初中数学培优教材勾股定理专题(附答案-全面、精选)

合集下载

培优专题12 闪耀在勾股定理中的数学思想方法

培优专题12 闪耀在勾股定理中的数学思想方法

AC2=32+42=25,所以 AC =5dm,所以这圈金属丝的最小长度为2 AC =10dm.
类型四:面积法
6. 如图,在△ ABC 中, AB = AC =13, BC =10,点 D 为 BC 的中点, DE ⊥ AB ,
垂足为点 E ,则 DE 等于(

A.


B.

D )

C.
∠ ACB =90°,∠ ACD =90°,所以 AB2- BC2= AC2, AD2- CD2= AC2,所以
AB2
- BC2= AD2- CD2,即172-(9+ x )2=102- x2,解得 x =6,所以 CD =6,所

AC2= AD2- CD2=64,所以 AC =8.
4. 如图,在△ ABC 中, AD ⊥ BC 于点 D ,且 AC + AD =32, BD =5, CD =
16,
求 AB 的长.
◉答案
解:设 AD = x ,则 AC =32- x .在△ ACD 中,因为∠ ADC =90°,所以
AD2+ CD2= AC2,即 x2+162=(32- x )2,解得 x =12,所以 AD =12.在△
ABD
中,因为∠ ADB =90°,所以 AD2+ BD2= AB2.所以 AB2=122+52=169,所以 AB
=13.
类型三:转化思想
5. [空间观念]如图,已知圆柱底面周长为8dm,高为3dm,在圆柱的侧面上,点 A
和点 C 相对,过点 A 和点 C 嵌有一圈金属丝,求这圈金属丝的最小长度.
◉答案
解:如图,把圆柱的侧面展开,则这圈金属丝的最小长度为2 AC 的长度.因
为圆柱底面的周长为8dm,圆柱高为3dm,所以 AB =3dm, BC =BC'=4dm,所

八年级初二数学 数学勾股定理的专项培优练习题(及解析

八年级初二数学 数学勾股定理的专项培优练习题(及解析

八年级初二数学 数学勾股定理的专项培优练习题(及解析一、选择题1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF =- ④ AC=AFA .①②③B .①②③④C .②③④D .①③④2.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .4 3.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .64.如图,菱形ABCD 的对角线AC ,BD 的长分别为6cm ,8cm ,则这个菱形的周长为( )A .5cmB .10cmC .14cmD .20cm5.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,DE=3,BC=1,CD=13,则CE的长是()A.14B.17C.15D.136.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值是()A.8 B.9 C.10 D.127.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直 .试在直线a上找一点M,在直线b上找一点N,满足线b的距离为3,AB230MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.128.下列四组数中不能构成直角三角形的一组是()A.1,26B.3,5,4 C.5,12,13 D.3,2139.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直10.下列说法不能得到直角三角形的()A.三个角度之比为 1:2:3 的三角形B.三个边长之比为 3:4:5 的三角形C.三个边长之比为 8:16:17 的三角形D.三个角度之比为 1:1:2 的三角形二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.13.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.14.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =42AC =DA 的长为______.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.如图所示,圆柱体底面圆的半径是2π,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?23.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD36,求线段AB 的长.24.如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,①求证:△ACD≌△BCF;②若∠DCE=45°,求证:DE2=AD2+BE2;(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.25.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠; (2)若=8AB ,=6CE . 求BC 的长 .26.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.27.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC的面积是 .(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .28.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 满足6m -+(n ﹣12)2=0. (1)求直线AB 的解析式及C 点坐标;(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标; (3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.29.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.30.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的. 【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠, ∵AF CD ⊥, ∴90AGD ∠=︒, ∴90FAB CDA ∠=︒-∠, ∴2ACD FAB ∠=∠,故①正确; ∵3CG =,1DG =,∴314CD CG DG =+=+=, ∴4AC CD ==, 在Rt ACG 中,221697AG AC CG =-=-=,∴1272ACDSAG CD =⋅=,故②正确; ∵90CHB ∠=︒,45B ∠=︒, ∴45HCB ∠=︒,∵AC CD =,CH AD ⊥, ∴12ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠,∴AFC ACF ∠=∠,∴4AC AF ==,故④正确;∴47GF AF AG =-=-,在Rt CGF 中,()2222347272CF CG GF =+=+-=-,故③正确.故选:B . 【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理.2.B解析:B 【分析】过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD. 【详解】解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°, ∴AE=AD=1,∴在Rt △ADE 中,DE=22112+=,∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE , 又∵AB=AC,∴△BAE ≌△CAD(SAS), ∴CD=BE=3,∠AEB=∠ADC=45°, ∴∠BED=90°,∴在Rt △BED 中, BD=()22223211BE DE +=+=.故选B. 【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.3.D解析:D 【解析】 【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积.【详解】 解:在中 ∵,,∴,∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D.【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积.4.D解析:D 【解析】 【分析】根据菱形的对角线互相垂直平分可得AC ⊥BD ,12OA AC =,12OB BD =,再利用勾股定理列式求出AB ,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,11622OA AC ==⨯=3cm , 118422OB BD cm ==⨯= 根据勾股定理得,2222345cm AB OA OB =+=+= ,所以,这个菱形的周长=4×5=20cm.故选:D.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记. 5.D解析:D【解析】【分析】连接BD ,作CF ⊥AB 于F ,由线段垂直平分线的性质得出BD=AD ,AE=BE ,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=23,AE=BE=3DE=3,证出△BCD 是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=12BC=12,CF=3BF=3,求出EF=BE+BF=72,在Rt △CEF 中,由勾股定理即可得出结果. 【详解】解:连接BD ,作CF ⊥AB 于F ,如图所示:则∠BFC=90°,∵点E 为AB 的中点,DE ⊥AB ,∴BD=AD ,AE=BE ,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=233,∵BC 2+BD 2=12+(32=13=CD 2,∴△BCD 是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=12BC=12,33∴EF=BE+BF=72,在Rt△CEF中,由勾股定理得:CE=227313 22⎛⎫⎛⎫+=⎪⎪ ⎪⎝⎭⎝⎭;故选D.【点睛】本题考查了勾股定理、勾股定理的逆定理、线段垂直平分线的性质、等腰三角形的性质;熟练掌握勾股定理和逆定理是解题的关键.6.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【详解】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BN,BD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点 N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8−2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故选:C.【点睛】此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.7.B解析:B【解析】【分析】MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可.过A作直线a的垂线,并在此垂线上取点A′,使得AA′=MN,连接A'B,则A'B与直线b的交点即为N,过N作MN⊥a于点M.则A'B为所求,利用勾股定理可求得其值.【详解】过A作直线a的垂线,并在此垂线上取点A′,使得AA′=4,连接A′B,与直线b交于点N,过N作直线a的垂线,交直线a于点M,连接AM,过点B作BE⊥AA′,交射线AA′于点E,如图,∵AA′⊥a,MN⊥a,∴AA′∥MN.又∵AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM=A′N.由于AM+MN+NB要最小,且MN固定为4,所以AM+NB最小.由两点之间线段最短,可知AM+NB的最小值为A′B.∵AE=2+3+4=9,AB230=,∴BE2239=-=.AB AE∵A′E=AE﹣AA′=9﹣4=5,∴A′B22=+=8.'A E BE所以AM+NB的最小值为8.故选B.【点睛】本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.8.A解析:A【解析】A. 12+226)2,不能构成直角三角形,故此选项符合题意;B. 32+42=52,能构成直角三角形,故此选项不符合题意;C. 52+122=132,能构成直角三角形,故此选项不符合题意;D. 32+22132,能构成直角三角形,故此选项不符合题意;故选A.9.C解析:C【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A 、菱形、矩形的内角和都为360°,故本选项错误;B 、对角互相平分,菱形、矩形都具有,故本选项错误;C 、对角线相等菱形不具有,而矩形具有,故本选项正确D 、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C .【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.10.C解析:C【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理. 二、填空题11.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10, x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.7【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=O D−DF=1,22OC CF OF3∴-=22BC=OB+OC=7∴7【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.13.5【分析】作AD′⊥AD ,AD′=AD 构建等腰直角三角形,根据SAS 求证△BAD ≌△CAD′,证得BD=CD′,∠DAD′=90°,然后在Rt △AD′D 和Rt △CD′D 应用勾股定理即可求解.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,∴∠BAD=∠CAD′,在△BAD 与△CAD′中,{BA CABAD CAD AD AD =∠=∠='',∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得22()4AD AD +=',∵∠D′DA+∠ADC=90°,∴由勾股定理得22(')5DC DD +=,∴BD=CD′=5故答案为5.【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形,正确引出辅助线构造等腰直角三角形是本题的关键.145【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD 3ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD , 在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD 3E =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB 22AD +BD =7+3=10, ∵AB=2BC ,∴BC =2AB=525【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.15.6或2.【分析】由于已知没有图形,当Rt △ABC 固定后,根据“以BC 为斜边作等腰直角△BCD”可知分两种情况讨论:①当D 点在BC 上方时,如图1,把△ABD 绕点D 逆时针旋转90°得到△DCE ,证明A 、C 、E 三点共线,在等腰Rt △ADE 中,利用勾股定理可求AD 长;②当D 点在BC 下方时,如图2,把△BAD 绕点D 顺时针旋转90°得到△CED ,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D 点在BC 上方时,如图1所示,把△ABD 绕点D 逆时针旋转90°,得到△DCE ,则∠ABD=∠ECD ,2,AD=DE ,且∠ADE=90°在四边形ACDB 中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.1671【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.10【分析】先根据勾股定理得出a 2+b 2=c 2,利用完全平方公式得到(a +b )2﹣2ab =c 2,再将a +b =5c =5代入即可求出ab 的值.【详解】解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,∴a 2+b 2=c 2,∴(a +b )2﹣2ab =c 2,∵a +b =5c =5,∴(52﹣2ab =52,∴ab =10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形. 故答案为:等腰直角三角形. 点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.19.5【分析】先将图形展开,再根据两点之间线段最短可知.【详解】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•2π=2,CB=1. ∴22AB +BC 222=5+15 【点睛】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决. 20.228+ 【分析】 依次求出在Rt △OAB 中,OA 1=22;在Rt △OA 1B 1中,OA 2=22OA 1=(22)2;依此类推:在Rt △OA 5B 5中,OA 6=(22)6,由此可求出△OA 6B 6的周长. 【详解】∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1=22OA =22, 在22Rt OA B ∆中OA 22OA 12)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6的周长是=8+2×(2)6=8+2×18=28+.故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(12)150°;(3【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD(2)在△ADE 中,∵2AD AE DE ===,∴DE 2+AE 2=2222+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP =22213-=,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12, ∴AG =()2222113322AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG =13.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴BD+BE=DE=22CD CE -=222520-=15,∴DE=15﹣7=8(米),即下端滑行了8米. 答:梯子底端将向左滑动了8米.23.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =22+4.【分析】 (1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2, ∴222(223)2(36)x x x ++=+,解得x =1,∴AB =22+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.24.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD ≌△BCF②证明:连接EF ,由①知△ACD ≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD ,BF=AD∴∠EBF=90°∴EF 2=BE 2+BF 2,∴EF 2=BE 2+AD 2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF ,CE=CE∴△DCE ≌△FCE∴EF=DE∴DE 2= AD 2+BE 2⑵DE 2= EB 2+AD 2+EB ·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=3BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(3BF)2∴DE2=(EB+12AD)2+(3AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)见解析;(2)27BC .【分析】(1)由等边三角形的判定定理可得△ABD为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中, ∴2223OC CF OF =-=.在Rt △BOC 中,∴22224(23)27BC BO OC =+=+=. 【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.26.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,∴ab +a 2=c 2,在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2,∴ab +b 2=a 2+b 2,∴ab =a 2,∴a =b ,∴△ABC 是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB =BC ,AC >AB ,∴a =c ,b >c ,∵△ABC 是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A图3作CG⊥AB于G,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴DB=AB﹣AD=c﹣a,∵CG⊥AB,∴DG=BG=12(c﹣a),∴AG=AD+DG=a+12(c﹣a)=12(a+c),在Rt△ACG中,CG2=AC2﹣AG2=b2﹣[12(c+a)]2,在Rt△BCG中,CG2=BC2﹣BG2=a2﹣[12(c﹣a)]2,∴b2﹣[12(a+c)]2=a2﹣[12(c﹣a)]2,∴b2=ac+a2,∴△ABC是“类勾股三角形”.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.27.(1,112;(2)图见解析;7.【分析】(1)利用勾股定理求出AB,BC,AC,理由分割法求出△ABC的面积.(2)模仿(1)中方法,画出△PMN,利用分割法求解即可.【详解】解:(1)如图1中,AB BCAC,S△ABC=S矩形DEFC﹣S△AEB﹣S△AFC﹣S△BDC=12﹣3﹣32﹣2=112,,11 2.(2)△PMN如图所示.S△PMN=4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.28.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(16m-n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y=32x-2,直线CF解析式为y=-23x+203,∵32×(-23)=-1,∴直线CE⊥CF,∵EC=13CF=13∴EC=CF,∴△FCE是等腰直角三角形,∴∠FEC=45°,∵直线FE解析式为y=-5x-2,由21252y xy x=-+⎧⎨=--⎩解得143643xy⎧=-⎪⎪⎨⎪=⎪⎩,∴点P 的坐标为(1464,33-). 【点睛】 本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k =-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F (-2,8)是解题的突破口.29.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为3.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;。

中考数学数学勾股定理的专项培优练习题(及答案

中考数学数学勾股定理的专项培优练习题(及答案

中考数学数学勾股定理的专项培优练习题(及答案一、选择题1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6 2.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm3.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .44.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )A .(22)2013B .(22)2014C .(12)2013D .(12)2014 5.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为( )A .6B .27C .5D .256.下列四组数中不能构成直角三角形的一组是( ) A .1,2,6 B .3,5,4 C .5,12,13D .3,2,13 7.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( )A .5.3尺B .6.8尺C .4.7尺D .3.2尺8.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对9.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .310.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C '处,B C '交AD 于点E ,则线段DE 的长为( )A.3 B.154C.5 D.152二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图,在四边形ABCD中,22AD=,3CD=,45ABC ACB ADC∠=∠=∠=︒,则BD的长为__________.13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 14.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.15.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.16.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5.①线段OA 的取值范围是______________;②若BD -AC =1,则AC •BD = _________.17.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.18.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.19.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.20.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.23.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.24.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225, (1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.25.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.26.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .(1)根据题意用尺规作图补全图形(保留作图痕迹);(2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求m n的值.27.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图28.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.29.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S ()()()()a b c a b c a c b b c a +++-+-+-. (1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知2+=21,大正方形的面积为13,可以得以直角三角形的面积,进而求出答案。

专题一 勾股定理(解析版)

专题一 勾股定理(解析版)

八年级北师大版上册第一章勾股定理培优专题一、勾股定理的应用(最短路径)1.如图是放在地面上的一个长方体盒子,其中AB=18,BC=12,BF=10,点M在棱AB上,且AM=6,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程的平方为()A.400B.424C.136D.324【答案】A【解析】【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【详解】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∵BM=18-6=12,BN=10+6=16,∵MN2=122+162=400如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∵PM=18-6+6=18,NP=10,∵MN2=182+102=424.∵因为400<424,所以蚂蚁沿长方体表面从点M爬行到点N的最短距离的平方为400.故选:A.【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.2.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______cm.【答案】15.【分析】过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∵AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,在Rt∵A′QC中,由勾股定理得:,故答案为15.3.有一个如图所示的长方体的透明鱼缸,假设其长AD=80 cm,高AB=60 cm,水深AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;(2)试求小虫爬行的最短路程.【答案】(1)如图所示见解析,AQ→QG为最短路线;(2)小虫爬行的最短路程为100 cm.【分析】(1)根据轴对称性质,通过作对称点将折线转化成两点之间线段距离最短.(2)根据AE=40cm,AA′=120cm,可得:A′E=120-40=80(cm),再根据EG=60cm,可得:A′G2=A′E2+EG2=802+602=10000,A′G=100cm,进而可得:AQ+QG=A′Q+QG=A′G=100cm.【详解】(1)如图所示,AQ→QG为最短路线,(2)因为AE=40cm,AA′=120cm,所以A′E=120-40=80(cm),因为EG=60cm,所以A′G2=A′E2+EG2=802+602=10000,所以A′G=100cm,所以AQ+QG=A′Q+QG=A′G=100cm,所以小虫爬行的最短路程为100cm.【点睛】本题主要对称性质和勾股定理的应用,解决本题的关键是要熟练掌握利用轴对称性质和勾股定理解决实际问题的方法.勾股定理的实际应用4.有一辆装满货物的卡车,高2.5米,宽1.6米,要开进如图所示的上边是半圆,下边是长方形的桥洞,已知半圆的直径为2米,长方形的另一条边长是2.3米.(1)这辆卡车能否通过此桥洞?试说明你的理由.(2)为了适应车流量的增加,想把桥洞改为双行道,并且要使宽1.2米,高为2.8米的卡车能安全通过,那么此桥洞的宽至少应增加到多少米?【答案】(1)能通过,理由见解析;(2) 桥洞的宽至少应增加到2.6米.【分析】(1)如图①,当桥洞中心线两边各为0.8米时,由勾股定理得方程2220.81x +=,解出x 的值,再用x +2.3与卡车的高2.5作比较即可;(2)如图②,在直角三角形AOB 中,已知OB =1.2,AB =2.8-2.3=0.5,由此可求OA 的长,即桥洞的半径,再乘以2即得结果.【详解】解:(1)能通过.理由如下:如图①所示,当桥洞中心线两边各为0.8米时,由勾股定理得2220.81x +=,解得0.6x =,∵2.5 2.30.6<+,∵卡车能通过.(2)如图②所示,在直角三角形AOB 中,已知OB =1.2,AB =2.8-2.3=0.5,由勾股定理得:22221.20.5 1.3OA =+=,∵ 1.3OA =,∵桥洞的宽至少应增加到1.32 2.6⨯=(米).① ②【点睛】本题考查了勾股定理的应用,解题的关键是正确理解题意,画出图形,弄清相关线段所表示的实际数据. 5.如图,公路MN 和公路PQ 在点P 处交会,公路PQ 上点A 处有学校,点A 到公路MN 的距离为80m ,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?【答案】24s.【解析】试题分析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt∵ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.试题解析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt∵ABC中,CB60(m),∵CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∵该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.6.如图是某体育广场上的秋千,秋千静止时,其下端离地面0.7m,秋千荡到最高位置时,其下端离地面1.2 m,此时秋千与静止位置时的水平距离为1.5 m,请你根据以上数据计算秋千摆绳的长度.【答案】2.5m .【分析】根据题意画出图形,表示出图形中相关线段的长,再利用勾股定理得出答案.【详解】解:如图,作BE∵OA ,垂足为E ,由题意得,0.7m AC =, 1.2m BD =, 1.5m BE =,∵ 1.2m CE BD ==, 1.20.70.5(m)AE =-=.设m OA OB x ==,则(0.5)m OE x =-.在Rt OBE 中,由勾股定理得,222OE O E B B -=,即222(0.5) 1.5x x --=,解得 2.5x =.答:秋千摆绳的长度为2.5m .二、勾股定理与几何问题的应用7.如图,把长方形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∵FPH =90°,PF =8,PH =6,则长方形ABCD 的边BC 的长为( )A .20B .22C .24D .30【答案】C【详解】 由折叠得: ,,FP BF CH PH ==在Rt PHF ∆ 中,∵FPH =90°,PF =8,PH =6,则10.FH == 故BC=BF+FH+HC=6+8+10=24. 故选C.8.如图,在四边形ABCD 中,AD∵BC ,∵ABC+∵DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 3.若S 2=48,S 3=9,则S 1的值为( )A.18B.12C.9D.3【答案】D【分析】过A作AH∵CD交BC于H,根据题意得到∵BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∵BC A作AH∵CD交BC于H,则∵AHB=∵DCB.∵AD∵BC,∵四边形AHCD是平行四边形,∵CH=BH=AD AH=CD=3.∵∵ABC+∵DCB=90°,∵∵AHB+∵ABC=90°,∵∵BAH=90°,∵AB2=BH2﹣AH2=3,∵S1=3.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.9.如图,在∵ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB•PC的值为()A.m2B.m2+1C.2m2D.(m+1)2【答案】A【分析】如图,作AD∵BC交BC于D,根据勾股定理得AB2=BD2+AD2,AP2=PD2+AD2,再根据D是BC的中点,整理得到AB2﹣AP2=PB•PC,再把AB=m代入求解即可.【详解】解:如图,作AD∵BC交BC于D,AB2=BD2+AD2 ①,AP2=PD2+AD2 ②,①﹣②得:AB2﹣AP2=BD2﹣PD2,∵AB2﹣AP2=(BD+PD)(BD﹣PD),∵AB=AC,∵D是BC中点,∵BD+PD=PC,BD﹣PD=PB,∵AB2﹣AP2=PB•PC,∵PA2+PB•PC=AB2=m2.故选A.10.如图,点E 是正方形ABCD 内一点,将ABE ∆绕点B 顺时针旋转90到CBE '∆的位置,若1,2,3AE BE CE ===,求BE C '∠的度数.【答案】135︒【分析】连接EE`,如图,根据旋转的性质得BE=B E'=2,AE=C E'=1,∵EBE`=90°,则可判断∵BEE`为等腰直角三角形,根据等腰直角三角形的性质得在∵CE E'中,由于CE`2 +E E'2=CE 2,根据勾股定理的逆定理得到∵CEE`为直角三角形,即∵EE`C=90°,然后利用∵B E'C=∵B E'E+∵C E'E 求解【详解】连接EE`,如图,∵∵ABE 绕点B 顺时针旋转90°得到∵CBE`∵BE=BE'=2,AE=CE'=1,∵EB E'=90°∵∵BE E'为等腰直角三角形在∵CEE`中∵122=32∵CE 2+E E'2= CE 2∵∵CE E'为直角三角形∵∵E E'C=90°∵∵B E'C=∵B E'E+∵C E'E=135°【点睛】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.【答案】5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形M TKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.12.如图,P 是等边三角形ABC 内的一点,连接PA ,PB ,PC ,以BP 为边作60PBQ ∠=︒,且BQ=BP ,连接CQ.若::3:4:5PA PB PC =,连接PQ ,试判断PQC △的形状,并说明理由.【答案】PQC △是直角三角形,理由详见解析【解析】【分析】先利用SAS 证明∵ABP ∵∵CBQ ,得到AP=CQ ;设PA =3a ,PB =4a ,PC =5a ,由已知可判定∵PBQ 为正三角形,从而可得PQ =4a ,再根据勾股定理的逆定理即可判定∵PQC 是直角三角形.【详解】解:PQC △是直角三角形. 理由如下:在ABP △与CBQ △中,∵AB CB =,BP BQ =,60ABC PBQ ∠=∠=︒,∵ABP ABC PBC PBQ PBC CBQ ∠=∠-∠=∠-∠=∠.∵ABP CBQ ≌△△.∵AP CQ =.∵::3:4:5PA PB PC =,∵设3PA a =,4PB a =,5.PC a =在PBQ △中,由于4PB BQ a ==,且60PBQ ∠=︒,∵PBQ △为等边三角形.∵4PQ a =.在PQC △中,∵22222216925PQ QC a a a PC +=+==,∵PQC △为直角三角形.【点睛】此题考查了等边三角形的性质、勾股定理逆定理和全等三角形的判定与性质,解题的关键是通过证明ABP CBQ≌△△得出AP=CQ.13.已知:如图,∵ABC中,AB=AC=10,BC=16,点D在BC上,DA∵CA于A.求:BD的长.【答案】7 2【分析】先根据等腰三角形的性质和勾股定理求出AE=6,设BD=x,则DE=8﹣x,DC=16﹣x.在Rt∵ADE和Rt∵ADC中利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,继而代入求出x的值即可.【详解】如图,过点A作AE∵BC于点E,∵AB=AC=10,BC=16,∵BE=CE=8,在Rt∵ACE中,利用勾股定理可知:AE=6,设BD=x,则DE=8﹣x,DC=16﹣x,又DA∵CA,在Rt∵ADE和Rt∵ADC中分别利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,代入为:62+(8﹣x)2=(16﹣x)2﹣102,解得:x=72.即BD=72.【点睛】本题考查了勾股定理及等腰三角形的性质,解题的关键是在Rt∵ADE和Rt∵ADC中分别利用勾股定理,列出等式AD2=AE2+DE2=DC2﹣AC2.14.已知:AB=AC,且AB∵AC,D在BC上,求证:2222BD CD AD+=.【答案】证明见解析【分析】作AE∵BC于E,由于∵BAC=90°,AB=AC,得到∵BAC是等腰直角三角形,再由等腰直角三角形的性质得到BE=AE=EC,进而得到BD= AE-DE,DC= AE+DE,代入BD2+CD2计算,结合勾股定理,即可得到结论.【详解】作AE∵BC于E,如图所示.∵AB=AC,且AB∵AC,∵∵BAC是等腰直角三角形.∵AE∵BC,∵BE=AE=EC,∵BD=BE -DE=AE-DE,DC=EC+DE= AE+DE,∵BD2+CD2= (AE-DE)2+(AE+DE)2= AE2+DE2-2AE•DE+ AE2+DE2+2AE•DE= 2AE2+2DE2= 2(AE2+DE2)=2AD2.【点睛】本题主要考查勾股定理及等腰直角三角形的性质,关键在于得出BD= AE-DE,DC= AE+DE.三、动点问题15.已知,如图,在Rt∵ABC中,∵C=90°,∵A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,∵PBQ是等边三角形?(2)P,Q在运动过程中,∵PBQ的形状不断发生变化,当t为何值时,∵PBQ是直角三角形?说明理由.【答案】(1)12;(2)当t为9或725时,∵PBQ是直角三角形,理由见解析.【分析】(1)根据等边三角形的性质解答即可;(2)分两种情况利用直角三角形的性质解答即可.【详解】(1)要使,∵PBQ是等边三角形,即可得:PB=BQ,∵在Rt∵ABC中,∵C=90°,∵A=30°,BC=18cm.∵AB=36cm,可得:PB=36-2t,BQ=t,解得:t=12故答案为;12(2)当t为9或725时,∵PBQ是直角三角形,理由如下:∵∵C=90°,∵A=30°,BC=18cm∵AB=2BC=18×2=36(cm)∵动点P以2cm/s,Q以1cm/s的速度出发∵BP=AB-AP=36-2t,BQ=t∵∵PBQ是直角三角形∵BP=2BQ或BQ=2BP当BP=2BQ时,36-2t=2t解得t=9当BQ=2BP时,t=2(36-2t)解得t=72 5所以,当t为9或725时,∵PBQ是直角三角形.【点睛】此题考查了等边三角形的判定和含30°角的直角三角形的性质,关键是含30°角的直角三角形的性质的逆定16.如图1,Rt∵ABC 中,∵ACB =90.,直角边AC 在射线OP 上,直角顶点C 与射线端点0重合,AC =b ,BC =a ,30a -=.(1)求a ,b 的值;(2)如图2,向右匀速移动Rt∵ABC ,在移动的过程中Rt∵ABC 的直角边AC 在射线OP 上匀速向右运动,移动的速度为1个单位/秒,移动的时间为t 秒,连接OB .①若∵OAB 为等腰三角形,求t 的值;②Rt∵ABC 在移动的过程中,能否使∵OAB 为直角三角形?若能,求出t 的值:若不能,说明理由.【答案】(1)a =3,b =4(2)①t =4或t =1;②能.t =94. 【分析】(1)根据两个非负数的和为零则每一个数都为零,得出b -4=0 ,a -3=0 ,求解即可得出a ,b 的值;(2) ①首先根据勾股定理算出AB 的长及用含t 的式子表示出OA ,OB 2 ,然后分三类讨论:当OB =AB 时;当AB =OA 时 ;当OB =OA 时 ;一一列出方程求解即可得出t 的值; ②能.由于t >0,点C 在OP 上,∵ACB = 90,故只能是∵OBA =90°,根据勾股定理得出关于t 的方程求出t 的值即可. 【详解】(1)解0≥,30a -≥, 30a -=,0=, 30a -=∵a=3,b=4(2)解:①∵AC=4,BC=3,∵AB,∵OC=t∵OB2=t2+32=t2+9,OA=t+4,当OB=AB时,t2+9=25,解得t=4或t=﹣4(舍去);当AB=OA时,5=t+4,解得t=1;当OB=OA时,t2+9=(t+4)2,解得t=-78(舍去).综上所述,t=4或t=1;②能.∵t>0,点C在OP上,∵ACB ∵只能是∵OBA=90°,∵OB2+AB2=OA2,即t2+9+25=(t+4)2,解得t=94.∵Rt∵ABC在移动的过程中,能使∵OAB为直角三角形,此时t=94.【点睛】本题考查了非负数的性质,勾股定理的应用,等腰三角形的定义及分类讨论的数学思想.掌握非负数的性质是解(1)的关键,掌握勾股定理及分类讨论的数学思想是解(2)的关键.四、分类讨论的思想17.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:22221()21()2a m n b mnc m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中m >n >0,m ,n 是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【答案】12,13或3,4.【详解】试题分析:由n=1,得到a= (m 2﹣1)①,b=m②,c=(m 2+1)③,根据直角三角形有一边长为5,分情况,列方程即可得到结论.试题解析:当n=1,a=12(m 2﹣1)①,b=m②,c=12(m 2+1)③, ∵直角三角形有一边长为5,∵∵、当a=5时,12(m 2﹣1)=5,解得:(舍去), ∵、当b=5时,即m=5,代入①③得,a=12,c=13,∵、当c=5时,12(m 2+1)=5,解得:m=±3, ∵m >0,∵m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.18.∵ABC 中,AB=15,AC=13,高AD=12,则∵ABC 的周长为( )A .42B .32C .42或32D .37或33 【答案】C【分析】存在2种情况,∵ABC是锐角三角形和钝角三角形时,高AD分别在∵ABC的内部和外部【详解】情况一:如下图,∵ABC是锐角三角形∵AD是高,∵AD∵BC∵AB=15,AD=12∵在Rt∵ABD中,BD=9∵AC=13,AD=12∵在Rt∵ACD中,DC=5∵∵ABC的周长为:15+12+9+5=42情况二:如下图,∵ABC是钝角三角形在Rt∵ADC中,AD=12,AC=13,∵DC=5在Rt∵ABD中,AD=12,AB=15,∵DB=9∵BC=4∵∵ABC的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.18.如图是某商品的商标,由七个形状、大小完全相同的正六边形组成.我们称正六边形的顶点为格点,已知∵ABC的顶点都在格点上,且AB边位置如图所示,则∵ABC是直角三角形的个数有()A.6个B.8个C.10个D.12个【答案】C【分析】根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.【详解】如图所示:AB是直角边时,点C共有6个位置,即有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,∵ABC是直角三角形的个数有6+4=10个.故答案选:C.【点睛】本题考查的知识点是正多边形和圆, 勾股定理的逆定理,解题的关键是熟练掌握正多边形和圆, 勾股定理的逆定理.。

勾股定理的培优专题

勾股定理的培优专题

勾股定理的培优专题勾股定理培优专题一、基础知识1.勾股定理的逆定理是:如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形。

2.勾股定理的逆定理和勾股定理的题设和结论相反,被称为互逆命题。

3.如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。

4.能够成为直角三角形三条边长的三个正整数3、4、5 等,称为勾股数。

巩固练:1.如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形,这个定理叫做勾股定理的逆定理。

2.如果两个命题中,第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 1、2、3 号。

4.若△ABC 中,(b-a)(b+a)=c,则∠B=90°。

5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是直角三角形。

6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以 a-2、a、a+2 为边的三角形的面积为 6(a-1)。

7.写出下列命题的逆命题,并判断逆命题的真假。

1) 两直线平行,同位角相等。

逆命题为:同位角相等,则两直线平行。

真。

2) 若 a>b,则 a>b。

逆命题为:若a≤b,则a≤b。

假。

二、例题和训练考点一:证明三角形是直角三角形例1:已知:如图,在△ABC 中,CD 是 AB 边上的高,且 CD=AD·BD。

求证:△ABC 是直角三角形。

训练:已知:在△ABC 中,∠A、∠B、∠C 的对边分别是 a、b、c,满足a+b+c+3√3=10a+24b+26c。

试判断△ABC 的形状。

例2:如图,在直角△ABC 中,∠B=90°,BD 垂直于AC,且 AD=CD。

(完整版)第三讲勾股定理及其应用培优辅导含答案.doc

(完整版)第三讲勾股定理及其应用培优辅导含答案.doc

(完整版)第三讲勾股定理及其应用培优辅导含答案.doc第1页共14页第三讲勾股定理及其应用培优辅导一、点击一:勾股定理勾股定理:.则 c2=, a2=, b 2 =.勾股数:____、____、____、____、____、____、特殊勾股数:连续的勾股数只有 3 ,4,5 连续的偶数勾股数只有 6, 8, 10 勾股定理的逆定理:.点击二:学会用拼图法验证勾股定理如,利用四个如图 1 所示的直角三角形,拼出如图 2 所示的三个图形并证明.b ca(图 1)图 3图 2证明图 2或3.点击三:在数轴上表示无理数例在数轴上作出表示10 的点.点击四:直角三角形边与面积的关系及应用例已知一直角三角形的斜边长是2,周长是2+ 6,求这个三角形的面积.点击五:勾股定理的应用(1)已知直角三角形的两条边,求第三边;(2)已知直角三角形的一边,求另两条边的关系;(3)用于推导线段平方关系的问题等.二、【精典题型】考点一、已知两边求第三边1.在直角三角形中, 若两直角边的长分别为6,8,则斜边长为__________ ,斜边的高为__________.2.已知直角三角形的两边长为3、2,则另一条边长是________________ .3.已知,如图在ABC中, AB=BC=CA=2cm, AD是边 BC上的高.则① AD的长 _____;②Δ ABC的面积 _________.考点二、利用列方程求线段的长如图,某学校( A 点)与公路(直线L)的距离为300 米,又与公路车站( D 点)的距离为500 米,现要在公路上建一个小商店( C 点),使之与该校A 及车站 D 的距离相等,求商店与车站之间的距离.考点三、判别一个三角形是否是直角三角形1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13( 3)8、15、17(4)4、 5、 6,其中能够成直角三角形的有_________________.2.若三角形的三边是 a2+b2,2ab,a 2-b 2(a>b>0), 则这个三角形是 _________________. 3、如图,在我国沿海有一艘不明国际的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距 13 海里的 A、B 两个基地前去拦截,六分钟后同时到达 C 地将其拦截。

八年级下勾股定理培优试题集锦(含解析)

八年级下勾股定理培优试题集锦(含解析)

初二数学勾股定理提高练习与常考难题和培优题压轴题二.填空题(共5小题)11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,着名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c 的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA ⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112= + ;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的着作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠A OB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A. B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析二.填空题(共5小题)11.(2016春?高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春?嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春?武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春?黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋?永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC =,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC =1,S△DAC=1而S四边形ABCD =S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春?邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春?平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋?新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春?阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,则有BP+BQ=×24=12,设时间为t,列方程得:2t+(8﹣1×t)=12,解得t=4,当t=4时,点Q运动的路程是4×2=8>6,所以直线PQ不能够把原三角形周长分成相等的两部分.(10分)【点评】本题重点考查了利用勾股定理解决问题的能力,综合性较强.20.(2014秋?江阴市期中)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为: 3.5 .(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为 3 .(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是110 m2.【分析】(1)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,计算即可得解;(2)根据网格结构和勾股定理作出△DEF,再利用△DEF所在的矩形的面积减去四周三个小直角三角形的面积,计算即可得解;(3)利用同角的余角相等求出∠BAG=∠AEP,然后利用“角角边”证明△ABG和△EAP全等,同理可证△ACG和△FAQ全等,根据全等三角形对应边相等可得EP=AG=FQ;(4)过R作RH⊥PQ于H,设PH=h,在Rt△PRH和Rt△RQH中,利用勾股定理列式表示出PQ,然后解无理方程求出h,从而求出△PQR的面积,再根据六边形被分成的四个三角形的面积相等,总面积等于各部分的面积之和列式计算即可得解.【解答】解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∴∠PAE+∠BAG=180°﹣90°=90°,又∵∠AEP+∠PAE=90°,∴∠BAG=∠AEP,在△ABG和△EAP中,,∴△ABG≌△EAP(AAS),同理可证,△ACG≌△FAQ,∴EP=AG=FQ;(4)如图4,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=6,=6﹣,两边平方得,25﹣h2=36﹣12+13﹣h2,整理得,=2,两边平方得,13﹣h2=4,解得h=3,=×6×3=9,∴S△PQR∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110m2.故答案为:(1)3.5;(2)3;(4)110.【点评】本题考查了勾股定理,构图法求三角形的面积,全等三角形的判定与性质,读懂题目信息,理解构图法的操作方法是解题的关键.21.(2016春?周口期中)(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上 3.5 .思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.【分析】(1)根据矩形的面积公式和三角形的面积公式计算即可;(2)根据勾股定理在网格中画出相应的△ABC,根据矩形的面积公式和三角形的面积公式求出它的面积;(3)根据勾股定理在网格中画出相应的△ABC,根据矩形的面积公式和三角形的面积公式求出它的面积.【解答】解:(1)△ABC的面积=2×4﹣×1×2﹣×1×4﹣×1×3=3.5,故答案为:3.5;(2)如图2,△ABC的面积=3a×4a﹣×3a×2a﹣×a×4a﹣×2a×2a=5a2;(3)如图3,△ABC的面积=4m×4n﹣×m×4n﹣×3m×n﹣×4m×3n=6.5mn.【点评】本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.22.(2015春?罗田县期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?【分析】根据题意,构建直角三角形,利用勾股定理解答.【解答】解:如图,由题意知AB=3,CD=14﹣1=13,BD=24.过A作AE⊥CD于E.则CE=13﹣3=10,AE=24,∴在Rt△AEC中,AC2=CE2+AE2=102+242.∴AC=26,26÷5=5.2(s).【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.23.(2014春?镇原县校级期中)(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).【分析】这三道题主要在勾股定理的基础上结合具体图形的面积公式,运用等式的性质即可得到相同的结论.【解答】解:探究1:由等边三角形的性质知:S′=a2,S″=b2,S=c2,则S′+S″=(a2+b2),因为a2+b2=c2,所以S′+S″=S.探究2:由等腰直角三角形的性质知:S′=a2,S″=b2,S=c2.则S′+S″=(a2+b2),因为a2+b2=c2,所以S′+S″=S.探究3:由圆的面积计算公式知:S′=πa2,S″=πb2,S=πc2.则S′+S″=π(a2+b2),因为a2+b2=c2,所以S′+S″=S.【点评】熟悉各种图形的面积公式,结合勾股定理,运用等式的性质进行变形.24.(2014春?三水区校级期中)如图,在平面坐标系中,点A、点B分别在x 轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.【分析】(1)过C点、D点向x轴、y轴作垂线,运用勾股定理计算,结合全等可证;(2)连接DA,证△OCB≌△ODA(SAS),可得AD=CB=1,而OC=OD=2,故CD=,根据勾股定理逆定理可证∠ADC=90°,易得∠OCB=∠ODA=135°;(3)作CF⊥OA,F为垂足,有CF2=CE2﹣EF2,CF2=CA2﹣AF2=CA2﹣(AE+EF)2,设EF=x,列出关于x的方程,求得x=,再在Rt△CEF中,根据勾股定理求得CF=,然后由三角形的面积公式即可求解.【解答】(1)证明:过C点、D点向x轴、y轴作垂线,垂足分别为M、N.∵C(a,b),D(b,﹣a)(a、b均大于0),∴OM=ON=a,CM=DN=b,∴△OCM≌△ODN(SAS),∴∠COM=∠DON.∵∠DON+∠MOD=90°,∴∠COM+∠MOD=90°,∵OC=OD=,∴△COD是等腰直角三角形,∴∠ODC=45°;(2)解:连接DA.在△OCB与△ODA中,,∴△OCB≌△ODA(SAS),∴AD=CB=1,∠OCB=∠ODA.∵OC=OD=2,∴CD=.∵AD2+CD2=1+8=9,AC2=9,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠OCB=∠ODA=90°+45°=135°;(3)解:作CF⊥OA,F为垂足,由勾股定理得CF2=CE2﹣EF2,CF2=CA2﹣AF2=CA2﹣(AE+EF)2,设EF=x,可得52﹣x2=72﹣(3+x)2,解得x=.在Rt△CEF中,得CF==,∴OF=CF=,∴△OCA的面积===.【点评】本题考查了全等三角形、等腰直角三角形的判定与性质,勾股定理及其逆定理,三角形的面积,有一定难度.准确作出辅助线是解题的关键.25.(2015春?定州市期中)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?【分析】根据题意画出图形,利用勾股定理建立方程,求出x的值即可.【解答】解:画图解决,通过建模把距离转化为线段的长度.由题意得:AB=20,DC=30,BC=50,设EC为x肘尺,BE为(50﹣x)肘尺,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+(50﹣x)2,DE2=DC2+EC2=302+x2,又∵AE=DE,∴x2+302=(50﹣x)2+202,x=20,答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺另解:设:这条鱼出现的地方离比较高的棕榈树的树根肘尺,则这条鱼出现的地方离比较低的棕榈树的树根(50﹣x)肘尺.得方程:x2+302=(50﹣x)2+202可解的:x=20;答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.【点评】本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的。

完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习勾股定理练(根据对称求最小值)基本模型:已知点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。

1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。

解:由于AE=1,所以DE=√3.连接BE,设∠EBN=x,则∠EBD=∠ABE-x=60°-x。

由正弦定理得:EN/ sinx = BN/sin(60°-x)。

=。

EN/BN = sinx/sin(60°-x)由于sinx/sin(60°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。

又由于XXX,所以问题转化为:在直线AD上找一点N,使得MN+EB最小。

连接AC,设交点为F,则∠ABF=∠FBD=30°,BF=AB/2=2.由于AF=AD-DF=√3-DF,所以MN+EB=BF+MN+EF=BF+FN。

由于FN=AF-AN=AF-AE=√3-1,所以MN+EB=2+MN+√3-1=MN+3+√3.因此,EN+BN的最小值为3+√3,此时x=30°。

2、已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。

解:连接BE,设∠EBN=x,则∠EBD=∠ABE-x=45°-x。

由正弦定理得:EN/sinx = BN/sin(45°-x)。

=。

EN/BN = sinx/sin(45°-x)由于sinx/sin(45°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。

又由于XXX,所以问题转化为:在对角线AC上找一点N,使得MN+EB最小。

连接BD,设交点为F,则∠ABF=∠FBD=45°,BF=AB/√2=2√2.由于AF=AD-DF=4-DF,所以MN+EB=BF+MN+EF=BF+FN。

(完整版)勾股定理专题(附答案,全面、精选)

(完整版)勾股定理专题(附答案,全面、精选)

(6) 如图(1),图中的数字代表正方形的面积,则正方形A 的面积为。

3、运用勾股定理进行计算(重难点)(12)如图,一根旗杆在离地面9米处折断倒下,旗杆顶勾股定理一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,__________________________ 勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型(7)如图(2),三角形中未知边x与y的长度分别是x= ,y= 。

(8)在RtAABC 中,/ C= 90°,若AC= 6, BO 8,则AB的长为( )A、6B、8C、10(9)在直线l上依次摆放着七个正方形已知斜放置的三个正方形的面积分别是D、12(如图4所示)。

1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S I S2 S3 S4= ------------------------ 。

1、对勾股定理的理解(1)已知直角三角形的两条直角边长分别为a, b,斜边长c,则下列关于a,b,c的关系不成立的是( )A、c2- a2=b2C、a2- c2=b2(2) 在直角三角形中,/ 立的是( )A、BC2- AB2=AC2C、AB2+AC2= BC22、应用勾股定理求边长(3) 已知在直角三角形求AC的长.B、c2- b2=a2D、a2+b2= c2A=90°,则下列各式中不成B、BC2- AC2=AB2D、AC2+BC2= AB2AB=10 cm, BC=8 cm ABC中,(4)在直角△中,若两直角边长为a、b,且满足Va- 6a +9 + |b- 4| = 0,则该直角三角形的斜边长为__________3、利用勾股定理求面积(5)已知以直角△的三边为直径作半圆,其中两个半圆的面积为25兀,16兀,求另一个半圆的面积。

【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。

专题勾股定理培优版(综合)

专题勾股定理培优版(综合)

专题 勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题1.如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.(二)最值问题2.如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是ABPCBCPADPED C C将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.D C CD C C长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD 和AB 的长.图① 图②DB C图2图1A'PPA ABCBC5.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '上时,此题可解(如图2).请你回答:AP 的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)6.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB的度数. BAC图3CABP变式1:∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数变式2:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决. 请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹); (2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3CBAPCA BEF MN图① 7. 已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(2)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.变式1:如图,在Rt ABC ∆中, 90,,45BAC AC AB DAE ∠=︒=∠=︒ 且3BD =,4CE =,则DE =变式2:如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕 点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=;④222BE DC DE +=其中正确的是( ) CABE F MN 图②BCDEFA(三)其它应用7. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图..法.在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.8.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)如图1,若AB=32,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=32,设BP=x,以QF为边的等边三角形的面积y,求y关于x的关系式.。

2020中考数学 勾股定理培优练习(包含答案)

2020中考数学 勾股定理培优练习(包含答案)

2020中考数学 勾股定理培优练习(含答案)例1 勾股定理计算(1)在Rt ABC △中,=90C ∠︒,a b c 、、分别代表A B C ∠∠∠、、的对边,则下列式子,不正确的是( ) A .222a b c +=B .222c a b -=C.a =D .222a b c -=【答案】D(2)已知(220x y -+=,如果以x ,y 的长为直角边作一个直角三角形,那么这个直角三角形的斜边长为( )AB .5CD【答案】C(3)已知直角三角形的两直角边长分别为3、4,则第三边长为______________. 【答案】5.(4)已知直角三角形的三边长为6、8、x ,则以x 为边的正方形的面积为______. 【答案】28或100(5)在ABC △中,15AB =,13AC =,高12AD =,则三角形的周长是______. 【答案】32或42例2 知三边长求面积已知钝角三角形的三边为2、3、4,求该三角形的面积.【答案】过点A 作AD BC ⊥于D ,设CD x =,利用勾股定理()22222234AD x x =-=--,解得118x =,AD ==.例3 勾股弦图(1)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示),如果大正方形的面积是49,小正方形的面432ACB积为4,直角三角形的两直角边长分别为a ,b ,那么下列结论:①2249a b +=;②2b a -=;③452ab =;④a b +=中,正确的有 .(填序号)(2)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )A .3B .154 C .5 D .152(3)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是 .【答案】(1)①②③④;(2)C ;(3)76. 例4 勾股定理的逆定理(1)下列各组数中,以它们为边长的线段不能构成直角三角形的是( )A .12B .1,2C .5,12,13D .1(222(13)10250y z z +-+-+=,以x 、y 、z 为三边长的三角形是( ).A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形(3)下面几组数:①7,8,9;②12,9,15;③22211m m -+,,(1m >且是正整数);④2a ,21a +,22a +.其中能组成直角三角形的三边长的是 .【答案】(1)D ;(2)B ;(3)②. 例5 勾股数(1)下列几组数中,为勾股数的是( )A .2453 ,4 ,5 B .3 , 4 ,6 C .5 , 12 , 13 D .0.9 , 1.2 , 1.5【答案】C(2)已知22x m n =-,2y mn =,22z m n =+,请证明x y z 、、是一组勾股数. 【答案】由已知条件可得:222244222x m n m n m n =-=+-(),2224y m n =,222244222z m n m n m n =+=++(),所以2244222244222242x y m n m n m n m n m n z +=+-+=++=(), 即证x y z 、、是一组勾股数.例6(1)如图所示,四边形ABCD 中,AB=20,BC=15,CD=7,DA=24且∠B=90°, 求四边形ABCD 的面积.【答案】连接AC ,勾股定理算出AC=25,面积是234.(2)如图所示的一块四边形土地ADCB ,已知12AD m =,9CD m =,39AB m =,36BC m =,90ADC ∠=︒, 求这块地的面积.【答案】连接AC ,面积是216.例7 勾股树(1)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A B C D ,,,的面积之和为_______cm 2.【答案】49(2)如图,分别以直角三角形ABC三边为直径向外作三个正三角形,其面积分别用1S、2S、3S表示,那么1S、2S、3S之间的数量关系是:.【答案】231S S S+=(3)如图,已知在Rt ABC△中,90ACB∠=︒,10AB=,分别以AC BC、为直经作半圆,面积分别记为12S S、,则12S S+的值等于()A.8πB.16πC.25πD.12.5π【答案】D(4)如图,在平面上依次摆放着七个正方形,已知斜放置的三个正方形的面积从左到右依次是a,b,c,则正放置的四个正方形的面积之和为________(可用a,b,c表示).【答案】a c+例8如图所示的螺旋图形由一系列直角三角形组成,其中ABCD7cm0011223341OA A A A A A A A A ======L ,n S 表示第n 个三角形的面积.(1)请用含有n 的代数式表示n S : ;(2)若一个三角形的面积是 (3)求22222123410S S S S S +++++L 的值.【答案】(1;(2)20;(3)554 .练1 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,,,点都在矩形的边上,则矩形的面积为( )A .B .C .D .【答案】如图,延长交于点,延长交于点, 所以,四边形是正方形,边长,所以,,矩形的面积为.练2 (1)若直角三角形的两边长分别为6cm 和8cm ,则第三边长为____________.【答案】10或(2)如果直角三角形的三边长为10、6、x ,则最短边上的高为____________. 【答案】810或(3)把直角三角形的两直角边同时扩大到原来5倍,则其斜边扩大到原来的_______倍,所得的三角形是_________三角形. 【答案】5,直角. 练3 (1)在下列以线段的长为三边的三角形中,不能构成直角三角形的是( )A .B .C .D .【答案】D(2)已知以a 、b 、c 为三边的三角形是直角三角形,即222a b c +=,0k >,求证:以ka 、kb 、kc 为三边的三角形也是直角三角形.【答案】求证222a b c +=即可.练4 已知,如图,四边形中,,,,,且,求四边形的面积.【答案】连接BD ,勾股定理算出BD=5cm ,△BCD 是直角三角形,所以四边形面积是36.练5 (1)如图,三个正方形围成一个直角三角形,81、225分别为所在正方形的面积,则图中字母所代表的正方形的边长是______.(2)如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为________.(3)如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是________.【答案】(1)12;(2)7;(3)123S S S +=.。

八年级上册培优班教材

八年级上册培优班教材

专题一:勾股定理的应用【例1】如图,∠B=∠ADC=90º,AD=13,CD=12,BC=3,则AB 的长是多少?3【例2】如图,已知AM 是△ABC 的BC 边上的中线. 试说明:22222()AB AC AM MC +=+【训练】如图,已知∠C=90º,AM=CM ,MP ⊥AB 于点P 。

试说明:222BP BC AP =+【点拨】勾股定理的应用必须在直角三角形中,利用勾股定理解决问题时,必须先构造直角三角形。

专题二:勾股定理的逆定理的应用【例1】 在△ABC 中,三边长a 、b 、c 满足a:b:c=9:15:12,试判断△ABC 是不是直角三角形。

【例2】 在△ABC 中,已知221,2,1a n b n c n =-==+(n>1),试说明:∠C=90º。

【例3】如果△ABC 的三边长分别a 、b 、c ,且满足222506810a b c a a c +++=++,判断△ABC 的形状。

【训练】已知一个三角形的三边长分别是2222,21,221(n n n n n n ++++为正整数)试猜想这个三角形是不是直角三角形,并说明理由。

【点拨】根据三角形三边的数量关系判断一个三角形是不是直角三角形,只要看两条较短边的平方和是否等于最长边的平方即可。

若相等,则是直角三角形;若不相等,则不是直角三角形。

【例1】已知△ABC是等腰三角形,∠A=90º,AB=AC,点D是边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF,若BE=12,AE=5,求线段EF的长。

【训练】如图,将长方形ABCD折叠,使点D落在BC边的点F处,已知AB=8cm,BC=10cm。

求EF的长。

【点拨】转化思想就是通过一定的方法或途径,把需要解决的问题转化成另一类已经解决或易于解决的问题,从而使原来的问题得到解决。

在含有直角三角形的图形中,求线段的长往往使用勾股定理,如果无法直接用勾股定理来计算,那么常常需要运用转化思想来解决。

数学数学勾股定理的专项培优练习题(及答案

数学数学勾股定理的专项培优练习题(及答案

一、选择题1.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个2.如图,在ABC 中,90A ∠=︒,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )A .2B .2C .3D .43.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =5,AC =53,CB 的反向延长线上有一动点D ,以AD 为边在右侧作等边三角形,连CE ,CE 最短长为( )A .5B .53C 53D 53 4.在ΔABC 中,211a b c =+,则∠A( ) A .一定是锐角 B .一定是直角 C .一定是钝角 D .非上述答案5.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1526.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2) 7.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .48 8.下列命题中,是假命题的是( )A .在△ABC 中,若∠A:∠B:∠C=1:2:3,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠B=∠C=∠A,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形9.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )A .3尺B .4.2尺C .5尺D .4尺10.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )A 33B .4cmC .2cmD .6cm二、填空题11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.12.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________13.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.14.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.15.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.16.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.17.如图,Rt△ABC 中,∠BCA =90°,AB 5AC =2,D 为斜边AB 上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是_____.18.如图,E为等腰直角△ABC的边AB上的一点,要使AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为____________.19.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.20.四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM=7EF,则正方形ABCD的面积为_______.三、解答题21.(1)计算:1312248233⎛÷⎝(2)已知a、b、c满足2|2332(30)0a b c-+-=.判断以a、b、c为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.23.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.(1)求BF 的长;(2)求CE 的长.24.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.25.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.26.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;,求线段AB (3)过点C作CF⊥DE交AB于点F,若BD:AF=1:22,CD=36的长.27.如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形.(2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF,交DE于点P,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性质,可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,FD⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可证:△CFD≌△BFE.结论②正确,理由如下:∵△AFD≌△CFE,∴S△AFD=S△CFE,∴S四边形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=12S△ABC,即△ABC的面积等于四边形CDFE的面积的2倍.结论③错误,理由如下:∵△AFD≌△CFE,∴CE=AD ,∴FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.2.B解析:B【分析】过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,由角平分线的性质得到OD=OE=OF ,根据勾股定理求出BC 的长,易得四边形ADFO 为正方形,根据线段间的转化即可得出结果.【详解】解:过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,∵BO,CO 分别为∠ABC ,∠ACB 的平分线,所以OD=OE=OF ,又BO=BO,∴△BDO ≌△BEO,∴BE=BD.同理可得,CE=CF.又四边形ADOE 为矩形,∴四边形ADOE 为正方形.∴AD=AF.∵在Rt △ABC 中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故选:B.【点睛】此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.3.C解析:C【分析】在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,易证△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此点E的轨迹是一条直线,过点C作CH⊥BE,则点H即为使得BE最小时的E点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.【详解】解:在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,∵∠ACB=90°,∠ABC=60°,∴△AB’B是等边三角形,∴∠B’=∠B’AB=60°,AB’=AB,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60°,∴点E在直线BE上运动,过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,∠CBH=180°-∠ABC-∠ABE=60°,∴∠BCH=30°,∴BH=12BC=52,∴CH22BC BH53.即BE 53.故选C.【点睛】本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB构造成等边三角形,通过全等证出∠ABC 是定值,即点E的运动轨迹是直线是解决此题的关键.4.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc>a 2,再根据(b-c)2≥0,可推导得出b 2 +c 2>a 2,据此进行判断即可得.【详解】∵211a b c =+,∴2b ca bc+ =,∴2bc=a(b+c),∵a、b、c是三角形的三条边,∴b+c>a,∴2bc>a·a,即2bc>a 2,∵(b-c)2≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2≥2bc,∴b 2 +c 2>a 2,∴一定为锐角,故选A.【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2>a 2是解题的关键.5.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.7.A解析:A【解析】已知△ABC的三边分别为6,10,8,由62+82=102,即可判定△ABC是直角三角形,两直角边是6,8,所以△ABC的面积为12×6×8=24,故选A.8.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC中,若∠B=∠C-∠A,则∠C =∠A+∠B,则△ABC是直角三角形,本选项正确;B. △ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2= a2+c2,则△ABC是直角三角形,本选项正确;C. △ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D. △ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.9.B【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10)x -尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10)x -尺,根据勾股定理得:2224(10)x x +=-.解得: 4.2x =,∴折断处离地面的高度为4.2尺,故选:B .【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.10.A解析:A【分析】先根据角平分线的性质可证CD=DE ,从而根据“HL”证明Rt △ACD ≌Rt △AED ,由DE 为AB 中线且DE ⊥AB ,可求AD=BD=3cm ,然后在Rt △BDE 中,根据直角三角形的性质即可求出BE 的长.【详解】∵AD 平分∠BAC 且∠C=90°,DE ⊥AB ,∴CD=DE ,由AD =AD ,所以,Rt △ACD ≌Rt △AED ,所以,AC=AE.∵E 为AB 中点,∴AC=AE=12AB , 所以,∠B=30° .∵DE 为AB 中线且DE ⊥AB ,∴AD=BD=3cm ,∴DE=12BD=32,∴= 故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题二、填空题11.210或213或32 【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即45AE =,145DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即55BE =,55DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 12.1010【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt △ACO 中,由勾股定理,得AO 2=AC 2-OC 2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10,∴10 ;综上可知,这个等腰三角形的底的长度为1010.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键. 13.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 14.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中,AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.15.258 【分析】 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴AC=2222AB +BC =3+4=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,∴△AFD ∽△CBA ,∴AD AC =FA BC ,即AD 5=2.54,解得AD=258;故答案为258. 【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△C B A′,∴CE=BC=10,在RT △CB A′中,22BC BA -'22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E为AD延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o ∴∠A"BC=∠DCE,在△A"BC与△DCE中,"={""A CDE CD A BA BC DCE ∠∠=∠=∠∴△A"BC≌△DCE,DE= A"C,在RT△ A"BC中,22"BC BA-22106-∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.1725【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA=90°,DE⊥AC,DF⊥BC,证得四边形CEDF是矩形,连接CD,则CD=EF,当CD⊥AB时,CD最短,即25.25点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.18.5【解析】试题分析:作点B关于AC的对称点F,构建直角三角形,根据最短路径可知:此时PB+PE 的值最小,接下来要求出这个最小值,即求EF的长即可,因此要先求AF的长,证明△ADF≌△CDB,可以解决这个问题,从而得出EF=5,则PB+PE的最小值为5.解:如图,过B作BD⊥AC,垂足为D,并截取DF=BD,连接EF交AC于P,连接PB、AF,则此时PB+PE的值最小,∵△ABC 是等腰直角三角形,∴AB =CB ,∠ABC =90°,AD =DC ,∴∠BAC =∠C =45°,∵∠ADF =∠CDB ,∴△ADF ≌△CDB ,∴AF =BC ,∠FAD =∠C =45°,∵AE =3,BE =1,∴AB =BC =4,∴AF =4,∵∠BAF =∠BAC +∠FAD =45°+45°=90°,∴由勾股定理得:EF 22AF AE +2243+,∵AC 是BF 的垂直平分线,∴BP =PF ,∴PB +PE =PF +PE =EF =5,故答案为5.点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.19.17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,所以有22217(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM EF ,2,,a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)423;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)⎛÷ ⎝=÷=÷ =423; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.22.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD ≌△ABE (SAS ),∴CD =BE .(2)如图2,连结BE ,∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴DE =AD =3,∠ADE =∠AED =60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD 5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD =AE ,∠DAE =90°,∴∠D =∠AED =45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.23.(1)BF长为6;(2)CE长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD 为矩形,∴∠B=90°,且AD=BC=10, 又∵AFE 是由ADE 沿AE 翻折得到的,∴AF=AD=10,又∵AB=8,在Rt △ABF 中,由勾股定理得:,故BF 的长为6.(2)设CE=x ,∵四边形ABCD 为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x ,又∵△AFE 是由△ADE 沿AE 翻折得到的,∴FE=DE=8-x ,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt △CEF 中,由勾股定理得:222CF +CE =EF ,∴2224+x =(8-x),解得:x=3,故CE 的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.24.(1)2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用. 25.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.26.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.27.(1)见解析;(2)26;(3)33a +3 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出3,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,CM∴∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,EN∵BN=a∴=AD∴+ 【点睛】 本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.28.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2n +;(3)21m -;21m +;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.【详解】解:(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; 故答案为:1(491)2-;1(491)2+;(2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; 故答案为:21(1)2n -;21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;故答案为:m 2-1,m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35;故答案为:10、26;12、35.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.29.(1)45°;(2)GF=AG+CF ,证明见解析;(3)①6; ②s ab =,理由见解析.【解析】【分析】(1)如图1中,连接BE .利用全等三角形的性质证明EB=ED ,再利用等角对等边证明EB=EF 即可解决问题.(2)猜想:GF=AG+CF .如图2中,将△CDF 绕点D 旋转90°,得△ADH ,证明△GDH ≌△GDF (SAS )即可解决问题.(3)①设CF=x ,则AH=x ,BF=6-x ,GF=3+x ,利用勾股定理构建方程求出x 即可. ②设正方形边长为x ,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE .∵四边形ABCD 是正方形,∴CD=CB ,∠ECD=∠ECB=45°,∵EC=EC ,∴△ECB ≌△ECD (SAS ),∴EB=ED ,∠EBC=∠EDC ,∵∠DEF=∠DCF=90°,。

八年级初二数学数学勾股定理的专项培优练习题(附解析

八年级初二数学数学勾股定理的专项培优练习题(附解析

一、选择题1.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .105 2.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145D .3653.如图,已知圆柱的底面直径6BC π=,高3AB =,小虫在圆柱侧面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为( )A .18B .48C .120D .724.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 的中点B .BC 的中点 C .AC 的中点D .C ∠的平分线与AB 的交点5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .66.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .87.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .3 8.由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A+∠B=∠CB .∠A :∠B :∠C=1:3:2C .a=2,b=3,c=4D .(b+c)(b-c)=a²9.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米10.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .111,4,5222 C .3,4,5 D .114,7,822二、填空题11.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,+等于_________.⊥,则AD BCBD CD12.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)13.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.14.已知Rt△ABC中,AC=4,BC=3,∠ACB=90°,以AC为一边在Rt△ABC外部作等腰直角三角形ACD,则线段BD的长为_____.15.在Rt△ABC中,直角边的长分别为a,b,斜边长c,且a+b5c=5,则ab的值为______.16.已知x,y为一个直角三角形的两边的长,且(x﹣6)2=9,y=3,则该三角形的第三边长为_____.17.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°18.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.19.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =,点P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.24.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.25.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.26.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).27.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图28.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.30.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ;(2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3AB ===>>∴25>>∴需要爬行的最短距离为25cm故选:A .【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.2.C解析:C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH ⊥BE 于H ,EG ⊥CD 于G ,证明△DHE ≌△EGD ,利用勾股定理求出75EH DG ==,即可得到BE. 【详解】∵∠BCA=90∘,AC=6,BC=8, ∴22226810AB AC BC ,∵D 是AB 的中点,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6,∴BD=DE ,作DH ⊥BE 于H ,EG ⊥CD 于G ,∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,∵DE=DE ,∴△DHE ≌△EGD ,∴DH=EG ,EH=DG ,设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∴222256(5)x x -=--,∴75x =, ∴75EH DG ==,∴BE=2EH=145, 故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE ≌△EGD ,由此求出BE 的长度.3.D解析:D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点A ,C 的最短距离为线段AC 的长.∵已知圆柱的底面直径6BC π=, ∴623AD ππ=⋅÷=, 在Rt ADC ∆中,90ADC ∠=︒ ,3CD AB ==,∴22218AC AD CD =+=,∴从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为()222472AC AC ==.故选D.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.4.A解析:A【分析】先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000∴BC2+AC2=AB2,∴△ABC是直角三角形,∴活动中心P应在斜边AB的中点.故选:A.【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.5.C解析:C【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C.考点:勾股定理的证明.6.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A的面积等于100-64=36;故选:B.【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.7.B解析:B【分析】根据“在Rt△ABC中”和“沿BD进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.【详解】∵∠A=90°,AB=6,AC=8,∴,根据翻折的性质可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.设CD=x,则A′D=8-x,根据勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案为:B.【点睛】本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.8.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.A解析:A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形, ∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键. 10.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A 、22272425+=,能组成直角三角形,故正确;B 、22211145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、2221147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .【点睛】本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形. 二、填空题11.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.12.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺), 222021+=29(尺).答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.13.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE=12,DE=5,∴AH=12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.14.7或29或65【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD2229=+=;DE BE(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD2265=+=.DE BE故答案为:7或29或65.【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.15.10【分析】先根据勾股定理得出a2+b2=c2,利用完全平方公式得到(a+b)2﹣2ab=c2,再将a+b=5c=5代入即可求出ab的值.【详解】解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,∴a 2+b 2=c 2,∴(a +b )2﹣2ab =c 2,∵a +b =c =5,∴(2﹣2ab =52,∴ab =10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.16.【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y =;当x=9时,x 、y =;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.17.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确. ∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.18.78【解析】 试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理可计算出BE 的长即可.试题解析:∵四边形ABCD 为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x ,则EC=4﹣x ,AE=4﹣x ,在Rt△ABE 中,∵AB 2+BE 2=AE 2,∴32+x 2=(4﹣x )2,解得x=78, 即BE 的长为78.19.2或4【分析】根据题意画出图形,分4种情况进行讨论,利用含30°角直角三角形与勾股定理解答.【详解】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC 是等边三角形, ∴23CP BC ==;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°-30°=30°,∴PC=PB , ∵23BC = ∴222213,(23)(3)32AB BC AC BC AB ===-=-=, 在Rt △APB 中,根据勾股定理222AP AB BP +=,即222()AC PC AB PC -+=, 即222(3)(3)PC PC -+=,解得2PC =,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴12BP PC = 在Rt △BCP 中,根据勾股定理222BP BC PC +=,即2221()(23)2PC PC +=,解得PC=4(已舍去负值).综上所述,CP 的长为23或2或4.故答案为:23或2或4.【点睛】本题考查含30°角直角三角形,等边三角形的性质和判定,勾股定理.理解直角三角形30°角所对边是斜边的一半,并能通过勾股定理去求另外一个直角边是解决此题的关键. 20.3或3或15【分析】根据直角三角形的性质求出BC ,勾股定理求出AB ,根据直角三角形的性质列式计算即可.【详解】解:如图∵∠B=90°,∠A=30°,∴BC=12AC=12×8=4,由勾股定理得,==AD ∴==当点P 在AC 上时,∠A=30°,AP=2PD ,∴∠ADP=90°,则AD 2+PD 2=AP 2,即(2=(2PD )2-PD 2,解得,PD=3,当点P 在AB 上时,AP=2PD ,∴当点P 在BC 上时,AP=2PD ,设PD=x ,则AP=2x ,由勾股定理得,BP 2=PD 2-BD 2=x 2-3,()(22223x x ∴-=-解得,故答案为:3【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt△AEF中,AE2=AF2+EF2,2AF)2+2EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.23.(1)见解析;(2)①见解析;②2.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=12BC CG⋅,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴1302DBC ABC∠=∠=︒,∵CF CD=,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴BD DF=;(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵AE CD=,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=120°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=CD,∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;②∵∠BGE=60°,∠EBD=30°,∴∠BEG=90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE =23, ∴BF =226BE =,232GF =-,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===,∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=-, ∴()262312CN FN ==⨯-=-,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,∴62CG CF ==-,∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.24.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=, ∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==, ∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB中,由①知:62 EH HB==,∴62AH AE EH=+=+,22222256623AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD 的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN∠+∠=︒,∴AN DE⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.25.(1)CD=8;(2)t=4;(3)12-=tvt(26t≤<)【分析】(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,此时PD=6-t,QF=2t-6由PD=QF得6-t=2t-6,解得t=4,综上得t的值为4.(3)同(2)可知v>1时,Q在AF之间不存在CP=BQ,Q在FC之间存在CP=BQ,Q在F点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.26.(1)见解析;(2)26;(3)3a+ 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,3EN∵BN=a∴23=AD∴AE=AD+DE=3+a 【点睛】 本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.27.(1)见详解;(2)①t 值为:103s 或6s ;②t 值为:4.5或5或4912. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即2<t ≤5时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴AB=AC ,∴△ABC 是等腰三角形;(2)解:由(1)知,AB=5x ,CD=4x ,∴S △ABC =12×5x×4x=40cm 2,而x >0, ∴x=2cm ,则BD=4cm ,AD=6cm ,CD=8cm ,AB=AC=10cm .由运动知,AM=10-2t ,AN=t ,①当MN ∥BC 时,AM=AN ,即10-2t=t , ∴103t =; 当DN ∥BC 时,AD=AN ,∴6=t ,得:t=6;∴若△DMN 的边与BC 平行时,t 值为103s 或6s . ②存在,理由:Ⅰ、当点M 在BD 上,即0≤t <2时,△MDE 为钝角三角形,但DM≠DE ;Ⅱ、当t=2时,点M 运动到点D ,不构成三角形Ⅲ、当点M 在DA 上,即2<t≤5时,△MDE 为等腰三角形,有3种可能.∵点E 是边AC 的中点,。

八下勾股定理培优-含答案

八下勾股定理培优-含答案

第17章 《勾股定理》拔高训练一.选择题1.一支长为13cm 的金属筷子(粗细忽略不计),放入一个长、宽、高分别是4cm 、3cm 、16cm 的长方体水槽中,那么水槽至少要放进( )深的水才能完全淹没筷子.A .13cmB .410cmC .12cmD .153cm2. 如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB =230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB 等于( )A .6B .8C .10D .123.如图,在4×4方格中作以AB 为一边的Rt △ABC ,要求点C 也在格点上,这样的Rt △ABC 能作出( )A .2个B .3个C .4个D .6个第2题 第3题 第5题 第6题4.直角三角形的三边为a ﹣b ,a ,a+b 且a ,b 都为正整数,则三角形其中一边长可能为( )A .61B .71C .81D .915.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 较长直角边,23AM EF ,则正方形ABCD 的面积为( )A .14SB .13SC .12SD .11S6.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A .32B .43C .53D .857.如图,在Rt △ABC 中,∠ACB=90°,AB=4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S2,则S1+S2的值等于()A.2πB.3πC.4πD.8π第7题第9题第10题8.直角三角形一直角边长为12,另两边长均为自然数,则其周长为()A.36 B.28 C.56 D.不能确定9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()D.35A.521B.25 C.1055二.填空题10.如图,MN垂直平分线段AB,P是射线MN上的一个动点,连接P A,PB,过点P作CD∥AB,点G在直线CD上,连接GA、GB,已知AB=4,若满足△GAB是等腰三角形的点G有且只有3个,则PM的长为.11.如图,在Rt△ABC中,∠ACB=90,AC=3,B C=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4,则S1+S2+S3+S4=.12.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.第11题第12题第14题13.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是cm.14.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是尺.15.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短距离为.第15题第16题第17题16.如图所示的是一段楼梯,高BC=3 m,斜边AB=5m,现计划在楼上铺地毯,至少需要地毯的长为m.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C 落在边AB上的点C′处,则折痕BD的长为.18.已知一个直角三角形的两边长分别是3和4,则以第三边为边长的正方形面积为.19.如图,E、F、G、H分别为正方形ABCD的边AB、BC、CD、DA上的点,且AE=BF=CG=DH=13 AB,则图中阴影部分的面积与正方形ABCD的面积之比为.第19题第20题20.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3 cm,AB=8 cm,则图中阴影部分面积为cm2.三.解答题(共20小题)21.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=4km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.(结果保留根号)22.王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.23.能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,观察下列表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,5 32+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……172+b2=c217,b,c24.如图,已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,如此类推.(1)求AC、AD、AE的长.(2)写出第n个等腰直角三角形的斜边长AN.25.如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?26.在△ABC中,∠A=150°,AB=20m,AC=30m,求△ABC的面积.27.计算①2+32+6+10+15;②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.28.一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种新的证法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a.BC=b,AC=c,请利用四边形BCC′C 的面积证明勾股定理.29.有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将ABC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,求CD的长.30.如图,A、B两个小集镇在河流的同侧,分别到河岸L的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米2万元,请你在河岸L上选择水厂的位置M(作图并标注出来),使铺设水管的费用最节省,并求出总费用是多少?31.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.32.如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.(1)问:B处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物? (供选用数据:2 1.43 1.7≈≈,)33.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB =90°,求证:a 2+b 2=c 2证明:连结DB ,过点D 作BC 边上的高DF ,则DF=EC=b ﹣a 。

勾股定理经典培优题及答案

勾股定理经典培优题及答案

勾股定理经典培优题类型之一勾股定理的验证1.小明利用如图17-X -1①所示的图形(三个正方形和一个直角三角形)验证勾股定理验证勾股定理,,他的方法如下:过点D 作直线FG ∥AC ,过点E 作直线GH ∥BC ,直线FG 与直线GH 交于点G ,与直线BC 交于点F ,直线GH 与直线AC 交于点H ,如图②所示.请你回答:(1)△ABC 与△BDF ,△DEG ,△EAH 有什么关系?为什么?(2)用含a ,b 的代数式表示正方形CFGH 的面积;(3)你能否根据图形面积之间的关系找到a ,b ,c 之间的数量关系?(4)你能得到什么结论?图17-X -1 2.勾股定理神秘而美妙勾股定理神秘而美妙,,它的证法多样它的证法多样,,其巧妙各有不同其巧妙各有不同,,其中的“面积法”给了小明灵感其中的“面积法”给了小明灵感,,他惊喜地发现他惊喜地发现,,当四个全等的直角三角形如图17-X -2摆放时摆放时,,可以用“面积法”来证明a 2+b 2=c 2.(请你写出证明过程) 图17-X -2 类型之二勾股定理及其应用3.等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为() A .7 B .6 C .5 D .4 4.我国汉代数学家赵爽为了证明勾股定理我国汉代数学家赵爽为了证明勾股定理,,创制了一幅“弦图”创制了一幅“弦图”,,后人称其为“赵爽弦图”.如图17-X -3是由弦图变化得到的是由弦图变化得到的,,它由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1,S 2,S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3=________. 图17-X -3 图17-X -4 5.图17-X -4①是我国古代著名的“赵爽弦图”的示意图①是我国古代著名的“赵爽弦图”的示意图,,它是由四个全等的直角三角形围成的.若AC =12,BC =10,将四个直角三角形中边长为12的直角边分别向外延长一倍的直角边分别向外延长一倍,,得到图②所示的数学“风车”得到图②所示的数学“风车”,,则这个数学“风车”的外围周长是________.6.知识回顾:在学习《二次根式》时知识回顾:在学习《二次根式》时,,我们知道:2+3≠5; 在学习《勾股定理》时在学习《勾股定理》时,,由于2,3,5满足(2)2+(3)2=(5)2,因此以2,3,5为三边长能构成直角三角形.三角形.探索思考:请通过构造图形来说明:a +b ≠a +b (a >0,b >0).(画出图形并进行解释) 7.在△ABC 中,AB =15,AC =20,D 是直线BC 上的一个动点上的一个动点,,连接AD ,如果线段AD 的长度最短是12,请你求△ABC 的面积.的面积.类型之三 勾股定理的逆定理及其应用8.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长分别以每组数据中的三个数为三角形的三边长,,能构成直角三角形的有( ) A .②B .①②.①②C .①③.①③D .②③.②③ 9.如果△ABC 的三边长分别是m 2-1,m 2+1,2m (m >1),那么下列说法中正确的是( ) A .△ABC 是直角三角形是直角三角形,,且斜边长为m 2+1 B .△ABC 是直角三角形是直角三角形,,且斜边长为2m C .△ABC 是直角三角形是直角三角形,,且斜边长为m 2-1 D .△ABC 不是直角三角形不是直角三角形10.若△ABC 的三边长a ,b ,c 满足关系式(a +2b -60)2+|b -18|+c -30=0,则△ABC 是________三角形.类型之四 勾股定理及其逆定理的综合应用图17-X -5 11.如图17-X -5,E 是正方形ABCD 内的一点内的一点,,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =________°. 12.如图17-X -6,在4×3的正方形网格中有从点A 出发的四条线段AB ,AC ,AD ,AE ,它们的另一个端点B ,C ,D ,E 均在格点上(正方形网格的交点).(1)若每个正方形的边长都是1,分别求出AB ,AC ,AD ,AE 的长度(结果可以保留根号);(2)在AB ,AC ,AD ,AE 四条线段中四条线段中,,是否存在三条线段是否存在三条线段,,它们能构成直角三角形?如果存在它们能构成直角三角形?如果存在,,请指出是哪三条线段条线段,,并说明理由.并说明理由.图17-X -6 类型之五 勾股定理在实际生活中的应用图17-X -7 13.如图17-X -7是矗立在高速公路旁水平地面上的交通警示牌是矗立在高速公路旁水平地面上的交通警示牌,,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为________米(结果精确到0.1米,参考数据:2≈1.41,3≈1.73).14.如图17-X -8,A ,B 两地之间有一座山两地之间有一座山,,汽车原来从A 地到B 地需经过C 地沿折线ACB 行驶行驶,,现开通隧道后隧道后,,汽车直接沿直线AB 行驶.已知AC =10千米千米,,∠A =30°,∠B =45°则隧道开通后则隧道开通后,,汽车从A 地到B 地比原来少走多少千米?(结果保留根号) 图17-X -8 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学勾股定理培优教材一、探索勾股定理【知识点1】勾股定理定理容:在RT△中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解(1)已知直角三角形的两条直角边长分别为a, b,斜边长c,则下列关于a,b,c的关系不成立的是()A、c²- a²=b²B、c²- b²=a²C、a²- c²=b²D、a²+b²= c²(2)在直角三角形中,∠A=90°,则下列各式中不成立的是()A、BC²- AB²=AC²B、BC²- AC²=AB²C、AB²+AC²= BC²D、AC²+BC²= AB²2、应用勾股定理求边长(3)已知在直角三角形ABC中,AB=10 cm, BC=8 cm,求AC的长.(4)在直角△中,若两直角边长为a、b,且满足,则该直角三角形的斜边长为.3、利用勾股定理求面积(5)已知以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。

(6)如图(1),图中的数字代表形的面积,则形A的面积为。

(7)如图(2),三角形中未知边x与y的长度分别是x= ,y= 。

(8)在Rt△ABC中,∠C=90°,若AC=6,BC=8,则AB的长为()A、6B、8C、10D、12(9)在直线l上依次摆放着七个形(如图4所示)。

已知斜放置的三个形的面积分别是1、2、3,正放置的四个形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。

【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。

(等积法)拼图法推导一般步骤:拼出图形---找出图形面积的表达式---恒等变形—推出勾股定理。

(10)用四个相同的直角三角形(直角边为a、b,斜边为c)按图拼法。

问题:你能用两种方法表示下图的面积吗?对比两种不同的表示方法,你发现了什么?(11)用两个完全相同的直角三角形(直角边为a、b,斜边为c)按下图拼法,论证勾股定理:222cba=+3、运用勾股定理进行计算(重难点)(12)如图,一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断前有多高?(13)两棵之间的距离为8m ,两棵树的高度分别为8m 、2m ,一只小鸟从一棵树的树顶飞到另一棵树的树顶,这只小鸟至少要飞多少米?【基础检测】1、在Rt △ABC 中,∠C =90°,若AB =13,BC =5,则AC 的长为( )A.5B.12C.13D.18 2、已知Rt △ABC 中,∠C =90°,若14=+ba cm ,10=c cm ,则Rt △ABC 的面积为()A . 24cm 2B. 36cm 2C. 48cm 2D. 60cm 23、若△ABC 中,∠C=90°,(1)若a = 5,b =12,则c = ; (2)若a =6,c =10,则b = ;(3)若a ∶b =3∶4,c =10,则a = ,b = 。

4、如图,阴影部分是一个半圆,则阴影部分的面积为 。

(π不取近似值)5、一个直角三角形的斜边为20cm ,且两直角边长度比为3 : 4,求两直角边的长。

6、一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m ,梯子的顶端下滑2m 后,底端向外滑动了多少米?【培优突破】1、折叠问题(1)如图是一直角三角形的纸片,两直角边AC=6cm 、BC=8cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A 、4cmB 、5cmC 、6cmD 、10cm(2) 如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,已知AB=8cm ,BC=10cm ,求线段EC 的值2、运用勾股定理解决生活中的实际问题(3)如图,为了测得小水坑两边A 点和B 点之间的距离,一个观测者在C 点设桩,使∠ABC=90°,并测得AC=20m ,BC=16m,则A 、B 两点之间的距离是对少?3、分类讨论(已知直角△的两边,求第三边)(4)在△ABC 中,AB=15,AC=20,BC 边上的高AD=12,则BC 的值为( )A 、25B 、7C 、25或7D 、不能确定 (5)已知3, 4,a 是一个三角形的三边长,若三角形为直角三角形,则2a 的值是多少?(6)在直角△ABC 中,AB=15, AC=20,BC 边上的高AD=12,则BC 的值为多少?4、利用方程解题(7)如图,△ABC 中,∠C=90°,D 是BC 上的一点,已知BD=7,AB=20,AD=15,求AC的长.(8)如图,已知△ABC中,AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长。

【培优训练】一、选择题1.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C 到AB的距离是()A、B、C、D、2.若三角形ABC中,∠A:∠B:∠C=2:1:1,a,b,c分别是∠A,∠B,∠C的对边,则下列等式中,成立的是()3.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA 于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()A、5B、6C、7D、84.如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为()A、16B、15C、14D、135.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A、1B、3 4C、23D、26.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A、21B、15C、6D、以上答案都不对7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,已知BC=8,AC=6,则斜边AB上的高是()A、10B、5C、524D、5128.如图,阴影部分是一个矩形,它的面积是()A、25cmB、23cmC、24cm D、25cm9.大爷离家出门散步,他先向正东走了30m,接着又向正南走了40m,此时他离家的距离为()m10.如图在△ABC中∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD:CD=9:7,则点D到AB边的距离为()A、18B、32C、28D、2411.如图所示,是用4个全等的直角三角形与1个小形镶嵌而成的形图案,已知大形面积为49,小形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y = 2,③2xy+4=49,④x+y=9.其中说确的是()A、①②B、①②③C、①②④D、①②③④二.填空题(共2小题)12.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD= _____ cm.13.如图,直线L过形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则形的边长是_________ .14、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

二、勾股定理的逆定理【知识点3】勾股定理的逆定理(1)如果△的三边满足关系满足,则该△为直角三角形。

(2)△的三边,假设c为最长边①,则该△为三角形②,则该△为三角形(3)勾股定理逆定理的用途典型题(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是()A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,17(2)若线段a,b,c组成直角三角形,则它们的比为()A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶7(3)下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有()个.A.1 B.2 C.3 D.4(4)若三角形的三边之比为,则这个三角形一定是()A. 等腰三角形B. 直角三角形C .等腰直角三角形 D. 不等边三角形(5)已知a,b,c为△ABC三边,且满足A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形(6)将直角三角形的三条边长同时扩一倍数, 得到的三角形是( )A.钝角三角形 B. 锐角三角形C. 直角三角形D. 等腰三角形(7)若△ABC的三边长分别长a,b,c,且满足, 试判断△ABC的形状。

(8)△ABC的两边分别为5, 12,另一边为奇数,且a+b+c是3的倍数,则c应为,此三角形为。

(9)求:①若三角形三条边的长分别是7, 24, 25,则这个三角形的最大角是度。

②已知三角形三边的比为1:3:2,则其最小角为。

【知识点4】勾股数(1)勾股数是正整数(2)满足的关系条件(3)勾股数的n倍(n≠0),仍然满足(4)常见勾股数三、勾股定理的应用1、与图形展开的有关计算(注意展开方式)(1)某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.(2)如图,在棱长为1的体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.(3)如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行cm(4)电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.AB2、航海问题(1)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距________海里(2)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C 在北偏东60°的方向上。

该货船航行30分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域有暗礁,若继续向正东方向航行,该货船有无暗礁危险?试说明理由。

相关文档
最新文档