)(ε
<
-B x g ,取},m in{21δδδ=,当δ<-<00x x 时,有
εε
ε
=+
<
-+-≤-+-=+-+2
2
)()())(())(()())()((B x g A x f B x g A x f B A x g x f
所以B A x g x f x x +=+→))()((lim 0
。
其它情况类似可证。
注:本定理可推广到有限个函数的情形。
定理2:若B x g A x f ==)(lim ,)(lim ,则)()(lim x g x f ⋅存在,且
)(lim )(lim )()(lim x g x f AB x g x f ⋅==。
证明:因为B x g A x f ==)(lim ,)(lim ,⇒,)(,)(βα+=+=B x g A x f (βα,均为无穷小))())(()()(αβαββα+++=++=⇒B A AB B A x g x f ,记
αβαβγ++=B A , γ⇒为无穷小, AB x g x f =⇒)()(lim 。 推论1:)(lim )](lim[x f c x cf =(c 为常数)。 推论2:n n x f x f )]([lim )](lim [=(n 为正整数)。 定理3:设0)(lim ,)(lim ≠==B x g A x f ,则)
(lim )
(lim )()(lim
x g x f B A x g x f ==。 证明:设βα+=+=B x g A x f )(,)((βα,为无穷小),考虑差:
)
()()(ββ
αβα+-=-++=-B B A B B A B A B A x g x f 其分子βαA B -为无穷小,分母0)(2≠→+B B B β,我们不难证明
)
(1β+B B 有界(详细过程见书上))(ββα+-⇒
B B A B 为无穷小,记为γ,所以γ+=B
A
x g x f )()(,
B
A
x g x f =⇒)()(lim
。 注:以上定理对数列亦成立。
定理4:如果)()(x x ψϕ≥,且b x a x ==)(lim ,)(lim ψϕ,则b a ≥。 【例1】b ax b x a b ax b ax x x x x x x x x +=+=+=+→→→→00
lim lim lim )(lim 。
【例2】n
n x x n x x x x x 0]lim [lim 0
==→→。
推论1:设n n n n a x a x a x a x f ++++=--1110)( 为一多项式,当
)()(lim 0011
1000
x f a x a x a x a x f n n n n x x =++++=--→ 。
推论2:设)(),(x Q x P 均为多项式,且0)(0≠x Q ,则)
()
()()(lim 000x Q x P x Q x P x x =→。
【例3】31151105(lim 221
-=+⨯-=+-→x x x 。
【例4】33
009070397lim 53530-=+--⨯+=+--+→x x x x x (因为03005
≠+-)。 注:若0)(0=x Q ,则不能用推论2来求极限,需采用其它手段。
【例5】求3
22
lim 221-+-+→x x x x x 。
解:当1→x 时,分子、分母均趋于0,因为1≠x ,约去公因子)1(-x ,
所以 5
3
322lim 322lim 12
21=++=-+-+→→x x x x x x x x 。 【例6】求)1
3
11(
lim 31+-+-→x x x 。
解:当1
3
,11,13
++-→x x x 全没有极限,故不能直接用定理3,但当1-≠x 时, 1
2)1)(1()2)(1(1311223+--=+-+-+=+-+x x x x x x x x x x ,所以 11
)1()1(2112lim )1311(
lim 22131
-=+-----=+--=+-+-→-→x x x x x x x 。 【例7】求2
lim 2
2-→x x x 。