常系数线性微分方程组解法

合集下载

常系数线性微分方程组解法

常系数线性微分方程组解法

dy (1) dx = 3 y 2 z , 例1 解微分方程组 dz = 2 y z . ( 2) dx 解 设法消去未知函数 y , 由(2)式得 式得
1 dz y = + z ( 3) 2 dx dy 1 d 2 z dz = 2 + , 两边求导得, 两边求导得, dx 2 dx dx
原方程组的通解为
1 y = ( 2C1 + C 2 + 2C 2 x )e x 2 , z = ( C + C x )e x 1 2
d 用 D 表示对自变量 x求导的运算 , dx
例如, 例如, y
(n)
+ a1 y ( n 1 ) + L + a n 1 y ′ + a n y = f ( x )
类似解代数方程组消去一个未知数,消去 类似解代数方程组消去一个未知数 消去 x
(1) ( 2) × D :
x D3 y = et , ( D 4 + D 2 + 1) y = De t .
4 2 t
(3) 3 (4) 4 (5) 5
( 2) ( 3) × D :

( D + D + 1) y = e
二、常系数线性微分方程组的解法
步骤: 步骤: 1. 从方程组中消去一些未知函数及其各阶导 数,得到只含有一个未知函数的高阶常系数线性 微分方程. 微分方程. 2.解此高阶微分方程,求出满足该方程的未知 解此高阶微分方程, 函数. 函数. 3.把已求得的函数带入原方程组,一般说来, 把已求得的函数带入原方程组,一般说来, 不必经过积分就可求出其余的未知函数. 不必经过积分就可求出其余的未知函数.
代入(1)式并化简 把(3), (4)代入 式并化简 得 代入 式并化简,

常系数线性微分方程组的比较系数解法

常系数线性微分方程组的比较系数解法

常系数线性微分方程组的比较系数解法
非常系数线性微分方程组的比较系数解法是综合运用数学方法来解决非常系数线性微分问题的有效技术。

该技术主要通过比较两个或多个含有不同参数的微分方程的解,从而解决微分方程的参数问题,而不需要进一步地求解微分方程,使得总体方法具有较高的简化度和计算效率。

比较系数法是一种比较广泛应用的技术,有许多种方法可以实现它,如Kosko 比较系数法、Friedrich比较系数法和Christoffel型比较系数法。

Kosko比较系数法是最为基础的一种形式,需要根据被研究的方程组来构造比较系数方程组,然后通过迭代的方法求解该方程组。

Friedrich比较系数法和Christoffel型比较系数法是Friedrich比较系数法的两个改进,这两种方法都利用输出的方式,可以在计算时间上节省大量的时间。

对于非常系数线性微分方程组而言,比较系数解法不仅有效节省了求解时间,可靠性也极高。

因为比较系数解法主要通过计算微分方程组的空间法向量来实现,解决参数问题并获得快速、准确的结果。

非常系数线性微分方程组的比较系数解法的另一个重要优点是无论对所求微分方程组的大小、位置或构造方式都可以采用比较系数解法进行求解,从而减少了计算工作。

因此,比较系数解法不仅速度迅速,而且具有极高的可靠性,是当下应用最为广泛的解决非常系数线性微分方程组的方法之一。

消元法求解常系数线性微分方程组

消元法求解常系数线性微分方程组

消元法求解常系数线性微分方程组下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!消元法求解常系数线性微分方程组导言在微积分和线性代数领域,线性微分方程组是一类重要的数学问题,它们在物理学、工程学以及其他科学领域中有着广泛的应用。

常系数线性微分方程组的解法

常系数线性微分方程组的解法


A k ck ,
t c,
k!
k!

而数项级数
A k ck
k 1 k !
收敛 .
常系数线性方程组
2 矩阵指数的性质
(1) 若AB BA,则eAB eAeB. (2) 对任何矩阵A, (exp A)1存在,且
(exp A)1=exp(-A). (3) 若T是非奇异的,则
exp(T-1AT ) T-1(exp A)T.
,

0.
常系数线性方程组
例4
试求矩阵A=
2 1
1 4
特征值和特征向量.
解 特征方程为
det(
E

A)



1
2
1
4

2
6
9

0
因此 3为两重特征根, 为求其对应的特征向量
考虑方程组
1
(E A)c 1
1 1
c1 c2
例3
试求矩阵A=
3 5
5 3
特征值和特征向量.
解 A的特征值就是特征方程
det( E

A)



5
3
5
3

2

6

34

0
的根, 1 3 5i, 2 3 5i.
常系数线性方程组
对特征根1 3 5i的特征向量u (u1,u2 )T 满足
§4.3 常系数线性方程组
常系数线性方程组
一阶常系数线性微分方程组:
dx Ax f (t), dt
这里系数矩阵A为n n常数矩阵, f (t)在

李金城 25 数学08-1 常系数线性微分方程组的矩阵解法

李金城  25 数学08-1 常系数线性微分方程组的矩阵解法

摘要在常微分方程中,介绍了解常系数线性微分方程组的消元法,它是解常系数线性微分方程组的最初等的方法,适用于知函数较少的小型微分方程组。

对于未知函数较多时,用消元法则会非常不便,为此应寻求更为有效的方法。

在掌握线性代数的知识后,用矩阵法解常系数线性齐次微分方程组较为方便。

关键词:基解矩阵特征方程特征值特征向量AbstractIn the ordinary differential equation, introduced that understood often the coefficient linear simultaneous differential equation's elimination, it is the solution often the coefficient linear simultaneous differential equation's most primary method, is suitable in knows the function few small simultaneous differential equation. Are many when regarding the unknown function, will be inconvenient with the elimination, for this reason should seek a more effective method. After grasping the linear algebra the knowledge, the coefficient linearity homogeneous simultaneous differential equation is often more convenient with the matrix technique solution.Keywords: basic solution of matrix characteristic equation eigenvalue Characteristic vector第一章:矩阵指数A引言已知常系数线性微分方程组:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=+++=+++=n nn n n n nn n n xa x a x a dtdx x a x a x a dtdx x a x a x a dt dx (22112222121212121111)(1) 的求解方法,通常可以用消元法将方程组化为一元的高阶微分方程:0 (111)111=+++--x b dtx d b dt x d n n n nn 来求解。

常微分方程中的常系数线性方程及其解法

常微分方程中的常系数线性方程及其解法

常微分方程中的常系数线性方程及其解法常微分方程(Ordinary Differential Equation,ODE)是一种数学模型,用于描述时间或空间上量的变化规律。

常微分方程中的常系数线性方程是ODE中一个重要的类别,其解法具有一定的规律性和普适性。

本文将就常微分方程中的常系数线性方程及其解法做简要介绍。

一、常系数线性方程的定义常系数线性方程是指其系数不随自变量t的变化而改变的线性方程。

一般写为:$$\frac{d^n}{dt^n}y(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t)+...+a_1\frac{d}{dt}y(t)+a_0y(t)=f(t)$$其中a的值为常数,f(t)为已知函数,y(t)为未知函数,方程中最高阶导数的阶数为n。

n阶常系数线性方程也称为n阶齐次线性方程;当f(t)≠0时,称其为n阶非齐次线性方程。

二、常系数线性方程的解法对于一般形式的常系数线性方程,我们常用特征根的方法来求解。

具体来说,先考虑对应的齐次线性方程$$\frac{d^n}{dt^n}y(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t)+...+a_1\frac{d}{dt}y(t)+a_0y(t)=0$$设y(t)=e^{rt},则有$$r^ne^{rt}+a_{n-1}r^{n-1}e^{rt}+...+a_1re^{rt}+a_0e^{rt}=0$$整理得到$$(r^n+a_{n-1}r^{n-1}+...+a_1r+a_0)e^{rt}=0$$根据指数函数的性质得到$$r^n+a_{n-1}r^{n-1}+...+a_1r+a_0=0$$求解方程$$r^n+a_{n-1}r^{n-1}+...+a_1r+a_0=0$$可得到n个特征根,设其为$r_1,r_2,...,r_n$。

则对于齐次线性方程,其通解为$$y(t)=c_1e^{r_1 t}+c_2e^{r_2 t}+...+c_ne^{r_n t}$$其中$c_1,c_2,...,c_n$为待定常数。

常系数线性微分方程的解法

常系数线性微分方程的解法
函数,而x z(t) (t) i (t)是方程的复值解,则z(t) 的实部 (t),虚部 (t)和其共轭复数z (t )也都是方程
(4.2)的解.
定理4.2.2 设方程
dnx
d n1 x
dx
dt n a1(t ) dt n1 L an1(t ) dt an(t)x u(t ) iv(t )
§4.2 常系数线性微分方程的解法
一、复值函数与复值解 二、常系数齐线性微分方程的解法 三、常系数非齐线性微分方程的解法
一. 复值函数与复值解
定义 : 如果对于区间a t b中的每一个实数t,有复
数z(t)=(t)+i (t)与它对应,则称z(t)是定义在实值
区间[a, b]上的一个复值函数.
例1:求方程
d3 dt
x
3

d2x dt 2

2x

0的一个基本解组。
问题:如何求实系数方程的实值基本解组?
结果1':如果L[ x] 0的特征方程F n a1 n1 ... an 0 有k个互异的实根1,2,...,k , 及2l(k 2l n)个复根
为代数方程
F n a1 n1 ... an 0
的根。
定义1:
称多项式F n a1 n1 ... an为L[ x] 0的特征多项式; 称方程F n a1 n1 ... an 0为L[ x] 0的特征方程; 称方程F n a1 n1 ... an 0的根为L[ x] 0的特征根。
实变量的复值函数的极限, 连续性, 可导性与实 变量的实值函数相应概念一致.
设K i是任一复数,定义

常系数线性微分方程组的解法举例

常系数线性微分方程组的解法举例
数学表达
给定一个n阶常系数线性微分方程组,其一般形式为y' = Ay,其中y是一个n维向量,A是一个n×n的常数 矩阵。
线性微分方程组的分类
按照矩阵A的特征值分类
根据矩阵A的特征值,可以将线性微分方 程组分为稳定、不稳定和临界稳定三种 类型。
VS
按照解的形态分类
根据解的形态,可以将线性微分方程组分 为周期解、极限环解和全局解等类型。
总结解法技巧与注意事项
• 分离变量法:将多变量问题转化 为单变量问题,通过分别求解每 个变量的微分方程来找到整个系 统的解。
总结解法技巧与注意事项
初始条件
在求解微分方程时,必须明确初始条件,以便确定解 的唯一性。
稳定性
对于某些微分方程,解可能随着时间的推移而发散或 振荡,因此需要考虑解的稳定性。
常系数线性微分方程组的 解法举例
• 引言 • 常系数线性微分方程组的定义与性质 • 举例说明常系数线性微分方程组的解
法 • 实际应用举例 • 总结与展望
01
引言
微分方程组及其重要性
微分方程组是描述物理现象、工程问 题、经济模型等动态系统的重要工具。
通过解微分方程组,我们可以了解系 统的变化规律、预测未来的状态,并 优化系统的性能。
04
实际应用举例
物理问题中的应用
电路分析
在电路分析中,常系数线性微分方程组可以用来描述电流、电压和电阻之间的关系。通过解方程组,可以确定电 路中的电流和电压。
振动分析
在振动分析中,常系数线性微分方程组可以用来描述物体的振动行为。通过解方程组,可以预测物体的振动模式 和频率。
经济问题中的应用
供需关系
要点二
详细描述
初始条件是微分方程组中描述系统在初始时刻状态的约束 条件。它们对微分方程组的解具有重要影响,决定了解的 初始状态和行为。在求解微分方程组时,必须考虑初始条 件的影响,以确保得到的解是符合实际情况的。不同的初 始条件可能导致完全不同的解,因此在求解微分方程组时 ,需要仔细选择和确定初始条件。

常系数线性微分方程的求解

常系数线性微分方程的求解

2(#
,(#
.
! 11(+))]*($&1")+那么右端为:5*(4(+))%[0(+)./0"+&1(+)012"+]*$+所以#%%&1", 32+.(2 2(#
%0(+)(11(+),仍是求如(4)的特解。如果由方程(4)求得的特解为"*(+),对应的方程(3)的特解
是:"(+)%5*("*(+)*($&1")+)。
" %(7’./0!+&7!012!+)*+&5*("*)
%(7’./0!+&7!012!+)*+&’+,[!((+&’)./0!+&($+&))012!+]*+。
(’!)
利用通常的比较系数法要求出通解(’!)是相当困难的,作变量代换后把求解方程(’#)的问题
变得得容易了。
参考文献:
[’] 王高雄等8常微分方程8北京:高等教育出版社,!###
"& (%( ((%($
"& ! &$$! "$! ! &$
)(()" (( (%( ((%( ,)$!(&)" ! ! & " ! & & ,
#(( & (%(%
#! & !% #! $! !%
" (!*()(%(
$((%( ((%($

常系数线性齐次微分方程组的矩阵解法

常系数线性齐次微分方程组的矩阵解法

常系数线性齐次微分方程组的矩阵
解法
常系数线性齐次微分方程组(LCCDE)是一类与定常差分方程组(LDE)类似的微分方程组,区别在于其中的系数是常数。

例如,LCCDE可以被表述为:
dy/dx + p_1(x)y + p_2(x)y' + ... + p_n(x)y^(n-1)=0
其中p_1(x),p_2(x),...,p_n(x)是常数。

矩阵解法是根据LCCDE来计算特解的一种解法,它基于Cramer规则对LCCDE给出解析解。

更具体地说,矩阵解法将LCCDE转换为一组线性方程组,采用矩阵乘法来求解此方程组,并将答案代入原微分方程组中,从而求得特解。

例如,考虑以下LCCDE:
dy/dx + 4y + 5y' + 6y''=0
我们可以将其转换为一组线性方程组:
a_0y+a_1y'+a_2y''=0 a_3y+a_4y'+a_5y''=0
a_6y+a_7y'+a_8y''=0
其中a_i (i=0,1,...,8)是常数,可以根据上面的LCCDE逐步求得。

然后,我们可以将上面的方程组转换为形如Ax=b的矩阵相乘方程,其中A是系数矩阵,x是未知向量,b是右端项向量。

矩阵相乘方程可以用Cramer规则计算得到解析解,然后将解代入原LCCDE,就可以求得特解。

常系数线性常微分方程

常系数线性常微分方程
微分方程转化为可分离变量的形式。
03 线性微分方程组的解法
矩阵表示法
矩阵表示法是一种将线性微分方程组 转换为矩阵形式的方法,通过矩阵运 算来求解微分方程组。
矩阵表示法可以简化计算过程,提高 求解效率,尤其适用于高阶线性微分 方程组。
特征值和特征向量
特征值和特征向量是线性微分方程组解的重要性质,它们描述了微分方程 组的解的特性。
投资回报
在金融领域,常系数线性常微分方程可以用来描述投资回报率随时 间的变化,为投资者提供决策依据。
经济增长模型
通过建立常系数线性常微分方程,可以分析一个国家或地区的经济 增长趋势,预测未来的经济状况。
在生物中的应用
1 2 3
生态模型
常系数线性常微分方程在生态学中广泛应用于描 述种群数量的变化规律,如种群增长、竞争等。
积分因子法
总结词
通过寻找一个积分因子,将微分方程转化为 积分方程,从而求解。
详细描述
积分因子法是一种求解常系数线性常微分方 程的方法。通过寻找一个积分因子,可以将 微分方程转化为积分方程,然后通过求解积 分方程得到原微分方程的解。这种方法在求 解某些特定类型的微分方程时非常有效,例 如通过寻找适当的积分因子可以将一阶线性
热传导问题
在热传导过程中,常系数线性常 微分方程可以用来描述温度随时 间的变化,从而分析热量传递的 规律。
波动方程
在声学和电磁学中,常系数线性 常微分方程可以用来描述波动现 象,如声波和电磁波的传播。
在经济中的应用
供需模型
常系数线性常微分方程可以用来描述市场的供需关系,分析价格 随时间的变化,预测市场趋势。
02
线性微分方程组的解还具有唯 一性和存在性,即对于给定的 初始条件和边界条件,存在唯 一的解。

常系数线性微分方程组的解法

常系数线性微分方程组的解法
结论 微分方程组(5.33)有非零解如)=e〃的充要条件 人是是矩阵4的特征根,c是与4对应的特征向量.
即(p(t)二泌为(5.33)解o (肛-A)c = 0,有非零解
例3试求矩阵入= 特征值和特征向量.
-5 3
解掘特征值就是特征方程
与—3 ~5 一
det(4E — A) =
— X2 — 62 + 34 = 0
常系数线性方程组
筒壬一页帛啊下一页「'惭返回'
证明:由上面讨论知,每一个向量函数
都是(5①.3⑺3)/=的'v[e解j气=,,因le,2外此,・2矩,・阵…・,,n/"J* ]
是(5.33由)的于解*,矩V阵2,,v〃线性无关, de所t 0以(0 = det(e%i, e^v2,…,e^vn)。0 故①⑴是(5.33)的基解矩阵

(2) ^AB^BA^\eA+B =eAeB.
对任何矩阵A,(expA)T存在,且
(expA)"1=exp (-A).
(3) 若『是非奇异的,则 exp (T-1AT) = T-1(expA)T.
3常系数齐线性微分方程组的基解矩阵
(1)定理9矩阵
(0)二E.
0(0 = exp At 是(5.33)的基解矩阵,且①

类似第四章4.2.2,寻求
尤=Ax, (5.33)
形 口 (p(f) — e%c,c。0, (5.43)
的解,其中常数人和向量c是待定的
将(5.43)代入(5.33)得 人 = Ae^c,
因泌、0,上式变为 (2E - A)c = 0, (5.44)
方程(5.44)有非零解的充要条件是
det(2E -A) = 0,

高等数学第十一章第十二节常系数线性微分方程组解法举例课件.ppt

高等数学第十一章第十二节常系数线性微分方程组解法举例课件.ppt
常系数线性微分方程组解法步骤:
第一步 用消元法消去其他未知函数 , 得到只含一个 函数的高阶方程 ;
第二步 求出此高阶方程的未知函数 ;
第三步 把求出的函数代入原方程组 ,
注意: 一阶线性方程组的通解中,
任意常数的个数 = 未知函数个数
一般通过求导
得其它未知函数 .
如果通过积分求其它未知函数 , 则需要讨论任意常数
的关系.
例1.
解微分方程组


解:
由②得

代入①, 化简得
特征方程:
通解:

将④代入③, 得

原方程通解:
注意:
1) 不能由①式求 y,
因为那将引入新的任意常数,
(它们受②式制约).
3) 若求方程组满足初始条件
的特解,
只需代入通解确定
即可.
2) 由通解表达式可见, 其中任意常数间有确定的关系,
例2.
解微分方程组
解:
则方程组可表为


用代数方法 消元自作
根据解线性方程组的克莱姆法则, 有

其特征方程:
特征根:



代入⑧可得 A=1,
故得⑧的通解:

求 x :
⑦×D-⑥得

⑨,2) 1 (3),(6); 2 (2), (4)

大学常微分方程组的解法与稳定性分析

大学常微分方程组的解法与稳定性分析

大学常微分方程组的解法与稳定性分析常微分方程组是研究多个未知函数随自变量变化而产生关系的数学工具。

在大学数学课程中,常微分方程组是一个重要的内容,它应用广泛,被用于解决各种实际问题。

本文将介绍常微分方程组的解法和稳定性分析方法。

一、常微分方程组的解法常微分方程组可以通过不同的方法进行求解,常用的有以下几种方法:1. 矩阵法对于线性常微分方程组,可以将其表示为矩阵形式,通过求解矩阵的特征值和特征向量,可以得到方程组的通解。

假设常微分方程组为: dX/dt = AX其中,A为方程组的系数矩阵,X为未知函数的列向量。

利用矩阵的特征值和特征向量,可以将方程组转化为对角标准型,从而求得方程组的通解。

2. 分离变量法对于一些特殊形式的常微分方程组,可以通过将方程组的未知函数分离出来,从而化为多个单变量的微分方程。

利用分离变量法可以对这些单变量微分方程进行求解,最终得到方程组的通解。

3. 指数矩阵法指数矩阵法是求解常系数线性微分方程组的一种有效方法。

通过将方程组视为向量值函数的导数,利用指数函数的性质,将解表示为指数矩阵的乘积形式。

指数矩阵法适用于一些特殊的常系数线性微分方程组,例如常微分方程组的系数矩阵可对角化的情况。

二、稳定性分析稳定性分析是研究方程组解的性质,包括解的存在性、唯一性和稳定性。

常微分方程组的稳定性分析方法主要有以下几种:1. 平衡点与稳定性常微分方程组的平衡点是指使方程组右端项为零的解。

平衡点的稳定性分为两类:渐近稳定和不稳定。

通过计算方程组的雅可比矩阵,并求出其特征值,可以判断平衡点的稳定性。

2. 线性化法对于非线性常微分方程组,可以利用线性化法进行稳定性分析。

线性化法将非线性方程组在平衡点处进行线性近似,得到一个线性常微分方程组。

然后利用线性方程组的特征值来判断非线性方程组在平衡点处的稳定性。

3. 相图法相图法是一种几何方法,通过绘制方程组解的相轨线来分析方程组的稳定性。

相轨线是解在相平面上的轨迹,可以反映解的演化变化。

42常系数线性微分方程的解法

42常系数线性微分方程的解法
et cost, et sin t
为什么?
内江师范学院数学与信息科学学院 吴开腾 制作
例2 求方程 y(4) 6y(3) 15y 18y 10y 0 的通解
解:(复单根)特征方程为:
4 63 152 18 10 0
特征根 对应的基本解组
1 1 i,2 1 i,3 2 i,4 2 i
, t k1 e 1 1 t , t k2 1e2t
, t km e 1 mt
内江师范学院数学与信息科学学院 吴开腾 制作
对于特征方程有复重根的情况,结合前面的两种情况就可以讨论了。
要(4.20)是方程(4.2)的解的充要条件为:
F () n a1 n1 an1 an 0 (4.21)
称(4.21)是方程(4.19)的特征方程,它的根称为特征根。
内江师范学院数学与信息科学学院 吴开腾 制作
于是有
求解常系数线性微分方程问题
L[ x]

dnx dt n

z2
(t)]

dz1(t) dt
ห้องสมุดไป่ตู้
dz2 (t) dt
dz dt
[c

z1
(t
)]

c
dz1(t dt
)
乘积性
dz dt [z1(t) z2 (t)]
dz1(t dt
)

z2
(t
)

z1
(t
)

dz2 (t dt
)
注意:同实值函数的微分运算法则一样。
内江师范学院数学与信息科学学院 吴开腾 制作
假如有下面形式(4.20)是方程(4.19)的解

常系数微分方程组的解法

常系数微分方程组的解法
幂级数法
将高阶线性微分方程转化为幂级数形式,然后通过幂 级数的性质求解方程。
高阶非线性微分方程的解法
分离变量法
将非线性微分方程转化为多个一阶微分方程 ,然后分别求解。
迭代法
通过迭代公式逐步逼近非线性微分方程的解。
数值解法
利用数值计算方法求解非线性微分方程的近 似解,如欧拉法、龙格-库塔法等。
05
解决微分方程组对于理解复杂系统的 行为和预测未来发展趋势具有重要意 义。
常系数微分方程组的定义
常系数微分方程组是指方程中的系数 为常数的一类微分方程组。
常系数微分方程组的一般形式为 dy/dx = f(x, y),其中 f(x, y) 是已知 的函数。
02
线性常系数微分方程组的解法
特征根法
总结词
神经传导
在神经传导过程中,微分方程组可以用来描述神 经信号的传递速度和传导通路的建立。
生态系统的稳定性
微分方程组可以用来分析生态系统的稳定性,如 物种之间的相互作用和生态平衡的维持。
THANKS
感谢观看
特征根法是一种通过解方程的特征方程来求解线性常系数微 分方程组的方法。
详细描述
特征根法的基本思想是,对于形如$y'' + py' + qy = 0$的一阶 线性常系数微分方程,通过求解其特征方程$lambda^2 + plambda + q = 0$,得到其特征根$lambda_1$和 $lambda_2$,然后利用这些特征根来求解原微分方程。
线性微分方程的方法。
02
通过将多个变量分离,可以将一个复杂的微分方程组
分解为多个简单的微分方程,从而简化求解过程。
03

常系数线性微分方程的解法

常系数线性微分方程的解法

常系数线性微分方程的解法在微积分学中,常系数线性微分方程是一类重要的微分方程,其形式为:\[a_ny^{(n)}+a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = 0\]其中,\(y^{(n)}\) 表示 \(y\) 的 \(n\) 阶导数,\(a_n, a_{n-1}, \ldots, a_1, a_0\) 是常数系数。

解常系数线性微分方程有多种方法,下面将介绍其中两种常见的解法:特征根法和常数变易法。

一、特征根法特征根法是解常系数线性微分方程的一种常用方法。

它的基本思想是假设解具有指数形式:\[y = e^{rx}\]其中,\(r\) 是待定的常数。

代入微分方程得:\[a_nr^n e^{rx} + a_{n-1}r^{n-1}e^{rx} + \cdots + a_1re^{rx} +a_0e^{rx} = 0\]化简后得:\[e^{rx}(a_nr^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0) = 0\]由指数函数的性质可知,对于任意 \(x\),\(e^{rx} \neq 0\),因此上式成立等价于:\[a_nr^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0 = 0\]这个方程被称为特征方程。

解特征方程,求得所有的根 \(r_1, r_2, \ldots, r_n\)。

根据根的个数和重数,我们可以得到不同类型的解:1. 根为实数如果根 \(r\) 是实数,那么相应的解为:\[y = C_1e^{r_1x} + C_2e^{r_2x} + \cdots + C_ne^{r_nx}\]其中,\(C_1, C_2, \ldots, C_n\) 是待定常数。

2. 根为复数如果根 \(r\) 是复数,那么相应的解为:\[y = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x))\]其中,\(\alpha\) 和 \(\beta\) 是复数的实部和虚部,\(C_1\) 和 \(C_2\) 是待定常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解由式②得 对式(6-37)求导得
① ②
(6-37)
将式(6-37)和式(6-38)代入式①得
(6-38)
解得
y=C1cos t+C2sin t.
第七节、常系数线性微分方程组解法
第七节、常系数线性微分方程组解法
【例2】
解 微分方程组
解记D=d/dt,则方程组可写成
接下来消去x,得 (2D2+4D+2)y=-1,(6-39)
常系数线性微 分方程组解法
第七节、常系数线性微分方程组解法
前面讨论的微分方程所含的未知函数及方程的 个数都只有一个,但在实际问题中,会遇到有几个 微分方程联立起来共同确定几个具有同一变量的函 数的情形.这些联立的微分方程称为微分方程组.如果 微分方程组中的每一个方程都是常系数线性微分方 程,则称这种微分方程组为常系数线性微分方程组.
=A的特解,
将其代入方程(6-39),得A=-1/2.
因此,方程(6-39)的通解为
y=C1+C2te-t-1/2. 2x-2Dy=t,
第七节、常数线性微分方程组解法
即 因此,原方程组的通解为 其中C1,C2为任意常数.
谢谢聆听
第七节、常系数线性微分方程组解法
本节只讨论常系数线性微分方程组,所用 到的求解方法是:利用代数的方法消去微分方 程组中的一些未知函数及其各阶导数,将所给 方程组的求解问题转化为含有一个未知函数的 高阶常系数线性微分方程的求解问题.下面通过 实例来说明.
第七节、常系数线性微分方程组解法
【例1】
解 微分方程组
方程(6-39)对应的齐次方程的特征方程为 2r2+4r+2=0,
第七节、常系数线性微分方程组解法
解 得特征根r1=r2=-1.因此,方程(6-39)对应的齐 次方程的通解为
y=C1+C2te-t. 由于f(t)=-1,写成Pmteλt的形式,就是
P0t=-1,λ=0. 0不是特征根,所以方程(6-39)具有形如y
相关文档
最新文档