热处理的基本分类PDF版
钢铁材料的一般热处理,一个表全懂了
![钢铁材料的一般热处理,一个表全懂了](https://img.taocdn.com/s3/m/d1680057af45b307e8719772.png)
钢铁材料的一般热处理名称热处理过程热处理目的1.退火将钢件加热到一定温度,保温一定时间,然后缓慢冷却到室温①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工②细化晶粒,均匀钢的组织,改善钢的性能及为以后的热处理作准备③消除钢中的内应力。
防止零件加工后变形及开裂退火类别(1)完全退火将钢件加热到临界温度(不同钢材临界温度也不同,一般是710-750℃,个别合金钢的临界温度可达800—900oC)以上30—50oC,保温一定时间,然后随炉缓慢冷却(或埋在沙中冷却)细化晶粒,均匀组织,降低硬度,充分消除内应力完全退火适用于含碳量(质量分数)在O.8%以下的锻件或铸钢件(2)球化退火将钢件加热到临界温度以上20~30oC,经过保温以后,缓慢冷却至500℃以下再出炉空冷降低钢的硬度,改善切削性能,并为以后淬火作好准备,以减少淬火后变形和开裂,球化退火适用于含碳量(质量分数)大于O.8%的碳素钢和合金工具钢(3)去应力退火将钢件加热到500~650oC,保温一定时间,然后缓慢冷却(一般采用随炉冷却)消除钢件焊接和冷校直时产生的内应力,消除精密零件切削加工时产生的内应力,以防止以后加工和用过程中发生变形去应力退火适用于各种铸件、锻件、焊接件和冷挤压件等2.正火将钢件加热到临界温度以上40~60oC,保温一定时间,然后在空气中冷却①改善组织结构和切削加工性能②对机械性能要求不高的零件,常用正火作为最终热处理③消除内应力3.淬火将钢件加热到淬火温度,保温一段时间,然后在水、盐水或油(个别材料在空气中)中急速冷却①使钢件获得较高的硬度和耐磨性②使钢件在回火以后得到某种特殊性能,如较高的强度、弹性和韧性等淬火类别(1)单液淬火将钢件加热到淬火温度,经过保温以后,在一种淬火剂中冷却单液淬火只适用于形状比较简单,技术要求不太高的碳素钢及合金钢件。
淬火时,对于直径或厚度大于5~8mm的碳素钢件,选用盐水或水冷却;合金钢件选用油冷却(2)双液淬火将钢件加热到淬火温度,经过保温以后,先在水中快速冷却至300—400oC,然后移人油中冷却(3)火焰表面淬火用乙炔和氧气混合燃烧的火焰喷射到零件表面,使零件迅速加热到淬火温度,然后立即用水向零件表面喷射, 火焰表面淬火适用于单件或小批生产、表面要求硬而耐磨,并能承受冲击载荷的大型中碳钢和中碳合金钢件,如曲轴、齿轮和导轨等(4)表面感应淬火将钢件放在感应器中,感应器在一定频率的交流电的作用下产生磁场,钢件在磁场作用下产生感应电流,使钢件表面迅速加热(2一lOmin)到淬火温度,这时立即将水喷射到钢件表面。
热处理分类
![热处理分类](https://img.taocdn.com/s3/m/31ef4ac36bec0975f565e201.png)
热处理的作用就是提高材料的机械性能、消除残余应力和改善金属的切削加工性。
按照热处理不同的目的,热处理工艺可分为两大类:预备热处理和最终热处理。
1. 预备热处理预备热处理的目的是改善加工性能、消除内应力和为最终热处理准备良好的金相组织。
其热处理工艺有退火、正火、时效、调质等。
(1)退火和正火退火和正火用于经过热加工的毛坯。
含碳量大于0.5%的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于0.5%的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理。
退火和正火尚能细化晶粒、均匀组织,为以后的热处理作准备。
退火和正火常安排在毛坯制造之后、粗加工之前进行。
(2)时效处理时效处理主要用于消除毛坯制造和机械加工中产生的内应力。
为避免过多运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可。
但精度要求较高的零件(如座标镗床的箱体等),应安排两次或数次时效处理工序。
简单零件一般可不进行时效处理。
除铸件外,对于一些刚性较差的精密零件(如精密丝杠),为消除加工中产生的内应力,稳定零件加工精度,常在粗加工、半精加工之间安排多次时效处理。
有些轴类零件加工,在校直工序后也要安排时效处理。
(3)调质调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形作准备,因此调质也可作为预备热处理。
由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序。
2. 最终热处理最终热处理的目的是提高硬度、耐磨性和强度等力学性能。
(1)淬火淬火有表面淬火和整体淬火。
其中表面淬火因为变形、氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高、耐磨性好,而内部保持良好的韧性、抗冲击力强的优点。
为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理。
其一般工艺路线为:下料--锻造--正火(退火)--粗加工--调质--半精加工--表面淬火--精加工。
常用热处理分类
![常用热处理分类](https://img.taocdn.com/s3/m/6565f7b6b1717fd5360cba1aa8114431b90d8ee2.png)
常用热处理的分类1 表面淬火表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。
表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。
表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。
2 表面淬火和回火将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。
或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。
一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。
3 物理气相沉积物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。
物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。
发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。
4 化学气相沉积化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。
它本质上属于原子范畴的气态传质过程。
与之相对的是物理气相沉积(PVD)。
整体热处理1 退火退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。
目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。
热处理的基本知识
![热处理的基本知识](https://img.taocdn.com/s3/m/156b516a492fb4daa58da0116c175f0e7cd1192a.png)
过烧与欠烧的预防与控制
总结词
过烧和欠烧是热处理中常见的问题,它们会 影响材料的性能和热处理的可靠性。
详细描述
过烧是指加热温度过高或保温时间过长,导 致材料内部晶粒长大、氧化或融化。欠烧则 是加热温度或保温时间不足,导致材料未完 全奥氏体化或淬火不完全。为了预防和控制 过烧和欠烧,需要精确控制加热温度和时间 ,以及选择适当的加热和冷却速度。
气氛
热处理过程中所选择的气氛(如空 气、保护气体等)会影响金属的氧 化、脱碳等化学变化。
03
CATALOGUE
热处理工艺分类
退火
退火是将金属加热到适当温度,保持一定时 间,然后缓慢冷却的过程。其目的是消除内 应力、降低硬度、提高塑性和韧性。
退火工艺可分为完全退火、等温退火和球化 退火等。完全退火是将金属加热到临界点以 上,使组织完全奥氏体化,然后随炉缓慢冷 却;等温退火是将金属加热到临界点以上某 一温度,保持一定时间后快速冷却至室温; 球化退火则是将金属加热到略低于临界点温
05
CATALOGUE
热处理中的问题与解决方案
裂纹的产生与预防
总结词
裂纹是热处理中常见的问题,其产生与 多种因素有关,如冷却速度、加热温度 等。
VS
详细描述
裂纹的产生通常是由于热处理过程中材料 内部应力的集中和超过材料的断裂强度所 引起的。为了预防裂纹的产生,需要控制 加热和冷却速度,选择适当的加热温度和 时间,以及采用适当的热处理工艺。
THANKS
感谢观看
04
CATALOGUE
热处理的应用
钢铁工业
01
钢铁是热处理应用最广泛的材料 之一,通过不同的热处理工艺, 可以改变钢铁的内部结构和性能 ,以满足各种不同的需求。
常用热处理分类
![常用热处理分类](https://img.taocdn.com/s3/m/5b3a617c551810a6f52486cf.png)
常用热处理的分类1表面淬火表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。
表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。
表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。
2表面淬火和回火将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。
或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。
一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提咼其延性或韧性。
3物理气相沉积物理气相沉积(Physical Vapor Deposition , PVD)技术表示在真空条件下,采用物理方法,将材料源一一固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。
物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。
发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。
4化学气相沉积化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。
它本质上属于原子范畴的气态传质过程。
与之相对的是物理气相沉积(PVD )。
整体热处理1退火退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。
目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。
热处理基础知识
![热处理基础知识](https://img.taocdn.com/s3/m/0b386bd9c1c708a1284a4469.png)
热处理基础知识回顾定义:金属材料的热处理,是金属材料在固态下,通过适当的方式进行加热、保温和冷却,改变材料内部机构,从来改善材料性能的一种工艺方法。
分类:普通热处理:退火、正火、淬火、回火表面热处理:表面淬火:感应加热淬火、火焰加热淬火化学热处理:渗碳、渗氮、渗金属其他热处理:形变热处理、超细化热处理、真空热处理1.退火定义:退火,是将钢加热到预定温度,保温一定时间后,缓慢冷却(通常随炉冷却),获得接近平衡组织的热处理工艺。
目的:(1)降低硬度,改善切削加工性能;(2)消除残余应力,稳定尺寸,减少变形与开裂倾向;(3)细化晶粒,调整组织,消除组织缺陷。
分类:1.完全退火:将钢加热到Ac3温度以上30~50度,保温一定时间后,随炉冷却到500度,再出炉空冷。
适用于,亚共析钢和铸件、锻件以及焊接件,使加工过程中,造成的粗大不均匀组织细化,降低硬度,提高塑性,改善加工性能,消除应力。
组织变化:奥氏体变成铁素体和珠光体2.球化退火:将钢加热到Ac1以上10~30度,保温较长时间后以及其缓慢的速度,冷却到600度以下,再出炉空冷。
适用于,共析钢和过共析钢以及合金工具钢的退火,降低材料硬度,改善切削加工性能,并减小最终淬火变形和开裂。
组织变化:网状二次渗碳体和珠光体中的片状渗碳体球化3.扩散退火(均匀化退火):在1050~1150度,长时间保温(10~15h)后,随炉缓冷。
适用于,合金钢大型铸、锻件,目的是消除其化学成分的偏析和组织的不均匀。
4.去应力退火:在500~600度,充分保温后缓慢冷却到200度,出炉空冷。
适用于,铸、锻、焊件及经过切削加工的零件,目的是为了消除毛坯和零件中的残余应力。
2.正火定义:正火,是将钢加热到亚共析钢或共析和过共析钢以上30~50度,保温适当时间后,在静止空气中冷却的热处理工艺目的:(1)对普通碳素钢、合金钢和力学性能要求不高的结构件,可作为最终热处理;(2)对低碳素钢用来调整硬度,避免切削加工中的粘刀现象,改善切削加工性能;(3)对共析、过共析钢用来消除网状二次渗碳体,为球化退火做好组织上的准备。
热处理的原理及分类
![热处理的原理及分类](https://img.taocdn.com/s3/m/5ea61521a32d7375a417809a.png)
共析钢奥氏体等温转变图的建立
奥氏体等温转变图
(1)共析钢的过冷奥氏体等温转变产物 1)珠光体型转变(又称高温转变)。在A1~550℃温度范围内 ,过冷奥氏体转变为铁素体和渗碳体的片层混合物——珠光体。
2)贝氏体型转变(又称中温转变)。在550℃~Ms温度 范围内,过冷奥氏体转变为贝氏体。
(2)共析钢的马氏体型转变(又称低温转变)
的塑性和韧性。这一特殊性能要去是无法通过调节钢的含 碳量或采用常规热处理方法解决的。 可否通过一些方法,让零件表面具有较高的硬度而心 部具有较高的塑性和韧性呢?
二、钢的化学热处理
根据渗入元素的不同,化学热处理可分为渗碳、渗氮 、碳氮共渗、渗硼、渗金属。 化学热处理都是通过三个基本过程来完成。
(1)分解
1. 钢的临界转变温度
钢在加热和冷却时的临界转变温度
2. 钢的奥氏体化
பைடு நூலகம்
共析钢中奥氏体形成过程示意图
a)奥氏体形核 b)奥氏体晶核长大 c)残余Fe3C的溶解 d)奥氏体均匀化
3. 影响奥氏体化的因素
(1)加热温度 加热温度越高,奥氏体形成速度越快。 (2)加热速度 加热速度越快,过热度越大,奥氏体实际形成温度越高, 可获得细小的起始晶粒。 (3)合金元素 Ni、Mn 等合金元素降低临界点,而Cr、W、Mo、V、Ti 等 合金元素提高临界点。Co 和Ni 元素加快奥氏体的形成速度; Cr、W、Mo、V、Ti 等元素降低奥氏体的形成速度。 (4)原始组织的影响 Fe3C 越细,相界面越多,越有利于奥氏体的形成。
当钢从奥氏体区急冷到Ms以下时,奥氏体立即开始转变为
马氏体。
2 热处理的基本方法
一、正火
将钢加热到Ac3或Accm以上30~50℃,保温适当时间,在空气中冷却的工 艺方法叫正火。
热处理的基本知识大全
![热处理的基本知识大全](https://img.taocdn.com/s3/m/54f14f8d6037ee06eff9aef8941ea76e59fa4a18.png)
热处理的基本知识大全热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的工艺。
在工业生产中,热处理被广泛应用于各种金属制品的生产中,以提高材料的硬度、强度、韧性和耐磨性等性能。
热处理工艺的掌握对于提高产品质量、降低生产成本具有重要意义。
本文将介绍热处理的基本知识,包括热处理工艺的分类、常见的热处理方法以及热处理后金属材料的性能变化等内容。
热处理工艺可以分为一般热处理和表面热处理两大类。
一般热处理是指对整个金属材料进行加热和冷却,以改变其整体性能。
而表面热处理则是只对金属材料的表面进行加热和冷却,以提高其表面硬度和耐磨性。
一般热处理包括退火、正火、淬火和回火等方法,而表面热处理则包括渗碳、氮化、渗氮等方法。
不同的热处理工艺对金属材料的性能影响也有所不同,因此在实际应用中需要根据具体要求选择合适的热处理工艺。
在热处理工艺中,退火是最常用的一种方法。
通过将金属材料加热至一定温度,然后控制冷却速度,可以使金属材料的晶粒细化,减小内部应力,提高塑性和韧性。
正火则是通过加热至临界温度后保温一段时间,再进行适当冷却,以达到调质的目的。
淬火是指将金属材料加热至临界温度后迅速冷却,使其获得高硬度和强度。
而回火则是在淬火后对金属材料进行加热处理,以降低其脆性和提高韧性。
热处理后,金属材料的性能会发生明显的变化。
一般情况下,热处理会提高金属材料的硬度和强度,但会降低其塑性和韧性。
因此,在实际应用中需要根据具体要求选择合适的热处理工艺,以达到最佳的性能。
此外,热处理还可以改善金属材料的加工性能,提高其耐磨性和耐腐蚀性,从而延长其使用寿命。
总的来说,热处理是一种重要的金属材料加工工艺,通过控制加热和冷却过程,可以改变金属材料的组织结构和性能,从而满足不同工程要求。
熟练掌握热处理工艺对于提高产品质量、降低生产成本具有重要意义。
希望本文所介绍的热处理的基本知识能够对您有所帮助。
05热处理.pdf
![05热处理.pdf](https://img.taocdn.com/s3/m/ea91c4bffd0a79563c1e7253.png)
4各种临界转变温度的物理意义79不同碳含量钢中奥氏体形成50%时所需要的时间珠光体的层片越细,界面数量多,扩散的距离小,转变速度加快,片状P的转变速度高于四、奥氏体晶粒度及其影响因素1.奥氏体晶粒度奥氏体的晶粒度指奥氏体的晶粒尺寸大小标准晶粒度等级(放大100倍)用硅脱氧的钢用铝脱氧的钢钢奥氏体化后,从高温冷却到A以下,此时1奥氏体并不立即转变,而处于热力学不稳定27共析钢过冷奥氏体等温转变曲线点即过冷度越小,孕育期越长;3031由上述珠光体形成过程可知,珠光体形成时,纵向长大是渗碳体片和铁素体片同时连续向奥氏体中延伸;而横向长大是渗碳体片与铁素体片交替堆叠增多。
上。
3537成束的大致平行的α相板条,自A晶粒晶界的一侧或两侧向A晶粒内部长大,粒状或条状渗碳体(有时之间的低温区。
上贝氏体性能特点:在碳钢中,上贝氏体的力学性能指标并不好,强度和硬度不高,而韧性很低,工业生产中一般不用这种组织的材料来制造机械零件。
41碳化物为Cem或ε-碳化物,碳化物呈细片状或颗粒~60°角度与B 下的长轴相仅分布在F片内部。
下贝氏体性能特点:有较高的强度和硬度,还有一定的韧性,即有较好的强韧性配合,或称有良好的综合力学性能;在生产实际中这是一种常用的状态,但为了完成下贝氏体转变,不能直接冷却到室温,需要保温设备,并且转变时间长,生产的效率不高。
470.3%Wt时,形成的马氏体为板条状,又由于低碳板M中碳的过饱和度不大,加之平行M板条在形成过程中不易相互撞击而产生显微裂纹,因而具有较高的韧性;因而板M具有良好的综合力学性能。
特点:由于固溶强化及位错强化的作用,板M具有较高的强度;49性能特点:碳的过饱和度大,严重的晶格畸变产生大的内应力,大片之间易产生显微裂纹。
片M具有高的硬度和强度,但塑性和韧性很低。
如共析钢淬火得到的片M力学性能:硬度达60HRC,冲击韧性仅1J/cm 2。
5145钢T10钢共析钢三种钢的过冷奥氏体等温转变曲线①亚共析钢的C-曲线上多出一条γ→α转变的开始线,过共析钢的C-曲线上多出一条γ→Fe 3C 转变的开始线;五、影响C 曲线的因素1.含C量的影响②共析碳浓度的奥氏体最稳定,碳浓度离共析成分45钢T10钢共析钢三种钢的过冷奥氏体等温转变曲线53连续冷却C-曲线的分析共析钢5758线右端下斜的原因:由于铁素体析出和贝氏体转变都使周围奥氏体富碳,因而使Ms点降低。
热处理的分类及特点
![热处理的分类及特点](https://img.taocdn.com/s3/m/da153a74cbaedd3383c4bb4cf7ec4afe04a1b1fb.png)
热处理的分类及特点热处理工艺按其工序位置可分为预备热处理和最终热处理。
预备热处理可以改善材料的加工工艺性能,为后续工序作好组织和性能的准备。
最终热处理可以提高金属材料的使用性能,充分发挥其性能潜力。
热处理的分类如下图:1.单液淬火工件加热到淬火温度后,浸入一种淬火介质中,直到工件冷至室温为止此法优点是操作简便,缺点是易使工件产生较大内应力,发生变形,甚至开裂适用于形状简单的工件,对于碳钢工件,直径大于5mm的在水中冷却,直径小于5mm的可以在油中冷却,合金钢工件大都在油中冷却双液淬火加热后的工件先放在水中淬火,冷却至接近Ms点(300一200℃)时,从水中取出立即转到油中(或甚至放在空气中)冷却利用冷却速度不同的两种介质,先快冷躲过奥氏体最不稳定的温度区间(650一550℃),至接近发生马氏体转变(钢在发生体积变化)时再缓冷,以减小内应力和变形开裂倾向主要适用于碳钢制成的中型零件和由合金钢制成的大型零件分级淬火工件加热到淬火温度,保温后,取出置于温度略高(也可稍低)于Ms点的淬火冷却剂(盐浴或碱浴)中停留一定时问,待表里温度基本一致时,再取出置于空气中冷却1.减小了表里温差,降低了热应力2.马氏体转变主要是在空气中进行,降低了组织应力,所以工件的变形与开裂倾向小3.便于热校直4.比双液淬火容易操作此法多用于形状复杂、小尺寸的碳钢和合金钢工件,如各种刀具。
对于淬透性较低的碳素钢工件,其直径或厚度应小于lomm等温淬火工件加热到淬火温度后,浸入一种温度稍高于Ms点的盐浴或碱浴中,保温足够的时间,使其发生下贝氏体转变后在空气中冷却与其他淬火比1.淬火后得到下贝氏体组织,在相同硬度情况下强度和冲击韧度高2.一般工件淬火后可以不经回火直接使用,所以也无回火脆性问题,对于要求性能较高的工件,仍需回火3.下贝氏体质量体积比马氏体小,减小了内应力与变形、开裂1.由于变形很小,因而很适合于处理—‘些精密的结构零件,如冷冲模、轴承、精密齿轮等2.由于组织结构均匀,内应力很小,显微和超显微裂纹产生的可能性小,因而用于处理各种弹簧,可以大大提高其疲劳抗力3.特别对于有显著的第一类回火脆性的钢,等温淬火优越性更大4.受等温槽冷却速度限制,工件尺寸不能过大5.球墨铸铁件也常用等温淬火以获得高的综合力学性能,一般合金球铁零件等温淬火有效厚度可达100mm或更高喷雾淬火工件加热到淬火温度后,将压缩空气通过喷嘴使冷却水雾化后喷到工件上进行冷却可通过调节水及空气的流量来任意调节冷却速度,在高温区实现快冷,在低温区实现缓冷。
热处理的种类及介绍
![热处理的种类及介绍](https://img.taocdn.com/s3/m/8cd8511442323968011ca300a6c30c225901f005.png)
热处理的种类及介绍
热处理的种类及介绍
常见热处理形式(种类):
1--正火
正火是为了细化材料晶粒,,均匀内部组织的热处理方法.目的是消除机械加工产生的内应力及压延等塑性加工时产生的纤维组织.
2--退火
退火是为了软化金属,调整结晶组织,去除内部应力,改善冷轧加工及切削性的热处理方法.根据使用目的,又可以分为完全退火,球化退火,去应力退火,中间退火等.
3--淬(念cui,而不是zan)火
淬火是金属经高温加热后快速冷却处理的热处理方法.目的是提高金属硬度,强度及耐磨性.根据冷却条件淬火有水淬,油淬,真空淬等形式.(多数情况下,淬火后的零件必须回火处理才能使用).
渗碳淬火是在低碳钢的表面渗入碳素后淬火处理的热处理方法.
高频淬火是指将含碳量0.3%以上的钢材通过感应加热使材料表面硬度提高的热处理方法.
火焰淬火是指用明火将材料表面加热处理的热处理方法.主要用来对材料表面的局部增加硬度.
4--回火
回火是金属件淬火后再加热到某一温度,然后以适当的速度冷却到常温的热处理方法.主要目的是调整材料硬度,提高韧性及消除内部应力.根据回火温度的不同分为低温回火和高温回火.回火温度越高,材料的硬度越低,韧性越高,否则反之.调质处理后的回火处理一般是高温回火.高频淬火,渗碳淬火的回火处理一般是低温回火.
5--调质
调质是淬火与高温回火处理相结合,调整金属硬度,强度及韧性的热处理方法.调质后的材料硬度为一般机械加工范围内的硬度.比如45#碳素结构钢为HB200~270.
6--氮化
氮化是将氮元素扩散渗入材料表面是材料表面得以硬化的热处理方法.含有铝,铬,钼等元素的材料易通过氮化处理提高硬度。
[精品]热处理基础知识.doc
![[精品]热处理基础知识.doc](https://img.taocdn.com/s3/m/d3dc76e62b160b4e777fcf2a.png)
热处理基础知识退火••淬火一回火退火一淬火-■冋火%1.退火的种类1.完全退火和等温退火完全退火又称重结晶退火,一般简称为退火,这种退火主要用于亚共析成分的备种碳钢和合金钢的铸, 锻件及热轧型材,有时也用于焊接结构。
一般常作为一些不重工件的最终热处理,或作为某些工件的预先热处理。
2.球化退火球化退火主要用于过共析的碳钢及合金工具钢(如制造刃具,量具,模具所用的钢种)。
其主要日的在于降低硬度,改善切削加工性,并为以后淬火作好准备。
3・去应力退火去应力退火又称低温退火(或高温冋火),这种退火主要用来消除铸件,锻件,焊接件,热轧件,冷拉件等的残余应力。
如果这些应力不予消除,将会引起钢件在一定时间以后,或在随后的切削加T过程屮产生变形或裂纹。
%1.淬火时,最常用的冷却介质是盐水,水和油。
盐水淬火的工件,容易得到高的硬度和光洁的表面, 不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。
而用汕作淬火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。
%1.钢回火的目的1.降低脆性,消除或减少内应力,钢件淬火后存在很大内应力和脆性,如不及时冋火往往会使钢件发生变形英至开裂。
2.获得工件所要求的机械性能,工件经淬火示硬度高而脆性大,为了满足各种工件的不同性能的要求,可以通过适当冋火的配合来调整硬度,减小脆性,得到所需要的韧性,册性。
3.稳定工件尺寸4.对于退火难以软化的某些合金钢,在淬火(或正火)后常采用高温I川火,使钢屮碳化物适当聚集, 将硬度降低,以利切削加工。
加热缺陷及控制一、过热现象我们知道热处理过程中加热过热最易导致奥氏体晶粒的粗大,使零件的机械性能下降。
1•一般过热:加热温度过高或在高温下保温时间过长,引起奥氏体晶粒粗化称为过热。
粗大的奥氏体晶粒会导致钢的强韧性降低,脆性转变温度升高,增加淬火时的变形开裂倾向。
而导致过热的原因是炉温仪表失控或混料(常为不懂工艺发生的)。
热处理
![热处理](https://img.taocdn.com/s3/m/c8721749852458fb770b56ab.png)
Al、Ti、Zr、V、W、Mo、Cr、Si、Ni、Cu 强 弱
③ ④
原始组织 新工艺
2.影响奥氏体晶粒大小的因素
(1)加热温度和保温时间 加热温度增加,加热时间延长,奥氏体晶粒会自发地长大。
(2)钢的成分 奥氏体中碳含量的增加,晶粒的长大倾向也增加; 锰和磷促进奥氏体晶粒长大 碳以未溶碳化物的形式存在时,则有阻碍晶粒长大的作用。 钢中能形成稳定碳化物、氧化物或氮化物的元素,有利于获得 细晶粒
两种奥氏体晶粒长大倾向的示意图
钢在加热时的转变
三、奥氏体晶粒的长大及控制
奥氏体晶粒度的概念
①
起始晶粒度
实际晶粒度 本质晶粒度
本质粗晶粒钢
本质细晶粒钢
②
③
1~4
5~8
钢在加热时的转变
影响奥氏体晶粒度的因素
(控制奥氏体晶粒大小的措施)
① ②
TA、tA 成分
C:两方面的影响 Me:除Mn、P,均阻碍A长大
1.珠光体型转变
温度:A1-550℃ 转变过程:
钢在冷却时的转变
一、过冷奥氏体等温转变(共析钢)
珠光体转变(高温转变)
温度范围:A1 ~550(Ar1 ~550℃) 转变特征:扩散型转变 转变过程: (A
珠光体转变
P)
贫碳区
富碳区
钢在冷却时的转变
珠光体转变(高温转变)
转变产物:P(片层状 F 和 Fe3C 的机械混合物)
1 概述
定义:钢的热处理(heat
treatment)是指将钢在固 态下采用适当的方式进行 加热(heating)、保温和冷 却(cooling),通过改变钢 的内部组织结构而获得所 需性能的工艺方法。 三个阶段:钢的热处理工 艺都包括加热、保温和冷 却。 热处理工艺曲线: 温度— —时间曲线
热处理简介
![热处理简介](https://img.taocdn.com/s3/m/fa3eaa0a79563c1ec5da7180.png)
高温形变热处理
高温形变热处理:高温形变热处理是将钢 加热至Ac3以上,在稳定的奥氏体温度范 围内进行变形,然后进行淬火,使之发生 马氏体转变并回火至需要的性能。由于形 变温度远高于钢的再结晶温度,故应严格 控制变形后至淬火前(900 ℃ )的停留 时间,形变后要立即进行淬火冷却。
低温形变热处理
低温形变热处理:低温形变热处理是将钢 加热至奥氏体状态,迅速冷却至Ac1点以 下,Ms点以上过冷奥氏体亚稳定温度范围 内进行大量塑性变形,然后立即淬火并回 火至所需要的性能。低温形变热处理比高 温形变热处理具有更高的强化效果,而塑 性并不降低。
高温回火:回火温度约为500~650 ℃ , 回火组织为回火索氏体,淬火和随后的 高温回火叫调质处理。经过调质处理后, 钢具有优良的综合机械性能。
热处理工艺方法---表面淬火
表面淬火:将工件快速加热到淬火温度,然 后迅速冷却,仅使表面层获得淬火组织的 热处理方法。
表面淬火分类:根据工件表面加热热源的 不同,表面淬火分为感应加热,火焰加 热,电接触加热,电解液加热以及激光 加热等。
/MachineBase/heattreat/technics/t0101.asp?a=2#时间
化学热处理分类:根据渗入元素的不同, 可分为渗碳,渗氮,碳氮共渗,多元共 渗,渗硼,渗金属等等。 化学热处理作用:化学热处理后的钢件表 面可以获得比表面淬火所具有的更高的 硬度,耐磨性和疲劳强度,心部在具有 良好的塑性和韧性的同时,还可获得较 高的强度。
热处理工艺方法---形变热处理
形变热处理:形变热处理是将塑性变形和 热处理有机结合在一起的一种复合工艺。 形变热处理分类:形变热处理种类很多, 常用的主要有高温形变热处理和低温形变 热处理。
热处理工艺方法---回火
热处理的分类
![热处理的分类](https://img.taocdn.com/s3/m/68f6a7588f9951e79b89680203d8ce2f006665e2.png)
热处理的分类
热处理分类如下:
1、整体热处理:
整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。
2、表面热处理:
通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。
表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。
3、化学热处理:
化学热处理是利用化学反应、有时兼用物理方法改变钢件表层化学成分及组织结构,以便得到比均质材料更好的技术经济效益的金属热处理工艺。
热处理
![热处理](https://img.taocdn.com/s3/m/b1ddf2595727a5e9856a61fd.png)
名称分类加热保温冷却冷却介质重结晶退火(完全退火)缓慢加热到相变区间温度以上或以内足够时间缓慢冷却空气不完全退火Ac1-Ac3之间足够时间缓慢冷却空气等温退火均匀化退火(扩散退火)球化退火去应力退火正火临界温度Ac 以上达到完全奥氏体化缓慢冷却空气/喷水/喷雾/吹风淬火临界温度Ac3(亚共析钢)一段时间大于临界冷却温度,快速盐水、水、矿物油、空气回火Ac1以下(奥氏体转变温度)1-2小时大于临界冷却温度,快速盐水、水、矿物油、空气调质人工时效100-150℃保温5-20小时自然时效室温长时间振动时效渗碳活性炭中900-950℃足够时间渗氮磷化固溶沉淀硬化时效给工件施加一定振动频率淬火+高温回火退火目的适用材料工艺阶段降低硬度、消除残余应力、改善切削性能、减少变形和裂纹倾向亚共析钢/中、高碳钢/合金毛坯热处理(粗加工之前)中、高碳钢/低合金钢锻压件降低硬度、消除残余应力、改善切削性能、减少变形和裂纹倾向毛坯热处理(粗加工之前)提高强度、硬度、耐磨性、疲劳强度、韧性最后热处理(精加工之前)提高韧性、塑性,消除淬火应力最后热处理(精加工之前)热处理最后一道工序,常紧接淬火最后热处理(精加工之前)当零件在大动载荷下工作时采用用在低温回火后多为低碳钢、低合金钢改善钢和合金的塑性和韧性用于沉淀硬化之前有很大相似性,但正火不占设备,冷却速度较快,硬度较高,一般采用正火代替退火主要用于合金钢消除残余应力,稳定钢材组织和尺寸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丹阳台车炉,/
热处理的基本分类
金属热处理大体可分为整体热处理、表面热处理和化学热处理三大类。
报据加热介质、加热退度和冷却方法的不同,每一大类又可以分为若干种不I司的热处理工艺。
同一种金属采用不同的热处理工艺以后,可以获得不同的显微组织,从而具有不m的性能。
整体热处理是对1.件的整体进行加热,在保沮足够长时间后.以适当的速度进行冷却,通过组织的变化,以改变工件的整体力学性能的热处理方法。
对俐铁材料来说.植体热处理又可以分为退火、正火、淬火和回火四种革本工艺。
其体的热处理工艺方法将在后面的热处理〔艺部分详细介绍。
表面热处理是只对工件的表层进行加热.以改变工件表层力学性能的热处理方法。
为了控制:]几件表层被加热而不使过多的热址传人工件内部,使用的热谏必须共有高的能斌密度,即在单位面积的工件七给予较大的热能,使工件表层或局部能短时或瞬时达到高沮.表面热处理的上要方法有火焰加热表面淬火和感应加热表面淬火.常用的热源有级乙炔或权丙烷等火焰、感应电流、激光和电子束等。
化学热处理是通过改变工件表层的化学成分.从而控制表面层组织结构和性能的热处理方法。
化学热处理与表面热处理不同之处是前者改变了工件表层的化学成分。
常用的化学热处理方法有渗碳、渗氮、碳氮共渗和渗各种金属等。
恢复力学性能热处理是产品在加工完成后,尤其是在热冲压、焊接加工完后,其热处理状态受到破坏,力学性能发生变化,因此要对其进行热处理,以恢复其原来的热处理状态。
改善力学性能热处理是经过机械加工后,为了充分发挥材料的机械性能,对其进行的热处理。
这是最普遍、最常用的热处理手段,包括淬火、回火、调质、渗碳等化学热处理等。
消除热应力热处理是在机加工、焊接后,由于前面工序使工件内部组织发生不均匀变化而产生内应力,给工件的使用留下隐患,为了消除这种影响而采取的热处理,包括退火、正火等。
.
对于你所说的例子,个人认为只需做一次正火热处理即可,只要根据使用要求制定合理的工艺,应该可以达到要求。
为了检验热处理效果,在做热处理前分别对一些重要部位,如筒体、封头、接管部位(焊接后)进行取样一同进行模拟热处理,对模拟样进行分析检验,观察效果。
此外.近年来随着科学技术的进步,热处理技术也有r新的发展,在热处理过程中将多种热处理工艺相结合的方法得到了快速发展,可以统称为复合热处理技术。
此文档由丹阳台车炉搜集发布,/。