交换机间的冗余链路
实验五配置交换机间的冗余链路
![实验五配置交换机间的冗余链路](https://img.taocdn.com/s3/m/02db714769eae009581becdd.png)
实验五配置交换机间的冗余链路一、实验目的1、交换机MAC地址2、了解STP(生成树协议)3、选择并设置根网桥二、实验背景某公司使用三台交换机将60台计算机相互连接起来构成局域网。
为确保交换机和交换机之间的连接万一出现故障时不致影响整个网络的正常运行,网络构建为如下图所示的含有冗余链路的网络。
图5.1含有冗余链路的交换网络三、分析准备图5.1所示的网络中,任意两台交换机之间都有两条通路连接。
但是,含有冗余链路的交换网络会造成交换环路,容易形成广播风暴。
为此,交换机通过运行STP协议来解决此问题。
1、理论准备STP是一个开放式标准协议,基本不需要配置。
使用STP的交换机运行时会不断检查网络,一旦发现环路,就会自动阻止某些端口(使其进入待命状态)而保留其它一些端口,使网络中的所有交换机形成一个树形拓扑结构,从而确保网络中不存在任何环路;而当发现现有路径出现故障而失效时,则通过自动启用适当的待命路径来重新配置网络。
在含有冗余链路的交换网络中,位于STP生成的交换机树形拓扑的最上层的交换机称为根交换机。
STP在生成树形拓扑时,会根据各交换机的BID值选择BID值最小的交换机作为整棵树的根交换机,然后由根交换机来确定哪些端口待命,哪些端口转发数据;之后,根交换机还会向网络中的其它交换机发送含有网络拓扑信息的BPDU(交换机协议数据单元)信息,以便在出现故障时可自动重新构建网络。
交换机的BID值由交换机优先级和交换机的MAC地址构成,其格式为:“交换机优先级:交换机MAC地址”。
如某交换机的优先级为4096,MAC地址为000B.BE05.D89E,则该交换机的BID值为:4096:000B.BE05.D89E。
所有交换机的默认优先级均为32768,因此默认情况下,交换机BID值的大小就决定于交换机MAC地址值的大小。
由于MAC地址值一般不能改变,因此如果需要,管理员可以通过修改交换机优先级值的方式来改变交换机的BID值。
实验二 交换实验_VLAN及链路冗余实验报告
![实验二 交换实验_VLAN及链路冗余实验报告](https://img.taocdn.com/s3/m/677bffa1c1c708a1284a4491.png)
实验二交换实验_VLAN及链路冗余一、实验名称本次实验的实验名称为:交换实验,主要分为以下几个小实验:(1)同一交换机VLAN的划分,也称为交换机端口的隔离;(2)不同交换机上VLAN的划分(3)三层交换机使不同VLAN互通(4)端口聚合提供冗余链路二、实验目的1.同一交换机VLAN的划分在实现同一交换机VLAN的划分实验中,我们主要的目的是理解Port Vlan 的配置,动手实现在同一个交换机上划分VLAN。
2.不同交换机上VLAN的划分在实现不同交换机上VLAN的划分实验中,我们主要的目的是理解跨交换机之间VLAN的特点,可以动手实现在不同的交换机上划分VLAN。
3.三层交换机使不同VLAN互通在利用三层交换机实现不同VLAN互通的实验中,我们主要的目标是使用三层交换机实现不同VLAN间互相通信。
4.端口聚合提供冗余链路在实现交换机的端口聚合以提供冗余链路的实验过程中,我们的主要目标是理解链路聚合的配置及原理,动手实现交换机端口的聚合。
三、实验设备在本次实验的过程中,主要要求的实验设备有交换机2台:三层S3550-1,二层S2126G-1;PC机4台:PC1,PC2,PC5和PC6以及若干条直连线和交叉线。
四、实验拓扑图1.同一交换机VLAN的划分该实验主要使用了二层交换机S2126G-1和两台PC机PC5、PC6,IP地址设置、连接端口号的设置如下图(1)所示:图(1)2.不同交换机上VLAN的划分该实验主要使用了二层交换机S2126G-1、三层交换机S3550-1以及四台PC机PC1、PC2、PC5、PC6,IP地址设置、连接端口号的设置如下图(2)所示:图(2)3.三层交换机使不同VLAN互通该实验主要使用了二层交换机S2126G-1、三层交换机S3550-1以及四台PC机PC1、PC2、PC5、PC6,IP地址设置、连接端口号的设置如下图(3)所示:图(3)4.端口聚合提供冗余链路该实验主要使用了二层交换机S2126G-1、三层交换机S3550-1以及四台PC机PC1、PC2、PC5、PC6,IP地址设置、连接端口号的设置如下图(4)所示:图(4)五、实验内容(步骤)1.同一交换机VLAN的划分(1)按照实验拓扑图进行网络的连接和配置。
交换机冗余链路引起的网络拥塞问题
![交换机冗余链路引起的网络拥塞问题](https://img.taocdn.com/s3/m/2e59b6f8dd3383c4bb4cd297.png)
交换机冗余链路引起的网络拥塞问题作者:唐国良,李浩杰来源:《电脑知识与技术》2011年第21期摘要:网络中,冗余链路可以保障网络的高可用性,但它也会引起数据帧在网路中不停地兜圈,导致广播风暴、MAC地址表不稳定、重复帧等,从而引起网络拥塞。
该文结合模拟实验探讨了交换机的工作原理及数据转发流程,及如何避免数据帧的兜圈引起网络拥塞,为网络设备的高可用性配置提供了实践指导。
关键词:交换机的工作原理;冗余链路;兜圈子中图分类号:TP393文献标识码:A文章编号:1009-3044(2011)21-5092-02Switch Circle Problems Caused by Redundant LinkTANG Guo-liang, LI Hao-jie(School of Information Technology, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, Henan)Abstract: In the network, redundant links can ensure network higher availability, but it can also cause that data frame go around in circles ceaselessly in network, leading to a series of problems, such as broadcast storm, unstable MAC table and repeat frames,resulting in Network congestion. Based on the simulation experiment, the working principle of the switch and the data forwarding process mainly is discussed, which provides the basis for the configuration, management, maintenance work of network devices.Key words: working principle of the switch; redundant link; circling交换式以太网取代共享总线以太网,大大提高了交换速率和链路带宽,成为当前局域网的一项关键技术[1]。
实验项目三 802.3ad冗余链路配置(链路聚合)
![实验项目三 802.3ad冗余链路配置(链路聚合)](https://img.taocdn.com/s3/m/8b519ce1f8c75fbfc77db258.png)
项目三 802.3ad 冗余链路配置(链路聚合)【实验名称】802.3ad 冗余备份测试。
【实验目的】理解链路聚合的配置及原理。
【背景描述】假设某企业采用2台交换机组成一个局域网,由于很多数据流量是跨过交换机进行传送的,因此需要提高交换机之间的传输带宽,并实现链路冗余备份,为此网络管理员在2台交换机之间采用2根网线互连,并将相应的2个端口聚合为一个逻辑端口,现要在交换机上做适当配置来实现这一目标。
【实现功能】增加交换机之间的传输带宽,并实现链路冗余备份。
【实验拓扑】【实验设备】S2126G (2台),直通网线3根,电脑两台。
【实验步骤】步骤1:在交换机SwitchA 上创建Vlan 10,并将0/5端口划分到Vlan 10中。
SwitchA# configure t 进入全局配置模式SwitchA(config)# vlan 10 创建Vlan 10SwitchA(config-vlan)# name sales 将Vlan 10命名为salesSwitchA(config-vlan))# exitSwitchA (config)# interface fastethernet f 0/5 进入接口配置模式SwitchA(config-if)# switchport access vlan 10 将f 0/5端口划分到Vlan 10。
验证测试:验证已创建了Vlan 10,并将0/5端口已划分到Vlan 10中。
SwitchA# show vlan id 10VLAN Name Status Ports10 sales active Fa0/5步骤2:在交换机SwitchA 上配置聚合端口。
SwitchA(config)# interface aggregateport 1 创建聚合接口AG1SwitchA(config-if)# switchport mode trunk 配置AG 模式为trunkSwitchA(config-if)# exitSwitchA(config)# interface range fastethernet 0/1-2 进入接口f 0/1和f 0/2 SwitchA(config-if)# port-group 1 配置接口f 0/1和f 0/2属于AG1验证测试:验证接口fastethernet 0/1和0/2风于AG1SwitchA# show aggregatePort 1 summaryAggregatePort MaxPorts SwitchPort ModePortsPC1:192.168.1.5 PC2:192.168.1.6 switchA switchBAg l 8 Enabled Trunk Fa0/1,Fa0/2步骤3:在交换机SwitchB上创建Vlan 10,并将0/5端口划分到Vlan 10中。
核心交换机的链路聚合、冗余、堆叠、热备份是什么?
![核心交换机的链路聚合、冗余、堆叠、热备份是什么?](https://img.taocdn.com/s3/m/b34fad83a5e9856a57126010.png)
核心交换机的链路聚合、冗余、堆叠、热备份是什么?什么是核心交换机的链路聚合、冗余、堆叠、热备份,今天我们一起来了解这些专业术语!链路聚合是将两个或更多数据信道结合成一个单个的信道,该信道以一个单个的更高带宽的逻辑链路出现。
链路聚合一般用来连接一个或多个带宽需求大的设备,例如连接骨干网络的服务器或服务器群。
它可以用于扩展链路带宽,提供更高的连接可靠性。
1、举例公司有2层楼,分别运行着不同的业务,本来两个楼层的网络是分开的,但都是一家公司难免会有业务往来,这时我们就可以打通两楼之前的网络,使具有相互联系的部门之间高速通信。
如下图:如上图所示,SwitchA和SwitchB通过以太链路分别都连接VLAN10和VLAN20的网络,且SwitchA和SwitchB 之间有较大的数据流量。
用户希望SwitchA和SwitchB之间能够提供较大的链路带宽来使相同VLAN间互相通信。
同时用户也希望能够提供一定的冗余度,保证数据传输和链路的可靠性。
创建Eth-Trunk接口并加入成员接口,实现增加链路带宽,2台交换机分别配置Eth-Trunk1 分别将需要通信的3条线路的端口加入Eth-Trunk1,设置端口trunk,允许相应的vlan通过;这样两楼的网络就可以正常通信了。
2、实现配置步骤:在SwitchA上创建Eth-Trunk1并配置为LACP模式。
SwitchB配置过程与SwitchA类似,不再赘述system-view[HUAWEI] sysname SwitchA[SwitchA]interface eth-trunk 1[SwitchA-Eth-Trunk1] mode lacp[SwitchA-Eth-Trunk1] quit配置SwitchA上的成员接口加入Eth-Trunk。
SwitchB配置过程与SwitchA 类似,不再赘述[SwitchA] interface gigabitethernet 0/0/1[SwitchA-GigabitEthernet0/0/1] eth-trunk 1[SwitchA-GigabitEthernet0/0/1] quit[SwitchA] interface gigabitethernet0/0/2[SwitchA-GigabitEthernet0/0/2] eth-trunk 1[SwitchA-GigabitEthernet0/0/2] quit[SwitchA] interface gigabitethernet0/0/3[SwitchA-GigabitEthernet0/0/3] eth-trunk 1[SwitchA-GigabitEthernet0/0/3] quit在SwitchA上配置系统优先级为100,使其成为LACP主动端[SwitchA] lacp priority 100在SwitchA上配置活动接口上限阈值为2[SwitchA] interface eth-trunk 1[SwitchA-Eth-Trunk1] max active-linknumber 2[SwitchA-Eth-Trunk1] quit在SwitchA上配置接口优先级确定活动链路[SwitchA] interface gigabitethernet0/0/1[SwitchA-GigabitEthernet0/0/1] lacp priority 100[SwitchA-GigabitEthernet0/0/1] quit[SwitchA] interface gigabitethernet0/0/2[SwitchA-GigabitEthernet0/0/2] lacp priority 100[SwitchA-GigabitEthernet0/0/2] quit 链路冗余为了保持网络的稳定性,在多台交换机组成的网络环境中,通常都使用一些备份连接,以提高网络的效率、稳定性,这里的备份连接也称为备份链路或者冗余链路。
STP协议解析生成树协议的工作原理
![STP协议解析生成树协议的工作原理](https://img.taocdn.com/s3/m/dcd57b28ae1ffc4ffe4733687e21af45b207fe61.png)
STP协议解析生成树协议的工作原理生成树协议(Spanning Tree Protocol,STP)是一种用于网络交换机之间建立冗余链路的协议,它的作用是确保网络中不存在环路,以提高网络的可靠性和稳定性。
本文将对STP协议进行解析,并介绍其工作原理。
一、STP协议简介STP协议是由IEEE 802.1D标准定义的一种链路层协议,用于在网络交换机之间建立一个逻辑上无环路的生成树(Spanning Tree),通过将某些端口设为阻塞状态来消除冗余链路,从而避免广播风暴和数据包的循环转发。
二、STP协议的工作原理1. 桥ID和优先级STP协议中,每个交换机都有一个唯一的Bridge ID(桥ID)用于标识自己,桥ID由优先级和MAC地址组成。
优先级取值范围为0~65535,MAC地址为交换机的物理地址。
生成树的根交换机拥有最小的桥ID。
2. 选举根交换机在网络中,首先进行根交换机的选举。
每个交换机发送BPDU (Bridge Protocol Data Unit)消息,其中包含了自己的桥ID和路径代价(Path Cost)。
路径代价是指从发送BPDU的交换机到根交换机的总路径长度,路径长度越短,路径代价越小。
接收到BPDU的交换机会与自己的桥ID进行比较,如果接收到的BPDU的桥ID更小或者路径代价更小,则将接收到的BPDU继续发送给其他交换机。
3. 生成树计算生成树计算阶段,交换机通过比较收到的BPDU中的桥ID和路径代价来确定到达根交换机的最佳路径,将其端口状态设置为指定端口(Designated Port),用于与其他交换机进行通信。
同时,选举出的根交换机的端口也设置为指定端口。
如果有多条路径具有相同的最小路径代价,则选择桥ID较小的那个路径。
4. 阻塞冗余链路生成树计算完成后,除了根交换机和指定端口以外的所有其他端口都将被设置为阻塞状态(Blocking State),这样就实现了环路的消除。
第5章 管理交换网络中的冗余链路
![第5章 管理交换网络中的冗余链路](https://img.taocdn.com/s3/m/4e47744ecf84b9d528ea7a60.png)
6
BPDU(网桥协议数据单元)
交换机之间交换BPDU(网桥协议数据单元)数据帧 源地址:交换机MAC;目的地址:0180.C200.0000(多播:桥组) BPDU的组成: 1.版本号:00(IEEE 802.1D) ;02(IEEE 802.1W) 2.Bridge ID(交换机ID=交换机优先级+交换机MAC地址) 3.Root ID(根交换机 ID) 4.Root Path Cost(到达根的路径开销) 5.Port ID(发送BPDU的端口ID=端口优先级+端口编号) 6.Hello Time(定期发送BPDU的时间间隔) 7.Max-Age Time(保留对方BPDU消息的最长时间) 8.Forward-Delay Time(发送延迟:端口状态改变的时间间隔) 9.其他一些诸如表示发现网络拓扑变化、本端口状态的标志位。
192.168.1.1 255.255.255.0
43
配置一个AP 的流量平衡算法:
Switch(config) # aggregateport load-balance {dst-mac |src-mac |ip} 要将AP 的流量平衡设置恢复到缺省值,可以在全 局配置模式下使用: no aggregateport loag-balance 命令。
44
显示aggregate port
SwB
SwC
19
19
SwE
假设SwA为根交换机
12
生成树的比较规则
生成树的选举过程中,应遵循以下优先顺序来选择 最佳路径: 1.比较Root path cost; 2.比较Sender`s bridge ID;
3.比较Sender`s port ID;
4.比较本交换机的port ID。
网络设备冗余和链路冗余-常用技术
![网络设备冗余和链路冗余-常用技术](https://img.taocdn.com/s3/m/704307945022aaea988f0f3e.png)
网络设备及链路冗余部署——基于锐捷设备冗余技术简介随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。
作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。
高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。
为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。
大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。
本章将对这三种冗余技术的基本原理和实现进行详细的说明。
8.2设备级冗余技术设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。
在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。
下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。
8.2.1S6806E交换机的电源冗余技术图 8-1 S6806E的电源冗余如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC 电源或者两路DC电源的接入,实现设备电源的1+1备份。
工程中最常见配置情况是同时插入两块P6800-AC模块来实现220v交流电源的1+1备份。
电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。
注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。
如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。
8.2.2 S6806E交换机的管理板卡冗余技术图 8-2 S6806E的管理卡冗余如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。
路由器与交换机的配置 第五章交换网络中的冗余链路
![路由器与交换机的配置 第五章交换网络中的冗余链路](https://img.taocdn.com/s3/m/82c192a8c77da26925c5b01b.png)
(1)广播风暴
根据交换机的工作原理,在交换机中维护一张MAC地址表,当 接到一个帧时,则在此MAC地址表中寻找目的MAC地址所对应的端 口,如果找到,则将此帧直接转发到此端口上去;如果找不到,则向 交换机的所有端口广播。如图5-5,假设销售部里的主机A发出一个广 播帧,这个广播帧会随着链路发往交换机A。交换机A收到广播帧后 会把广播帧进行泛洪操作,那么这个广播帧会传到财务部门的网段上, 从而又到达交换机B上,而交换机B会做同样的操作。那么这样周而 复始,在两个部门中这个广播包一直扩散,就形成了广播风暴。广播 风暴会严重影响交换机性能,甚至会耗尽交换机的内存资源,最终耗 尽所有带宽资源,阻塞网络通信。
施工场景
如图所示,为了防止S2126-1的f0/8与S3760的f0/1的连接出现故 障,使得S2126-1上所连主机无法连入网络,我们增加一条冗余链路, 即S2126-1的f0/9连至S3760的f0/3。要求将S3760设为根交换机, Spanning Tree的类型为RSTP,其他为默认值。
(3)MAC地址不稳定
主机A在交换机A、B初始化时发一个单播包。对于交换机A来说, 它从port1接口收到一个单播帧,因为交换机在初始化时,MAC地址 表为空。这样交换机A会做2个动作。一个是把这个数据帧泛洪,另外 一个是学习主机A的MAC地址(交换机学习的时候学的是源MAC地 址),那么交换机A会认为自己的port1端口上连接了一台MAC地址为 MACA的主机。而通过交换机B泛洪,由财务部门传递到交换机A的这 个数据帧发到了A的port2这个端口上。那么此时交换机A又会认为自 己的port2上也连接了一个MAC地址为MACA的主机。这样,一台主 机不可能同时连接在2个交换机端口上,从而给网络带来问题。由于 这一过程会导致MAC地址表的多次刷新,从而导致交换机内存资源被 严重耗用,影响交换机的交换能力,使得整个网络的运行效率降低。
管理交换网络中的冗余链路PPT(45张)
![管理交换网络中的冗余链路PPT(45张)](https://img.taocdn.com/s3/m/371e992ba21614791711285c.png)
RSTP相对于STP的改进
第一点改进:为根端口和指定端口设置了快速切换用的替 换端口(Alternate Port)和备份端口(Backup Port)两 种角色,当根端口/指定端口失效的情况下,替换端口/备份பைடு நூலகம்端口就会无时延地进入转发状态。
生成树协议
生成树协议(spanning-tree protocol)由 IEEE 802.1d标准定义
生成树协议的作用是为了提供冗余链路,解 决网络环路问题
生成树协议实现了在交换网络中通过SPA(生 成树算法)生成一个没有环路的网络,当主 要链路出现故障时,能够自动切换到备份链 路,保证网络的正常通信。
BPDU(网桥协议数据单元)
Protocol ID Version
Message Type Flags
Root ID Cost of Path
Bridge ID Port ID
Message Age Maximum Time
Hello Time Forward Delay
Root ID:由2字节优先级和6字节MAC组成。
4.每个LAN都有了指定交换机(Designated Bridge),位于 该LAN与根交换机之间的最短路径中。指定交换机和LAN相连 的端口称为指定端口(Designated port);
5.根口(Root port)和指定端口(Designated port)进入转 发Forwarding状态;
Forwarding
生成树经过一段时间(默认值是50秒左右)稳定之后,所 有端口要么进入转发状态,要么进入阻塞状态。
课程议题
交换网络中的冗余链路 生成树协议STP 快速生成树协议RSTP 配置STP、RSTP 以太网链路聚合
华为交换机 链路冗余的方法
![华为交换机 链路冗余的方法](https://img.taocdn.com/s3/m/7211b43903768e9951e79b89680203d8ce2f6a36.png)
华为交换机链路冗余的方法全文共四篇示例,供读者参考第一篇示例:华为交换机是目前市场上比较常见的设备之一,它可以用于构建企业局域网、数据中心网络等。
在网络建设中,链路冗余是非常重要的一项功能,它可以提高网络的可靠性和稳定性。
接下来我们就来探讨一下华为交换机上的链路冗余方法。
一、链路冗余的概念链路冗余是指在网络中使用冗余的链路进行数据传输,当主要链路发生故障或者中断时,备用链路可以立即接手,确保数据传输的连续性和稳定性。
通过链路冗余的设计,可以避免单点故障对整个网络造成影响,提高网络的可用性。
二、华为交换机上的链路冗余方法1. Spanning Tree Protocol(STP)STP是一种链路层协议,可以避免网络中的环路,保证数据的正常传输。
在华为交换机上,可以通过配置STP来实现链路的冗余备份。
当主链路发生故障时,STP会选择备用链路来传输数据,确保网络的稳定性。
2. EtherChannelEtherChannel是一种技术,可以将多个物理链路捆绑在一起,提高带宽和可靠性。
在华为交换机上,可以通过配置EtherChannel来实现链路的冗余备份。
当其中一个物理链路发生故障时,其他链路可以自动接手,确保数据传输的连续性。
VRRP是一种用于提高路由器可用性的技术,可以实现路由器的冗余备份。
在华为交换机中,可以通过配置VRRP来实现设备的冗余备份,当主设备故障时,备用设备可以立即接管,确保网络的稳定性。
三、总结通过以上介绍,我们可以看出,在华为交换机上可以通过配置STP、EtherChannel、VRRP、HSRP、OSPF等技术来实现链路的冗余备份,提高网络的可靠性和稳定性。
在网络建设中,给予链路冗余足够的重视是非常重要的,可以有效避免单点故障对整个网络造成影响。
希望以上内容对大家有所帮助,谢谢阅读!第二篇示例:在网络通信中,交换机扮演着至关重要的角色,它们负责在不同设备之间传输数据包,确保网络通信顺畅稳定。
交换机冗余机制介绍
![交换机冗余机制介绍](https://img.taocdn.com/s3/m/d0be9c4f53ea551810a6f524ccbff121dd36c5b3.png)
交换机冗余机制介绍交换机冗余机制是为了提高网络的可靠性和可用性而设计的一种技术手段。
在传统的网络架构中,当交换机故障时,网络通信会中断,导致网络瘫痪。
而通过使用冗余机制,可以在交换机故障时,自动切换到备用交换机,使网络保持正常运行。
1.网络接口卡(NIC)冗余:通过在服务器上安装多个网卡,实现网络接口卡的冗余,当其中一个网卡发生故障时,可以自动切换到备用网卡。
这种冗余机制适用于服务器之间的通信。
2.VLAN冗余:VLAN(虚拟局域网)冗余通过在网络中划分多个VLAN,并在每个VLAN中添加备用交换机,实现冗余。
当主交换机故障时,备用交换机会自动接管网络通信,保证网络的持续运行。
VLAN冗余适用于大规模企业网络中,可以提高网络的可用性和可靠性。
3. VRRP(Virtual Router Redundancy Protocol)冗余:VRRP是一种路由器冗余协议,通过在网络中设定一个虚拟路由器,由多个实际路由器共同承担虚拟路由器的功能。
当主路由器故障时,备用路由器会自动接管路由器的功能,保证网络的连通性。
VRRP冗余适用于小型网络中,可以提高路由器的冗余性。
4. STP(Spanning Tree Protocol)冗余:STP是一种链路冗余技术,通过建立一颗树形拓扑结构来防止网络中的环路。
当网络中出现环路时,STP会选择其中的一条路径作为主链路,其他路径作为备用链路,并根据链路的状态动态调整路径,保证网络的正常通信。
STP冗余适用于中小型网络中。
5. HSRP(Hot Standby Router Protocol)冗余:HSRP是一种路由器冗余协议,通过在网络中设定一个虚拟路由器,由多个实际路由器共同承担虚拟路由器的功能。
当主路由器故障时,备用路由器会自动接管路由器的功能,保证网络的连通性。
HSRP冗余适用于大型企业网络中,可以提高网络的可用性和可靠性。
总的来说,交换机冗余机制通过在网络中使用多台交换机或路由器,实现冗余备份,当主交换机或路由器故障时,备用设备会自动接管,保证网络的正常运行。
冗余链路会产生的问题
![冗余链路会产生的问题](https://img.taocdn.com/s3/m/3cdc014c2e3f5727a5e962ef.png)
冗余链路会产生的问题:1.广播风暴2.多帧复制3.MAC地址表不稳定4.多个回路解决办法是选择生成树协议,阻塞多余的冗余端口。
生成树协议的目的是维持一个无回路的网络。
如果一个设备在拓扑中发现一个回路,它将阻塞一个或多个冗余的端口。
当网络拓扑发生变化时,生成树协议将重新配置交换机的各个端口以避免链接丢失或者出现新的回路。
生成树协议的基本规则:1.选择一个根桥:一个网段(物理网段)只能有一个根桥,根桥上的所有端口都是"指定端口",可以转发数据。
2.非根桥只有"根端口"可以转发数据,用来和根桥相连的"根端口"只能有一个。
其余端口不是"根端口",将被阻塞。
根桥 ==> 所有端口都是"指定端口"非根桥 ==> 一个"根端口",其余阻塞。
只有"指定端口"和"根端口"可以转发数据。
根桥的选择方法:采用生成树算法的交换机通过"网桥协议数据单元"(BPDU)的数据包定期交换配置信息,其中包括桥ID(Bridge ID)信息。
[桥ID=优先级+交换机MAC] 桥ID小的交换机将成为根桥。
优先级可以指定,默认为32768.非根桥上的根端口选择方法:路过··走过···需要的时候记得回来看看····因为容易得到所以得不到大家的珍惜·即使这样我们也要非根桥到达根桥只需要一个端口(根端口),选择的时候会选择到达根桥路径代价最低的端口,这个端口就叫做根端口。
如果到达根桥的路径代价相等则比较端口的MAC,最低的选择为"根端口".到达路径的代价一般以带宽为依据,IEEE802.1d规定的路径的代价既开销(cost)如下:10Gbps=2 1Gbps=4 100Mbps=19 10Mbps=100开销小的将被选择为根端口。
讲课文稿1-5交换机的端口聚合
![讲课文稿1-5交换机的端口聚合](https://img.taocdn.com/s3/m/ad9bf950f01dc281e53af041.png)
5
Switchport access vlan vlanid (必须首先先创建这个VLAN)
将一个接口加入到一个VLAN中。
6
Switchport mode access 将接口定义为二层Access接口。 如果此接口此前为trunk的话,则会被改为Access 模式
7 Show interfaces fastethernet 0/1 switchport (显示接口信息)
实验拓扑
F0/1
F0/1
工作目标
在两交换机上配臵链路聚合,实现冗余链路
过程细分
在两交换机上配臵链路聚合 按拓扑连接线缆,测试网络连通性 拔掉一根线缆,查看丢包情况
来,在逻辑上捆绑在一起,形成一个拥有较大宽带的端口,可以实现 负载分担,并提供冗余链路。
IEEE802.3ad定义了以太网端口聚合的标准 注意:
聚合端口合适10M、100M、1000M以太网 锐捷交换机最多支持8个物理端口组成一个聚合端口组 不同设备支持的最多聚合端口组不定
如S2026F支持6组
流量平衡
链路聚合的流量平衡:
Aggregate port(AG)可以根据报文的源MAC地址、目的MAC地址或IP地 址进行流量平衡,即把流量平均地分配到AG组成员链路中去。
源MAC流量分配
目的MAC流量分配
配置aggregate port的注意事项
链路聚合的注意事项
组端口的速度必须一致 组端口使用的传输介质相同
配置aggregate port
AG的配置过程 创建一个AG switch(config)#interface aggregateport 1 (创建聚合接口1) switch(config-if)#switchport mode trunk (配置AG模式为trunk) 将该接口加入到AG
交换机堆叠方案
![交换机堆叠方案](https://img.taocdn.com/s3/m/57c6a00cff4733687e21af45b307e87100f6f84c.png)
交换机堆叠方案1. 引言随着企业和组织的网络规模不断扩大,交换机的数量和复杂性也逐渐增加。
为了更好地管理和控制网络,交换机堆叠方案应运而生。
本文将介绍交换机堆叠的概念、优势和一些常见的堆叠方案。
2. 交换机堆叠的概念交换机堆叠是指将多台交换机连接在一起,形成一个逻辑的单一设备。
通过堆叠,这些交换机可以共享一个管理和控制平面,从而简化网络管理和提高性能。
堆叠可以扩展端口数、提供冗余和增强网络的可靠性。
3. 交换机堆叠的优势交换机堆叠具有以下几个优势: - 单一管理界面:通过堆叠,多台交换机可以被视为一个逻辑设备,管理员可以通过一个统一的管理界面来管理和配置这些交换机,减少了管理的复杂性。
- 共享资源:交换机堆叠后,交换机之间可以共享资源,如端口、带宽和处理能力。
这样可以更好地利用资源,提高网络的性能。
- 冗余和可靠性:堆叠方案可以提供冗余,即当某个交换机出现故障时,其他交换机可以自动接管工作,确保网络的可靠性和连通性。
- 可扩展性:通过堆叠,可以轻松地扩展交换机的端口数,满足不断增长的网络需求。
4. 堆叠方案以下是一些常见的交换机堆叠方案:4.1. 简单堆叠方案简单堆叠是最基本和常见的堆叠方案。
在简单堆叠中,多台交换机通过特定的堆叠模块连接在一起,形成一个逻辑设备。
其中一台交换机被指定为主交换机,负责管理和控制整个堆叠。
其他交换机则作为成员交换机,执行主交换机的指示。
简单堆叠可以提供基本的冗余和可管理性,适用于小型企业网络。
4.2. 高可用堆叠方案高可用堆叠方案通过增加冗余,提高了网络的可靠性和冗余。
在高可用堆叠中,多台交换机通过冗余连接相互连接在一起,形成一个冗余的堆叠。
主交换机和备份交换机之间通过冗余链路进行通信,当主交换机故障时,备份交换机会立即接管工作,确保网络的连通性。
高可用堆叠适合对网络可靠性要求较高的环境。
4.3. 分布式堆叠方案分布式堆叠方案采用了分布式的架构,将交换机的控制平面和数据平面分离。
链路冗余(PortChannel)原理与配置
![链路冗余(PortChannel)原理与配置](https://img.taocdn.com/s3/m/a9355ff880c758f5f61fb7360b4c2e3f572725a3.png)
链路冗余(PortChannel)原理与配置⽆论交换机、端⼝还是链路,都不可避免地会发⽣故障。
为了保证⽹络的畅通和稳定,提⾼⽹络的可⽤性,各种形式的冗余链接就成为必要。
使⽤PAgP或LACP协议,可以很容易地在有EtherChannel能⼒的端⼝间,⾃动建⽴Fast EtherChannel和Gigabit EtherChannel连接,进⾏信息的交流。
该协议具有学习相邻端⼝组动态和信息的能⼒。
PAgP是EtherChannel的增强版,⽀持在 EtherChannel上的Spanning Tree和Uplink Fast功能,并⽀持⾃动配置EtherChannel的捆绑。
Uplink Fast也是Cisco交换机技术,能够保证交换机在⼏秒钟内快速从失败中恢复。
【提⽰】只有在固定端⼝(如双绞线端⼝或光纤端⼝)之间才能创建EtherChannel,⽽由GBIC或SFP插槽所创建的链路是不能⽤于创建EtherChannel的。
⼀接⼝只能属于⼀个通道PAgP EtherChannel组可以容纳8个(4对)同⼀类型和速度的端⼝。
LACP EtherChannel组最多可以容纳16个(8对)相同类型的端⼝,其中8个(4对)活动端⼝,以及最多8个(4对)备⽤端⼝。
(1)采⽤PAgP协议时,以下⼏种模式可以构建EtherChannel:⼀个接⼝为desirable模式,另⼀个接⼝为desirable或auto模式。
⼀个接⼝为auto模式,另⼀个接⼝为desirable模式。
(2)采⽤LACP协议时,以下⼏种模式可以构建EtherChannel:⼀个接⼝为active模式,另⼀个接⼝为active或passive模式。
⼀个接⼝为passive模式,另⼀个接⼝为active模式。
(3)采⽤普通的以太⽹通道⼀个接⼝为on模式,另⼀个接⼝为on模式。
配置(⼀):⼆层的以太⽹通道Top图步骤⼀:所有端⼝设置相同的属性,并将接⼝加⼊通道SW1,SW2:所⽤到命令:(配置⼆)三层链路冗余通道配置命令⼀览接⼝加⼊以太⽹通道: SW2(config-if-range)#channel-group 1 mode desirable配置EtherChannel负载均衡Switch(config)# port-channel load-balance { dst-mac | src-mac }从EtherChannel中移除接⼝Switch(config-if)# no channel-group移除EtherChannel Switch(config)# no interface port-channel port_channel_number。
交换机网络中的冗余链路技术整理
![交换机网络中的冗余链路技术整理](https://img.taocdn.com/s3/m/79ab5fc87d1cfad6195f312b3169a4517723e5d3.png)
让知识带有温度。
交换机网络中的冗余链路技术整理交换机网络中的冗余链路技术网络中的冗余链路也叫备份链路。
当主链路消失故障时,会自动启动备份链路,以保障网络的通畅。
它能够为网络带来健全性,稳定性和牢靠性等好处由于备份链路会消失环路从而导致广播风暴,多帧复制及MAC 地址表的不稳定等。
为此我们在交换机网络中还要实行生成树协议。
生成树协议主要是通过在交换机网络中选择一条最短短路径作为主路径,而其它的则作为备份链路。
当开启了生成树协议时,备份链路会自动关闭;而当主链路消失故障时,备份链路又会自动开启,以保证网络通信正常。
因此在使用了生成树协议后,交换机网络中就不会消失环路问题了。
生成树协议定义的几个名词:根交换:在交换机网络中,要指定某一交换机为参照物,即根交换。
根交换机的选择是通过交换机的优先级来进行的。
每个交换机都有优先级,默认的为32768。
数值越小,优先级越高!指定端口:根交换机上的所以端口根端口:除根交换机上的端口外,与根交换机相连的交换机上的端口的优先级最高的端口为根端口。
最短路径选择:1)依据本交换机到根交换机的带宽大小(路径开销)来比较:带宽第1页/共3页千里之行,始于足下。
小的`优先2)依据中间连路中的交换机的MAC地址(桥ID)来推断:MAC地址越小的优先级越高3)比较接收者的端口号优先级:当中间交换机选择了之后,要选择本交换机到中间交换机的最短路径:在中间交换机的端口中,端口优先级高的越优先。
4)比较接收者的端口号:当接收者的端口优先级都相同时,哪个端口号最小哪个优先级最高。
生成树协议的配置:1)开启生成树协议并指定协议的类型:S(config)# spanning-treeS(config)# spanning-tree mode { stp | rstp }2)配置交换机的优先级,选择根交换机:S(config)# spanning-tree priority(4096的倍数)3)配置交换机端口的优先级:S(config)# int fa0/ fa-idS(config-if)# spanning-tree port-priority(16的倍数)4)配置交换机端口路径开销:S(config)# int fa0/ fa-idS(config-if)# spanning-tree cost cost(开销花费1~200 000 000)由于生成树协议有一个等待转发和学习的过程,所以有三个时间段的延时(20秒15秒15秒),为此又出了快速生成协议(Rstp),Rstp 的第2页/共3页让知识带有温度。
配置交换机之间直连链路聚合-LACP模式
![配置交换机之间直连链路聚合-LACP模式](https://img.taocdn.com/s3/m/4931e63bcec789eb172ded630b1c59eef8c79a12.png)
配置交换机之间直连链路聚合-LACP模式组⽹图形LACP模式链路聚合简介以太⽹链路聚合是指将多条以太⽹物理链路捆绑在⼀起成为⼀条逻辑链路,从⽽实现增加链路带宽的⽬的。
链路聚合分为⼿⼯模式()和LACP模式。
LACP模式需要有链路聚合控制协议LACP的参与。
当需要在两个直连设备间提供⼀个较⼤的链路带宽⽽设备⽀持LACP协议时,建议使⽤LACP模式。
LACP模式不仅可以实现增加带宽、提⾼可靠性、负载分担的⽬的,⽽且可以提⾼Eth-Trunk的容错性、提供备份功能。
LACP模式下,部分链路是活动链路,所有活动链路均参与数据转发。
如果某条活动链路故障,链路聚合组⾃动在⾮活动链路中选择⼀条链路作为活动链路,参与数据转发的链路数⽬不变。
配置注意事项⼀个Eth-Trunk接⼝中的成员接⼝必须是以太⽹类型和速率相同的接⼝。
Eth-Trunk链路两端相连的物理接⼝的数量、速率、双⼯⽅式、流控配置必须⼀致。
如果本端设备接⼝加⼊了Eth-Trunk,与该接⼝直连的对端接⼝也必须加⼊Eth-Trunk,两端才能正常通信。
两台设备对接时需要保证两端设备上链路聚合的模式⼀致。
组⽹需求如图1所⽰,SwitchA和SwitchB通过以太链路分别都连接VLAN10和VLAN20的⽹络,且SwitchA和SwitchB之间有较⼤的数据流量。
⽤户希望SwitchA和SwitchB之间能够提供较⼤的链路带宽来使相同VLAN间互相通信。
在两台Switch设备上配置LACP模式链路聚合组,提⾼两设备之间的带宽与可靠性,具体要求如下:两条活动链路具有负载分担的能⼒。
两设备间的链路具有1条冗余备份链路,当活动链路出现故障时,备份链路替代故障链路,保持数据传输的可靠性。
同VLAN间可以相互通信。
配置思路创建Eth-Trunk,配置Eth-Trunk为LACP模式,实现链路聚合功能。
将成员接⼝加⼊Eth-Trunk。
配置系统优先级,确定主动端,按照主动端设备的接⼝选择活动接⼝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⏹
⏹在packettracer下,设置2台PC的IP分别为192.168.1.2
192.168.1.3
⏹设置2台交换机,每台交换机各连接1台PC(0/10),交换机与交换机(0/1)间互连,
并且再设置交换机与交换机(0/2)间互连。
⏹默认情况下,STP协议是启用的
⏹首先用pc1去ping pc2,发现可通
⏹对交换机1进行配置如下:
Switch#show spanning-tree(查看交换机的生成树信息,FWD-转发状态BLK-阻塞状态) Switch#configure terminal(进入“全局设置模式”)
Switch(config)#hostname S1(更改交换机的名称)
S1(config)#spanning-tree mode rapid-pvst(生成树模式更改为RSTP模式)
S1(config)#end
S1#
⏹可在全局配置模式下输入以下命令来改变交换机是否为根网桥
⏹Switch(config)#spanning-tree vlan 1 root primary
⏹测试
⏹用PC1不间断地ping PC2(ping –t 192.168.1.3)
⏹将处于主链路的0/1端口断掉:
S2(config)#interface fastethernet 0/1
S2(config-if)#shutdown(断掉当前端口),发现备用链路可用。