意同向不等式相乘的条件为同为正.。

高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。

这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。

为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。

2.1.1不等关系与重要不等式课件(人教版)

2.1.1不等关系与重要不等式课件(人教版)
∴ 2 + 2 + 2 ≥ + + .
当且仅当 = = 时,等号成立
4 课堂训练
4
课堂训练
C
C
4
课堂训练
≥ 0
+ >
16 ≤ ≤ 18
2 + 2 > 3
5 预习自测
5
预习自测


×

5
预习自测
C
<
= 2 + 5 + 6 − 2 + 5 + 4
=2
∵2>0,
∴ +2 +3 > +1 +4 .
作差
变形
0是相等与不等的分界
限,它也为比较实数的大
定号
定论
小提供了标杆.
2
实数大小的比较

已知,均为正数,且 ≠ ,比较3 + 3与2 + 2的大小
【解】运用作差法:
【问题4】 :如何证明重要不等式?
2
2
2
证明: (a b ) - 2ab (a b)
当a b时, (a b) 0
2
当a b时, ( a b )2 0
(a 2 b 2 ) 2ab 0,
当 且 仅 当 a b时 , 等 号 成 立 。
3
一个重要不等式
B
D
(3)S与S’会出现相等的情况吗,什么时候相
当a=b时
等? 当a=b时,S=S',即 + =
A
C
E(FGH)
B
综上, + ≥
重要不等式

3.1不等关系与不等式(两课时)

3.1不等关系与不等式(两课时)

500x 600y 4000
y 3x
x≥0,y≥0 上面三个不等关系,是“且”的关系,要同时满足的话, 用不等式组表示为:
数学应用
问题3.某钢铁厂要把长度为4000mm的钢管截成 500mm和600mm的两种规格。按照生产的要求, 600mm的钢管的数量不能超过500mm钢管的3倍, 写出满足上述所有不等关系的不等式.
数学应用
问题1:设点A与平面α的距离为d, B为平面α上任意一点,则
d与线段AB的关系?
A
d≤|AB|
d

B
数学应用
问题2.某种杂志原以每本2.5元的价格销售,可以 售出8万本。据市场调查,若单价每提高0.1元销售 量就可能相应减少2000本。若把提价后杂志的定价 设为x元,怎样用不等式表示销售的总收入仍不低 于20万元呢?

(a b) (b c) 0
ac 0

ac
由定理1,定理2可以表示为如果
c b且b a
那么
ca
不等式的性质
性质3.如果
a b,那么 a c b c
不等式的可加性
(即a b a c b c)
证明: ∵

(a c) (b c) a b 0
证明:ac-bc=( a-b )c 因为 a >b 所以 a-b>0, 根据同号相乘得正,异号相乘得负,得 当c>0时,(a-b)c>0, 即 ac>bc 当c<0 时,(a-b)c<0, 即 ac<bc
不等式的性质
性质5: 如果
a b 且 c d ,那么
ac bd
不等式的同向可加性

不等关系与不等式(二)

不等关系与不等式(二)

(对称性) (传递性) (可加性)
(4) a b, c 0 ac bc ; (可乘性) a b, c 0 ac Байду номын сангаасbc (5) a b 0, c d 0 ac bd (6) a b 0, n N , n 1
n n n n
(同向不等式的可乘性)
□复习引入
数学含义 (1) 若a>b,则a+c>b+c,a-c>b-c;
a b (2) 若a>b,c>0,则ac>bc, ; c c a b (3) 若a>b,c<0,则ac<bc, . c c
□新授课 一、常用的基本不等式的性质
(1) a b b a
( 2) a b, b c a c ( 3) a b a c b c
a b , a b (可乘方性、可开方性)
□范例讲解
c c 例题1. 已知 a b 0, c 0, 求证: . a b 例题2.. 若、 满足 , 则 6 2 2 的取值范围是( B )
A. C. B. 0 D.
3.1 不等关系与不等式(2)
□复习引入
1. 比较两实数大小的理论依据是什么?
如果a>b a-b>0;
如果a<b a-b<0;
如果a=b a-b=0.
2. “作差法”比较两实数的大小的一般步骤? 作差比较法的步骤是: ① 作差 ② 变形 ③判断符号 ④作出结论
□复习引入
3. 初中我们学过的不等式的基本性质是 什么? 基本性质1 不等式两边都加上(或减去)同 一个数或同一个整式,不等号的方向不变. 基本性质2 不等式两边都乘(或除以)同一 个正数,不等号的方向不变. 基本性质3 不等式两边都乘(或除以)同一 个负数,不等号的方向改变.

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

2.已知
a>b>0,求证:
a b>
b a.
证明:因为 a>b>0,所以 a> b >0.①又因为 a>b>0,两边同
乘正数a1b,得1b>1a>0.②
①②两式相乘,得
a b>
b a.
利用不等式性质求代数式的取值范围
已知-1<x<4,2<y<3. (1)求 x-y 的取值范围; (2)求 3x+2y 的取值范围. 【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以 -4<x-y<2. (2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x +2y<18.
A.ad>bc
B.ac>bd
C.a-c>b-d
D.a+c>b+d
解析:选 D.令 a=2,b=-2,c=3,d=-6,可排除 A,B,
C.由不等式的性质 5 知,D 一定成立.
若 x<1,M=x2+x,N=4x-2,则 M 与 N 的大小关系为 ________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M>N. 答案:M>N
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍 还要高.设太阳表面温度为 t ℃,那么 t 应满足的关系式是 ________. 解析:由题意得,太阳表面温度的 4.5 倍小于雷电的温度, 即 4.5t<28 000. 答案:4.5t<28 000

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.

高中数学: 不等关系与不等式含解析

高中数学: 不等关系与不等式含解析

∴a1b2+a2b1≥a1a2+b1b2.
∵(a1b1+a2b2)-(a1b2+a2b1)=4a1b1+1-2a1-2b1
=1-2a1+2b1(2a1-1)=(2a1-1)(2b1-1)
( )( ) 1
1
a1- b1-
=4 2
2 >0,
∴a1b1+a2b2>a1b2+a2b1.
1
1
∵(a1b1+a2b2)-2=2a1b1+2-a1-b1
当 x=3时,f(x)=g(x); 4
当 0<x<1,或 x>3时,f(x)>g(x).
能力提升
13.若 0<a1<a2,0<b1<b2,且 a1+a2=b1+b2=1,则下列代数式中值最大的是( )
A.a1b1+a2b2
B.a1a2+b1b2
1
C.a1b2+a2b1
D.2
答案 A
解析 方法一 特殊值法.
∴a2=1-a1>a1,b2=1-b1>b1,
1
1
∴0<a1<2,0<b1<2. 又 a1b1+a2b2=a1b1+(1-a1)(1-b1)=2a1b1+1-a1-b1, a1a2+b1b2=a1(1-a1)+b1(1-b1)=a1+b1-a21-b21,
a1b2+a2b1=a1(1-b1)+b1(1-a1)=a1+b1-2a1b1, ∴(a1b2+a2b1)-(a1a2+b1b2)=a21+b21-2a1b1 =(a1-b1)2≥0,
4.若 x∈(e-1,1),a=ln x,b=2ln x,c=ln3x,则( )
A.a<b<c
B.c<a<b
C.b<a<c

3.1不等式与不等关系(第二课时)

3.1不等式与不等关系(第二课时)
设2x+3y=m(x+y)+n(x-y)
则2x+3y=(m+n)x+(m-n)y
5 m+n = 2 m = 2 即 m − n = 3 得 n = − 1 2 5 1 ∴2x+3y= (x+y)+(- )(x-y) 2 2
待定系数法
Q −1 ≤ x + y ≤ 2, 2 ≤ x − y ≤ 4 5 5 ∴− ≤ (x+y) ≤ 5 2 2 1 -2 ≤ - (x-y) ≤ -1 2 9 5 1 ∴− ≤ (x+y)+(- )(x-y) ≤ 4 2 2 2
复习回顾 1.了解不等式(组)的实际背景,会用 了解不等式( 了解不等式 的实际背景, 不等式表示不等关系。 不等式表示不等关系。 2. 掌握大小比较的原理,学会大小比较 掌握大小比较的原理, 的方法。 的方法。
作差法的步骤
作差 变形 定号 结论
3.1
不等关系与不等式(第二课时) 不等关系与不等式(第二课时)
e e 已知:a > b > 0, c < d < 0, e < 0 求证: > a−c b−d 解: e e e(Q− d< − e<a0 c) e[(b − a ) + (c − d )] b c )d ( − − = = a−c b−d (a c )( − d ) (a − c)(b − d ) ∴−− c> b − d> 0
题型四. 题型四.利用不等式的性质求取值范围 a 例4 已知1 < a < 4, 2 < b < 8, 试求a - b与 的取值范围 b
解:Q 2 < b < 8

人教A版高中数学必修五3.1.不等关系与不等式 教学设计

人教A版高中数学必修五3.1.不等关系与不等式 教学设计

人教版新课标普通高中◎数学⑤必修第三章不等式概述不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容.建立不等观念,处理不等关系与处理等量问题是同样重要的.根据课程标准,在本章中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的内在联系.1.内容与课程学习目标本章主要学习描述不等关系的数学方法,一元二次不等式的解法及其应用,线性规划问题,基本不等式及其应用等,通过学习,要使学生达到以下目标:(1)通过具体情境,感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的实际背景.(2)经历从实际情境中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.(3)从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)探索基本不等式的证明过程;会用基本不等式解决简单最大(小)值问题.2.教学要求(1)基本要求①了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景;理解不等式(组)对于刻划不等关系的意义和价值;会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题.②理解并掌握不等式的基本性质;了解从实际情境中抽象出一元二次不等式模型的过程.③理解一元二次不等式的概念;通过图象,理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系.④理解并掌握解一元二次不等式的过程;会求一元二次不等式解集;掌握求解一元二次不等式的程序框图及隐含的算法思想,会设计求解的过程.⑤了解从实际情境中抽象出二元一次不等式(组)模型的过程;理解二元一次不等式(组)、二元一次不等式(组)的解集的概念;了解二元一次不等式的几何意义,理解(区域)边界的概念及实线、虚线边界的含义;会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域.1教师备课系统──多媒体教案2 ⑥了解线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解的概念;掌握简单的二元线性规划问题的解法.⑦了解基本不等式的代数背景、几何背景以及它的证明过程;理解算术平均数,几何平均数的概念;会用基本不等式解决简单的最大(小)值的问题;通过基本不等式的实际应用,感受数学的应用价值.(2)发展要求①体会不等式的基本性质在不等式证明中所起的作用.②会从实际情景中抽象出一些简单的二元线性规划问题并加以解决.(3)说明①不等式的有关内容将在选修4-5中作进一步讨论.②淡化解不等式的技巧性要求,突出不等式的实际背景及其应用.③突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形.3. 教学内容及课时安排建议3.1不等式与不等关系(约2课时)3.2一元二次不等式及其解法(约2课时)3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域(约2课时)3.3.2简单的线性规划问题(约2课时)3.4基本不等式:2ba ab +≤(约2课时)人教版新课标普通高中◎数学⑤ 必修33.1 不等关系与不等式教案 A第1课时教学目标一、知识与技能通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 教学重点和难点教学重点:用不等式(组)表示实际问题的不等关系;并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值.教学难点:用不等式(组)正确表示出不等关系.教学关键:将实际问题的不等关系转化为数学中不等式问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法.教法与学法导航教学方法:观察法、探究法、尝试指导法、讨论法.学习方法:从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短、三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.二、主题探究,合作交流1. 用不等式表示不等关系引例1:限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是40v .教师备课系统──多媒体教案4引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示.3.2,5.20000≥≥p f问题1:设点A 与平面α的距离为d ,B 为平面α上的任意一点,则||d AB ≤. 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥. 问题3:某钢铁厂要把长度为4 000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍. 怎样写出满足所有上述所有不等关系的不等式呢?解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4 000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000300.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩,,, 三、拓展创新,应用提高1. 试举几个现实生活中与不等式有关的例子.2. 教材第74页的练习 第1、2题.四、小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.五、课堂作业教材第75页习题 3.1A 组 第4、5题.人教版新课标普通高中◎数学⑤ 必修5第2课时教学目标一、知识与技能掌握不等式的基本性质,会用不等式的性质证明简单的不等式.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过讲练结合,培养学生转化的数学思想和逻辑推理能力.教学重点和难点教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式.教学难点:利用不等式的性质证明简单的不等式.教学关键:学生会用不等式的性质证明简单的不等式和比较两个数的大小.教学突破方法:通过问题解决情景的设置、投影错例展示的方式,解决学生对不等式的理解.教法与学法导航教学方法:采用探究法,遵循从具体到抽象的原则.学习方法:通过观察、分析、讨论,引导学生归纳小结出不等式的基本性质,设计较典型的问题,总结解题的规律.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课关于不等式的几个基本事实0;0;0.a b a b a b a b a b a b >⇔->⎧⎪=⇔-=⎨<⇔-<⎪⎩在初中,我们已经学习过不等式的一些基本性质,请同学们回忆初中不等式的的基本性质.1. 不等式的两边同时加上或减去同一个数,不等号的方向不改变,即若a b a c b c >⇒±>±;2. 不等式的两边同时乘以或除以同一个正数,不等号的方向不改变,即若,0a b c ac bc >>⇒>;3. 不等式的两边同时乘以或除以同一个负数,不等号的方向改变,即若,0a b c ac bc ><⇒<.二、主题探究,合作交流1. 不等式的基本性质教师备课系统──多媒体教案6 师:同学们能证明以上不等式的基本性质吗?证明:(1)()()0a cbc a b+-+=->,∴a c b c+>+;(2)()()0>-=---bacbca,∴cbca->-.实际上,我们还有,a b b c a c>>⇒>.(证明:∵a>b,b>c,∴a-b>0,b-c>0.)根据两个正数的和仍是正数,得(a-b)+(b-c)>0,即a-c>0,∴a>c.于是,我们就得到了不等式的基本性质:(1)abba<⇔>;(2),a b b c a c>>⇒>;(3)a b a c b c>⇒+>+;(4),0a b c ac bc>>⇒>;,0a b c ac bc><⇒<.例1已知0,0,a b c>><求证c ca b>.证明:因为0a b>>,所以ab>0,1ab>.于是11a bab ab⨯>⨯,即11b a>.由c<0 ,得c ca b>.例2比较(a+3)(a-5)与(a+2)(a-4)的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).根据实数运算的符号法则来得出两个代数式的大小.比较两个实数大小的问题转化为实数运算符号问题.解:由题意可知:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0∴(a+3)(a-5)<(a+2)(a-4)2. 探索研究思考:利用上述不等式的性质,证明不等式的下列性质:(5)dbcadcba+>+⇒>>,;(6)bdacdcba>⇒>>>>0,0;人教版新课标普通高中◎数学⑤ 必修7(7))2,(0≥∈>⇒>>n N n b a b a n n ;(8))2,(0≥∈>⇒>>n N n b a b a n n .证明:(5)∵ a >b , ∴ a +c >b +c . ①∵ c >d , ∴ b +c >b +d . ②由①②得 a +c >b +d .(6)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.(7)同学们自己证明.(8)反证法)假设n n b a ≤,则:a b a b <⇒<=⇒=这都与b a >矛盾, ∴n n b a >.三、知识巩固,练习提高例3 已知x ≠0, 比较22)1(+x 与124++x x 的大小.解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=.∵0≠x , ∴02>x . 从而22)1(+x >124++x x .例4 已知a >b >0,c <d <0,则ba -c 与ab -d 的大小关系为________.解析:b a -c -ab -d =b 2-bd -a 2+ac (a -c )(b -d )=(b +a )(b -a )-(bd -ac)(a -c )(b -d ).因为a >b >0,c <d <0,所以a -c >0,b -d >0,b -a <0,又-c >-d >0,则有-ac >-bd ,即ac <bd ,则bd -ac >0,所以(b +a )(b -a )-(bd -ac )<0,所以b a -c -a b -d =(b +a )(b -a )-(bd -ac )(a -c )(b -d )<0,即b a -c <ab -d ..教师备课系统──多媒体教案8 答案:ba-c<ab-d.课堂练习:教材第74页的练习第3题.四、小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论.五、课堂作业教材第75页习题3.1 A组第2、3题;B组第1题.教案 B第1课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣.教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质.教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小.教学过程一、导入新课章头图是一幅山峦重叠起伏的壮观画面,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.二、提出问题1.回忆初中学过的不等式,让学生说出“不等关系”与不等式的异同,怎样利用人教版新课标普通高中◎数学⑤ 必修 9不等式研究及表示不等关系?2. 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,你能举出一些实际例子吗?三、应用示例例1 某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车.根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则40901000,5,6,N ,x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩,,即. 49100,5,6,N .x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩, 例2.某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:假设截得的500mm 钢管x 根,截得的600mm 钢管y 根.根据题意,应有如下的不等关系:5006004000,3,,.x y x y x N y N +≤⎧⎪≥⎪⎨∈⎪⎪∈⎩说明:关键是找出题目中的限制条件,利用限制条件列出不等关系.四、小结上面的例子表明,我们可以用不等式(组)来刻画不等关系.表示不等关系的式子叫做不等式,常用(<>≤≥≠、、、、)表示不等关系. 老师进一步画龙点睛,指出不等式是研究不等关系的重要数学工具.五、练习教材第74页 练习第 1、2题.六、提出新问题怎样比较两个实数的大小?七、作业教材第75页习题3.1 A 组第4、5题; B 组第1、2题.第2课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,教师备课系统──多媒体教案10及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣. 教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质. 教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小. 教学过程一、提出问题不等式是研究不等关系的重要数学工具,我们都了解哪些不等式的性质呢?1.请学生回答等式有哪些性质?2.不等式有哪些基本性质?这些性质都有何作用?二、探究不等式的性质性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性).证:∵b a >,∴0>-b a ,由正数的相反数是负数.0)(<--b a ,0<-a b ,a b <.性质2:如果b a >,c b >,那么c a >(传递性).证:∵b a >,c b >,∴0>-b a ,0>-c b .∵两个正数的和仍是正数,∴+-)(b a 0)(>-c b .∵0>-c a ,∴c a >.由对称性,性质2可以表示为如果b c <且a b <那么a c <.性质3:如果b a >,那么c b c a +>+(加法单调性)反之亦然.证:∵0)()(>-=+-+b a c b c a ,∴c b c a +>+.从而可得移项法则:b c a b c b b a c b a ->⇒-+>-++⇒>+)()(.性质4:如果b a >且d c >,那么d b c a +>+(相加法则).证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>. 推论:如果b a >且d c <,那么d b c a ->-(相减法则).人教版新课标普通高中◎数学⑤ 必修 11证:∵d c < ∴d c ->-;d b c a d c ba ->-⇒⎩⎨⎧->->.或证:)()()()(d c b a d b c a ---=---.d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0.性质5:如果b a >且0>c ,那么bc ac >.如果b a >且0<c ,那么bc ac <(乘法单调性).证:c b a bc ac )(-=-.∵b a >,∴0>-b a .根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a ,即:bc ac >;0<c 时0)(<-c b a ,即:bc ac <.性质6:如果0>>b a 且0>>d c ,那么bd ac >(相乘法则).证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.推论:如果0>>b a 且d c <<0,那么d bc a>(相除法则).证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a dcd bc a >.性质7:如果0>>b a , 那么n n b a > (N 1)n n ∈>且.性质8:如果0>>b a ,那么n n b a > (N 1)n n ∈>且.证:(反证法)假设n n b a ≤,则:a b a b <=这都与b a >矛盾, ∴nn b a >.三、应用实例例1 比较大小教师备课系统──多媒体教案12 ①已知0>>ba,0<c求证:bcac>;解:∵0a b>>,∴ab>0,1ab>.∴11a bab ab⨯>⨯,即11b a>.∵c<0 ,∴c ca b>.②231-和10.解:∵23231+=-,∵02524562)10()23(22<-=-=-+.∴231-<10.例2 比较)5)(3(-+aa与)4)(2(-+aa的大小.解:(取差))5)(3(-+aa-)4)(2(-+aa7)82()152(22<-=-----=aaaa.∴)5)(3(-+aa<)4)(2(-+aa.例3 已知x≠0, 比较22)1(+x与124++xx的大小.解:(取差)22)1(+x-)1(24++xx22424112xxxxx=---++=.∵0≠x,∴02>x.从而22)1(+x>124++xx.小结:比较大小的步骤:“作差-变形-定号-结论”.例4 已知2,x>比较311x x+与266x+的大小.人教版新课标普通高中◎数学⑤ 必修 13解:3232211(66)33116x x x x x x x +-+=--+- 2(3)(32)(3)x x x x =-+-+-=(3)(2)(1)x x x --------------------(*)(1)当3x >时,(*)式0>,所以 311x x +>266x +;(2)当3x =时,(*)式0=,所以 311x x +=266x +;(3)当23x <<时,(*)式0<,所以 311x x +<266x +. 说明:实数比较大小的问题一般可用作差比较法,其中变形常用因式分解、配方、通分等方法才能定号.四、课堂练习1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->-. 证明:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->-. 2.||||,0b a ab >>, 比较a 1与b 1的大小. 解:a 1-b 1aba b -=, 当0,0>>b a 时,∵||||b a >即b a >,0<-a b ,0>ab , ∴0<-ab a b ,∴a 1<b1. 当0,0<<b a 时∵||||b a >即b a <,0>-a b ,0>ab , ∴0>-ab a b ,∴a 1>b1. 3.若0,>b a , 求证:a b ab >⇔>1. 解:01>-=-aa b a b . ∵0>a , ∴0>-a b ,∴b a <.0>-⇒>a b a b .∵0>a ,∴01>-=-a b a a b , ∴1>a b .教师备课系统──多媒体教案14 五、课堂小结1.不等式的性质,并用不等式的性质证明了一些简单的不等式;2.如何比较两个实数(代数式)的大小——作差法.六、布置作业教材第75页习题3.1 A组第2、3题;B组第2、3题.。

高中数学人教A版必修5课件 3-1 不等关系与不等式 第15课时《不等关系与不等式》

高中数学人教A版必修5课件 3-1 不等关系与不等式 第15课时《不等关系与不等式》

a>b c>d>0⇒ac>bd
同向
7
可乘方性 a>b>0⇒an>bn(n∈N*,n≥2)
8
可开方性
a>b>0⇒n
n a>
b(n∈N*,n≥2)
同正
【练习 3】 (1)已知 a>b,e>f,c>0.求证:f-ac<e-bc; (2)若 bc-ad≥0,bd>0.求证:a+b b≤c+d d.
证明:证法一:(1)∵a>b,c>0,∴ac>bc,∴-ac<-bc.∵f<e, ∴f-ac<e-bc.
分析:首先分别设出每天派出甲型卡车和乙型卡车的数量,然后
明确问题中的不等关系:(1)甲型卡车的数量不超过 4 辆且为自然数, 乙型卡车的数量不超过 7 辆且为自然数;(2)驾驶员不能超过 9 名;(3) 每天至少要运 360 t 矿石.再用不等式组表示出来即可.
解析:设每天派出甲型卡车 x 辆,乙型卡车 y 辆,则
变 式 探 究 4 若 二 次 函 数 f(x) 的 图 象 关 于 y 轴 对 称 , 且 1≤f(1)≤2,3≤f(2)≤4,求 f(3)的范围.
解析:设 f(x)=ax2+c(a≠0).ff12==a4+a+cc ⇒ca==4ff21-3-3ff12,.
z≥45
x>95 C.y>380
z>45
x≥95 D.y>380
z>45
解析:“不低于”即“≥”,“高于”即“>”,“超过”即 “>”,∴x≥95,y>380,z>45.
答案:D
知识点二 比较两个实数(代数式)大小
作差法比较两实数(代数式)大小

不等式关系与不等式课件

不等式关系与不等式课件

第三章 不等式
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
证明不等式 (1)若 bc-ad≥0,bd>0,求证:a+b b≤c+d d. (2)已知 c>a>b>0.求证:c-a a>c-b b.
第三章 不等式
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
[解析] (1)∵bc≥ad,bd>0,∴dc≥ab, ∴dc+1≥ab+1,∴a+b b≤c+d d. (2)∵c>a>b>0,∴c-a>0,c-b>0,-a<-b<0, ∴0<c-a<c-b,∴c-1 a>c-1 b>0, 又∵a>b>0,∴c-a a>c-b b. .
第三章 不等式
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
[解析] ①当 c>0 时,由 ac>bc⇒a>b,当 c<0 时,由 ac>bc ⇒a<b,故①错.
②当 c≠0 时,由 a<b⇒ac2<bc2,当 c=0 时,由 a<b⇒/ ac2<bc2,
故②错. ③∵1a<1b<0,∴a<0,b<0,∴ab>0,∴1a·ab<1b·ab,即 b<a,∴
第三章 不等式
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
课堂典例讲练
第三章 不等式
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
思路方法技巧 利用不等式的性质判断命题真假
已知 0<a<1,给出下列四个不等式 ①loga(1+a)<loga(1+1a) ②loga(1+a)>loga(1+1a) ③a1+a<a1+1a ④a1+a>a1+1a

高中数学课件-不等式与不等关系

高中数学课件-不等式与不等关系

2
2
判断两个实数大小的依据是:
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质的基础.
作差比较法其一般步骤是: 作差→变形→判断符号→确定大小.
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
解:(x2-x)-(x-2)=x2-2x+2
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
变变式式46、已知-π2≤α<β≤π2,求α+2 β,α-2 β的范围.
解析:∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4. 两式相加,得-π2<α+2 β<π2.
(2)现在销售量是多少?
8 x 2.5 0.2 0.1
(3)销售总收入为多少?
(8 x 2.5 0.2)x万元 0.1
(8 x 2.5 0.2)x 20 0.1
解:若杂志的定价为x元,则销售量减少:
x 2.5 0.2万本 0.1
因此,销售总收入为: (8 x 2.5 0.2)x万 元 0.1
分析:假设截得500mm的钢管x根,截得600mm的钢管y根。根 据题意,应当有什么样的不等关系呢?
(1)截得两种钢管的总长度不能超过4000mm; (2)截得600mm钢管的数量不能超过500mm的钢管数量的3倍; (3)截得两种钢管的数量都不能为负.

2.1不等式的基本性质2课时

2.1不等式的基本性质2课时

可乘性
< < < < < < < <
8__12 __12 <
数形结合思想
4.已知a 4.已知a<b和b<c,在数轴上如图表示. 已知 在数轴上如图表示.
a b c
由数轴上a 由数轴上a和c的位置关系,你能得出什么结论? 的位置关系,你能得出什么结论?
结论 不等式的传递性 不等式的基本性质4 不等式的基本性质4 若a<b和b<c,则a<c.
例题解析, 例题解析,当堂练习
下列说法错误的是( 下列说法错误的是( B ) 的是 A.由 +1)< +1)成立可推 成立可推a A.由a(m2+1)<b(m2+1)成立可推a<b成立 B.由 1)< 1)成立可推 成立可推a B.由a(m2-1)<b(m2-1)成立可推a<b成立 C.由 成立可推a C.由a(m+1)2<b(m+1)2成立可推a<b成立 D.由a(m+b)< (m+a)成立可推am<bm成立 成立可推am D.由a(m+b)<b(m+a)成立可推am<bm成立
(–4)__(– 6) 4)__ __( 8×(-4)_12×(-4) (– 4)×(-2)_(– 6)×(4)_12× 4)× 2)_ 6)× > < 8÷(-4)_12÷(-4) (– 4)÷(-2)< (– 6)÷(4)_12÷ 4)÷ 2)_ 6)÷ _ > 不等式的基本性质3 不等式的基本性质3 总结为:不等式的两边都乘以同一个负数 负数, 总结为:不等式的两边都乘以同一个负数,必须 把不等号的方向改变 方向改变. 把不等号的方向改变. 符号语言 即:如果a>b,且c<0, 如果a ac< 那么 ac<bc.
适当拓展
的最小值. 3、试求(x-1)2-4的最小值. 试求(x(x 变一变 试求-(x-1)2-4的最值. 试求-(x的最值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时 3.1 不等关系与不等式(一)
教学重点:从实际问题中找出不等关系.
教学难点:正确理解现实生活中存在的不等关系.
教学过程:
一、复习准备:
1、提问:你能回顾一下以前所学的不等关系吗?
2、讨论:除了书上列举的现实生活中的不等关系,你还能列举出你周围日常生活中的不等关 系吗?
3、用不等式表示,某地规定本地最底生活保障金不底于300元;
二、讲授新课:
1、教学用不等式表示不等关系
① 在现实生活中,存在着许许多多的不等关系,在数学中,我们用不等式来表示这样的不等关系.
② 举例:例如:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是v ≤40.
④ 实数的运算性质与大小顺序之间的关系
对于任意两个实数a,b,如果a>b,那么a-b 是正数;如a<b,那么a-b 是负数;如果a-b 等于0.它们的逆命题也正确.即
(1)0;
(2)0;(3)0
a b a b a b a b a b a b >⇔->=⇔-=<⇔-<
2、教学例题:
①出示例1:日常生活中,在一杯含有a 克糖的b 克糖水中,再加入m 克糖,则这杯糖水变甜了,请根据这一事实提炼出一道不等式。

(浓度=溶质溶液
) ②出示例2:某种杂志以每本2.5元的价格销售,可以售出8万本。

据市场调查,若单价每提高0.1元,销量就相应地减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入还不底于20万元呢?
(教师示范 → 学生板演 → 小结)
3、小结:文字语言与数学语言之间的转换,实数的运算性质与大小顺序之间的关系.
三、巩固练习:
1.某电脑拥护计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要至少要买3片和2盒,请将购买软件和磁盘所满足的不等关系用不等式表示出来。

2. 练习:教材P83 1、2题. 作业:课本P87 3题;P91第10题
第二课时 3.1不等关系与不等式(二)
教学要求:了解不等式与不等式组的实际背景;掌握常用不等式的基本基本性质;会将一些基本性质结合起来应用.
教学重点:理解不等式的性质及其证明.
教学难点:从实际的不等关系中抽象出具体的不等式.
教学过程:
一、复习准备:
1. 提问:实数的运算性质与大小顺序之间的关系
2. 设点A与平面∂之间的距离为d ,B为平面∂上任意一点,则点A与平面∂的距离小于或等
于A,B两点间的距离,请将上述不等关系写成不等式.
二、讲授新课:
1、教学“作差法”比较两个实数的大小和常用的不等式的基本性质
① 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法.常用的结论有22
00x x ≥-≤≥≤,,|x|0,-|x|0等.
② “作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论.
③常用的不等式的基本性质 (1),(2)(3),0(4),0a b b c a c
a b a c b c
a b c ac bc
a b c ac bc
>>⇒>>⇒+>+>>⇒>><⇒<
2、教学例题: ① 出示例1:已知0,0,a b c >><求证:c c a b
> (教师讲思路→学生板演→小结方法)
② 出示例2.:比较(3)(5)(2)(4)a a a a +-+-与的大小.
(比较两个数的大小,基本方法是作差,对差的正、负或零做出判断,得出结论)
③ 变式训练:已知22420(1)1a a a a ≠+++,比较与的大小
④ 出示例3:已知1260,1536,a a b a b b
<<<<-求及的取值范围. (确定取值范围→利用不等式的性质求解)
⑤ 变式训练:已知31,40,a b c -<<-<<求(a-b).c 的取值范围.
三、 巩固练习:
①.比较2
33x x +与的大小,其中x R ∈.
②.比较当0a ∉
时,2222(1)(1)(1)(1)a a a a a a ++++-+与的大小.
③.(2001.济南)设实数,,a b c 满足22643,44,,,b c a a c b a a a b c +=-+-=-+则的大小关系是_____________.
④.配制,A B 两种药剂需要甲、乙两种原料,已知配一剂A 种药需甲料3毫克,乙料5毫克,配一剂B 药需甲料5毫克,乙料4毫克。

今有甲料20毫克,乙料25毫克,若,A B 两种药至少各配一剂,则,A B 两种药在配制时应满足怎样的不等关系呢?用不等式表示出来.
⑤.作业 教材P91 习题3.1 A 组 2、4。

相关文档
最新文档