最新勾股定理经典易错题及知识点类题总结
勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)
勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。
中考数学考点大串讲(北师大版):勾股定理必刷易错30题(解析版)
专题01勾股定理(易错30题3种题型)一、探索勾股定理1.(2023春·辽宁抚顺·八年级统考期末)在ABC 中,5AB AC ,6BC ,D 是BC 的中点,则ABC 的面积为()A .12B .24C .10D .20【答案】A【分析】如图,过A 作AD BC 于,D 证明224,3,CD BD AD AC CD再利用三角形的面积公式可得答案.【详解】解:如图,过A 作AD BC 于,D 5,6AB AC BC ,∴223,4,CD BD AD AC CD ∴116412.22ABC S BC AD 故选A .【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,证明CD BD 是解本题的关键.2.(2023春·山东临沂·八年级校考阶段练习)如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是3、5、2、3,则最大正方形E 的面积是()A .13B .14C .15D .26【答案】A 【分析】分别设正方形F 、G 、E 的边长为x 、y 、z ,由勾股定理得出29x ,26y ,222z x y ,即最大正方形E 的面积为2z .【详解】解:如图,分别设正方形F 、G 、E 的边长为x 、y 、z ,则由勾股定理得:2358x ,2235y ,222z x y ,即最大正方形E 的面积为:28513z .故选:A .【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.(2023春·辽宁营口·八年级校考阶段练习)如图,在ABC 中,CE 平分ACB 交AB 于点E ,CF 平分ACD ,EF BC ∥,EF 交AC 于点M ,若5CM ,则22CE CF ()A .75B .100C .120D .125【答案】B 【分析】根据角平分线的定义推出ECF △为直角三角形,然后根据勾股定理即可求得222CE CF EF ,进而可求出22CE CF 的值.【详解】解:CE ∵平分ACB ,CF 平分ACD ,12ACE ACB ,12ACF ACD ,即1()902ECF ACB ACD ,EFC 为直角三角形,又EF BC ∥∵,CE 平分ACB ,CF 平分ACD ,ECB MEC ECM ,DCF CFM MCF ,5CM EM MF ,10EF ,由勾股定理可知222100CE CF EF .故选:B .【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出ECF △为直角三角形.4.(2023春·安徽合肥·八年级校考期中)在ABC 中,A B C 、、所对的边分别为a b c 、、,且4,5,7a b c ,则ABC 的面积为.【答案】46【分析】作CD AB 于点D ,设AD x ,则7BD x ,先根据2222AC AD BC BD 求出x ,再求出CD ,然后根据三角形的面积公式计算即可.【详解】解:作CD AB 于点D ,设AD x ,则7BD x ,由勾股定理得,2222AC AD BC BD ,∴ 2222547x x ,解得297x =,∴22222986577CD AC AD,∴ABC 的面积为∶1186746227AB CD .故答案为:46.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么222 a b c .也就是说,直角三角形两条直角边的平方和等于斜边的平方.5.(2023春·海南海口·八年级统考开学考试)如图,在Rt ABC △中,90BAC ,4BC ,分别以AB AC 、为直径作半圆,面积分别记为1S 、2S ,则12S S .【答案】2π【分析】根据半圆面积公式结合勾股定理,知12S S 等于以斜边为直径的半圆面积.【详解】解:2222121111228228AB AC S AB S AC ,所以 2221211288S S AC AB BC ,故答案为:2π.【点睛】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.6.(2022秋·山东泰安·七年级统考期中)如图,把一块等腰直角三角形零件(ABC ,其中90ACB ),放置在一凹槽内,三个顶点A 、B 、C 分别落在凹槽内壁上,已知90ADE BED ,测得3cm 4cm AD BE ,,该三角形零件的面积为2cm .【答案】12.5/1122/252【分析】先证明ACD CBE ≌得到4cm CD BE ,利用勾股定理求出5cm AC ,再根据三角形面积公式进行求解即可.【详解】解:∵90ACB ,∴90DCA ECB ,∵90ADE BED ,∴90DAC DCA ,∴DAC ECB ,又∵AC CB ,∴ AAS ACD CBE △≌△,∴4cm CD BE ,在Rt ADC 中,由勾股定理得225cm AC AD CD ,∴2112.5cm 2ABC S AC BC △,∴该三角形零件的面积为212.5cm ,故答案为:12.5.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,证明ACD CBE ≌得到4cm CD BE 是解题的关键.7.(2023春·湖北恩施·八年级统考期中)如图,在55 的正方形网格中,每一个小正方形的顶点为格点,且每一个小正方形的边长为1四边形ABCD 为格点四边形.(1)求AD 的长;(2)仅用无刻度的直尺过点C 作CE AD ,垂足为E ,并简单说明理由.【答案】(1)5(2)见解析【分析】(1)利用勾股定理即可求解;(2)选取格点,,,F H G M ,作射线,MF GH ,两射线的交点为I ,连接CI 交AD 于点E ,则点E 为所求的点.【详解】(1)解:由图可知,AD 是直角边分别为3,4的直角三角形的斜边故22345AD (2)解:选取格点,,,F H G M ,作射线,MF GH ,两射线的交点为I ,连接CI 交AD 于点E ,则点E 为所求的点.取格点,K L ,∵4,3,90IK AL CK DL CKI DLA∴IKC ALD△≌△KIC DAC90DAC ACE KIC ACECE AD【点睛】本题考查了勾股定理、全等三角形的判定与性质.熟记相关数学结论是解题关键.8.(2023春·广西贺州·八年级统考期中)如图,在Rt ABC △中,90C ,AM 是中线,MN AB ,垂足为点N ,求证:222AN BN AC .【答案】见解析【分析】在直角三角形BNM 和ANM 中利用勾股定理可以得到222BN BM MN ,222AN AM MN ,然后得到22222222()()BN AN BM MN AM MN BM AM ;又在直角三角形AMC 中,222AM AC CM ,代入前面的式子中即可得出结论.【详解】解:证明:MN AB ∵于N ,222BN BM MN ,222AN AM MN 2222BN AN BM AM ,又90C ∵,222AM AC CM 22222BN AN BM AC CM ,又BM CM ∵,222BN AN AC ,即222AN BN AC .【点睛】本题考查了勾股定理、三角形的中线;熟练掌握勾股定理,并能进行推理论证是解决问题的关键.9.(2023秋·河南南阳·八年级校考期末)如图,长方形ABCD 中,点E 在边AB 上,将长方形ABCD 沿直线DE 折叠,点A 恰好落在边BC 上的点F 处,若5AE ,3BF ,求CD 的长【答案】9【分析】由折叠的性质可知5EF AE ,再结合勾股定理即可求解.【详解】解:由折叠的性质可知5EF AE .∵四边形ABCD 为长方形,∴90B Ð=°,AB CD ,∴2222534BE EF BF ,∴549CD AB AE BE .即CD 的长为9.【点睛】本题考查折叠的性质,勾股定理,解题的关键是掌握折叠前后对应边相等.10.(2023春·陕西商洛·八年级校考期中)如图,一文物C (看作一点)被探明位于地面A 点垂直往下36米处,由于A 点下有障碍物,考古人员不能垂直下挖,他们从距离A 点15米的B 处斜着挖掘,已知障碍物不在线段BC 上,则要取出文物C 至少要挖()A .39米B .3119米C .42米D .51米【答案】A 【分析】根据题意可知:14,4890AB AC BAC ,,然后根据勾股定理求解即可.【详解】解:∵14,4890AB AC BAC ,,∴2222153639BC AB AC .故选:A .【点睛】本题考查了勾股定理的应用,将实际问题抽象成勾股定理是解题的关键.11.(2023春·河北保定·八年级校考期中)利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图,在用弦图验证勾股定理时,用到的面积相等关系是()A .ABH EFGHS S 正方形△B .ABCD EFGH S S 正方形正方形C .4ABH EFGH ABCDS S S 正方形正方形△D .2ABH ABCD EFGHS S S 正方形正方形△【答案】C 【分析】设DE AH BG CF a ,AE BH CG DF b ,根据题意求出224ABH EFGH S S a b 正方形 ,22ABCD S a b 正方形,进而求解即可.【详解】设DE AH BG CF a ,AE BH CG DF b ,∴ 2221442ABH EFGH S S b a ab a b 正方形 ,22222ABCD S AD DE AE a b 正方形,∴4ABH EFGH ABCD S S S 正方形正方形△.故选:C .【点睛】此题考查了勾股定理的证明,解题的关键是熟练掌握以上知识点.12.(2023秋·全国·八年级专题练习)边长为1的正方形OABC 在数轴上的位置如图所示,点B 表示的数是()A .1B .2C .3D .5【答案】B 【分析】由于正方形OABC 的边长为1,可知OAB 为等腰直角三角形,可利用勾股定理求出OB 的长,即可得到B 点表示的数.【详解】解:∵正方形OABC 的边长为1,∴在等腰直角OAB 中,22112OB =+=.故选:B .【点睛】本题考查了勾股定理,根据四边形OABC 为正方形判断出OAB 为直角三角形是解题的关键.13.(2023春·河南新乡·八年级统考期中)《九章算术》卷九中记载:今有立木,系索其末,委地四尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺,牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽,问绳索长是()A .5尺B .6尺C .8尺D .10尺【答案】D【分析】根据题意得,绳索,木桩形成直角三角形,根据勾股定理,即可求出绳索长.【详解】解:设绳索长为x 尺∴根据题意得: 22248x x 解得10x .∴绳索长为10尺,故选:D .【点睛】本题考查勾股定理的知识,解题的关键是理解题意,运用勾股定理解决实际问题.14.(2023春·重庆忠县·八年级校考阶段练习)如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm 、4cm 、12cm ,插吸管处的出口到相邻两边的距离都是1cm ,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm 至5cm 间(包括3cm 与5cm ,不计吸管粗细及出口的大小),则设计的吸管总长度L 的范围是.【答案】16cm 17cmL 【分析】当吸管与长方体上、下底面垂直时,位于盒体内的长度最短,为12cm ,则15cm 17cm L ;如图,当吸管底端位于点A 时,位于盒体内的长度最长,经过点A ,D ,E 的截面如下图1,根据勾股定理分别求得,5cm DE ,Rt ADE △中,13cm AE ,则16cm 18cm L ;综上,吸管垂直于底面时外露的部分最长,底端底端位于点A 时,外露的部分最短,所以吸管长度范围为16cm 17cm L .【详解】解:当吸管与长方体上、下底面垂直时,位于盒体内的长度最短,为12cm ,外露的吸管长度要在3cm 至5cm 间,则15cm 17cm L ;如图,当吸管底端位于点A 时,位于盒体内的长度最长,经过点A ,D ,E 的截面如下图1,如图2为长方体上底面,5cm DG ,4cm CG ,1cm EH CH JG ,∴4cm DJ DG JG ,3cm JE GH CG CH ,∴225cm DE DJ JE .如图1,Rt ADE △中,222212513(cm)AE AD DE ,外露的吸管长度要在3cm 至5cm 间,则16cm 18cm L ;综上,吸管垂直于底面时外露的部分最长,底端位于点A 时,外露的部分最短,所以吸管长度范围为16cm 17cm L .【点睛】本题考查长方体的截面图,勾股定理;具备一定的空间想象能力,熟练勾股定理的运用是解题的关键.15.(2023春·广东惠州·八年级校考开学考试)直角三角形的斜边长为13,其中一条直角边长为12,把四个相同的直角三角形拼成如图所示的正方形,则阴影部分的面积为.【答案】120【分析】根据勾股定理求出AE 的长度,再根据三角形的面积公式求出AEF △的面积,即可求出阴影部分面积.【详解】解:在Rt AEF 中,222213125AE EF AF ,∴110251232AEF S AE AF ,∴阴影部分的面积430120 .故答案是:120.【点睛】本题主要考查了勾股定理,解题的关键是掌握直角三角形两直角边平方和等于斜边平方.16.(2023春·全国·八年级期末)如图,长方形ABCD 的边AD 在数轴上,若点A 与数轴上表示数1 的点重合,点D 与数轴上表示数4 的点重合,1AB ,以点A 为圆心,对角线AC 的长为半径作弧与数轴负半轴交于一点E ,则点E 表示的数为.【答案】110 /101【分析】根据勾股定理计算出AC 的长度,进而求得该点与点A 的距离,再根据点A 表示的数为1﹣,可得该点表示的数.【详解】解:在长方形ABCD 中,1(4)31AD AB CD ,,∴22223110AC AD CD ,则点A 到该交点的距离为10,∵点A 表示的数为1 ,∴该点表示的数为:110 ,故答案为:110 .【点睛】此题主要考查了勾股定理的应用,解决本题的关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.17.(2023秋·河南省直辖县级单位·八年级校联考期末)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中空白部分的面积,可以得到的数学等式是_______;(2)将图1中两个阴影的长方形沿着对角线切开,则可以得到四个全等的直角三角形,其中两直角边长分别为,a b ,斜边长为c ,将这四个直角三角形拼成如图2所示的大正方形时,中间空白图形是边长为c 的正方形.试通过两种不同的方法计算中间正方形的面积,并探究a b c 、、之间满足怎样的等量关系.(3)应用:已知直角三角形两条直角边长为6和8,求这个直角三角形斜边上的高.【答案】(1)2222()a b ab a b (2)222c a b(3)245【分析】(1)空白部分是两个正方形的面积和,空白部分也可以看出大正方形的面积减去两个长方形的面积即可得出答案;(2)中间的是边长为c 的正方形,因此面积为2c ,也可以从边长为()a b 正方形面积减去四个直角三角形的面积即可;(3)利用(2)中等式求出斜边,再利用面积法求出结果.【详解】(1)解:方法一:空白部分是两个正方形的面积和,即22a b ;方法二:空白部分也可以看作边长为()a b 的面积,减去两个长为a ,宽为b 的长方形面积,即2()2a b ab ,由两种方法看出2222()a b ab a b ,故答案为:2222()a b ab a b ;(2)中间正方形的边长为c ,因此面积为2c ,也可以看作从边长为()a b 的面积减去四个两条直角边分别a 、b 的面积,即22()2c a b ab ,整理得:222c a b ;(3)∵6a ,8b ,∴斜边226810c ,∴斜边上的高为6824105 ,答:斜边的长为245.【点睛】本题考查完全平方公式的几何背景,勾股定理的证明,解题的关键是结合图形,利用面积得出等量关系.18.(2023春·山西忻州·八年级统考期末)阅读与思考阅读下列材料并完成相应的任务.我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.关于勾股定理的研究还有一个很重要的内容是勾股数组,在课本中我们已经了解到“能够成为直角三角形三条边的三个正整数称为勾股数”.以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m 为奇数 3m ,则a m , 2112b m 和2112c m 是勾股数.方法2:若任取两个正整数m 和 n m n ,则22a m n ,2b mn ,22c m n 是勾股数.任务:(1)在以上两种方法中任选一种,证明以a ,b ,c 为边长的ABC 是直角三角形.(2)学校园林设计师按照如图所示的方式摆放兰花,已知这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m ,要求在每个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,请你计算出总共需要的兰花数量.【答案】(1)见解析(2)总共需要兰花220盆【分析】(1)方法一:21(1)02m c a ,10c b 得c a ,c b ,进行计算得222221=(1)2a b m c,即可得;方法二:先求出a 、b 、c 的平方,即可作答,(2)根据这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m 得角三角形的三边长为7m 24m 25m ,,,则方形AHFD 的边长为31m ,正方形BCEG 的边长为25m ,根据个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,即可得正方形AHFD 上摆放兰花的盆数,方形BCEG 上摆放兰花的盆数,即可得【详解】(1)解:方法一:∵ 222111121(1)0222c m m m c m a m,10c b ,∴c a ,c b ,222224222211(+21)=1(121)42a b m m m m c m ,∴a ,b ,c 为边长的ABC 是直角三角形;方法二:∵22a m n ,2b mn ,22c m n ,∴424222m m a n n ,2224b m n ,422242c m m n n ,∴222 a b c ,∴a ,b ,c 为边长的ABC 是直角三角形;(2)解:∵这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m ,∴直角三角形的三边长为7m 24m 25m ,,,∴正方形AHFD 的边长为:7+24=31(m),正方形BCEG的边长为:25m,∵在每个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,∴正方形AHFD上摆放兰花的盆数为:32+31+31+30=124(盆),正方形BCEG上摆放兰花的盆数为:244=96(盆),∴总共需要的兰花数量为:124+96=220(盆),答:总共需要兰花220盆.【点睛】本题考查了勾股数的应用,解题的关键是理解题意,掌握这些知识点.19.(2023秋·全国·八年级专题练习)问题情境:勾股定理是一个古老的数学定理,它有很多种证明方法.下面利用拼图的方法探究证明勾股定理.定理表述:(1)请你结合图1中的直角三角形,叙述勾股定理(可以选择文字语言或符号语言叙述);尝试证明:(2)利用图1中的直角三角形可以构造出如图2的直角梯形,请你利用图2证明勾股定理.定理应用:(3)某工程队要从点A向点E铺设管道,由于受条件限制无法直接沿着线段AE铺设,需要绕道沿着矩形的边AB和BC铺设管道,经过测量16BE 米,已知铺设每米管道需资金1000元,请你帮助工AB 米,12程队计算绕道后费用增加了多少元?【答案】(1)见解析;(2)见解析;(3)8000元【分析】(1)根据题意可直接进行求解;(2)根据等积法可进行求解;(3)利用勾股定理可进行求解.【详解】解:(1)如果直角三角形的两条直角边长分别为,a b ,斜边长为c ,那么222a b c (2) 21122S a b a b a b 梯形,2ABE ABCS S S 梯形211222c ab 212c ab ,∴221122a b c ab ,∴222 a b c ;(3)在Rt ABE △中,2220AE AB BE ,∴ 16122010008000 (元);答:增加了8000元.【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.20.(2023春·浙江台州·八年级统考期末)如图,池塘边有两点A ,B ,点C 是与BA 方向成直角的AC 方向上一点,测得18m,30m AC BC .求A ,B 两点间的距离.【答案】A ,B 两点间的距离是24m【分析】直接由勾股定理求出AB 的长即可.【详解】解:由题意可知,90,18m,30m BAC AC BC ,∴ 2222301824m AB BC AC ,答:A ,B 两点间的距离是24m .【点睛】本题考查了勾股定理的应用,解答本题的关键是明确题意,利用勾股定理求出AB 的长.三、勾股定理的应用21.(2023秋·安徽芜湖·九年级校考开学考试)如图是放在地面上的一个长方体盒子,其中18cm AB ,12cm BC ,10cm BF ,点M 在棱AB 上,且6cm AM ,N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为()A .20cmB .2106cmC . 12234cmD .18cm【答案】A 【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN 的长即可.【详解】解:如图1,∵18cm AB ,12cm BC GF ,N 是FG 的中点,∴16cm 2FN FG ,∴ 18612cm BM , 10616cm BN ,∴ 22121620cm MN ;如图2,∵18cm AB ,12cm BC GF ,N 是FG 的中点,∴16cm 2FN FG ,∴ 186618cm PM ,10cm NP ,∴2218424210610MN .∵202106 ,∴蚂蚁沿长方体表面从点M 爬行到点N 处的最短路程为20cm .故选:A .【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.22.(2023春·山东临沂·八年级校考阶段练习)一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船同时以12海里/时的速度离开港口向西南方向航行,经过1.5小时后它们相距()A .25海里B .30海里C .40海里D .32海里【答案】B【分析】根据题意,画出图形,且东北和东南的夹角为90 ,根据题目中给出的1.5小时和速度可以计算AC ,BC 的长度,在直角ABC 中,已知AC ,BC 可以求得AB 的长.【详解】解:如图,作出图形,因为东南和西南的夹角为90 ,所以ABC 为直角三角形.在Rt ABC △中,16 1.524(km)AC ,121.518(km)BC ,则2222241830(km)AB AC BC故选:B .【点睛】本题考查了勾股定理在实际生活中的应用,本题中确定ABC 为直角三角形,并且根据勾股定理计算AB 是解题的关键.23.(2023春·河南信阳·八年级校联考阶段练习)某数学兴趣小组开展了关于笔记本电脑的张角大小的实践探究活动.如图,当张角为BAF 时,顶部边缘B 处离桌面的高度BC 为7cm ,此时底部边缘A 处与C 处间的距离AC 为24cm ,小组成员调整张角的大小继续探究,最后发现当张角为DAF 时(点D 是点B 的对应点),顶部边缘D 处到桌面的距离DE 为15cm ,则底部边缘A 处与E 之间的距离AE 为()A .20cmB .18cmC .12cmD .10cm【答案】A 【分析】勾股定理解Rt ABC △得出25cm AB ,勾股定理解Rt ADE △即可求解.【详解】解:依题意,247AC BC ,,在Rt ABC △中, 2225cm AB AC BC ,∵AB AD 25 ,15DE ,在Rt ADE △中, 2222251520cm AE AD DE,故选:A .【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.24.(2023春·四川南充·八年级校考期中)如图由于台风的影响,一棵树在离地面6m 处折断,树顶落在离树干底部8m 处,则这棵在折断前(不包括树根)长度是.【答案】16m /16米【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:如图,由题意得m ,8m 6BC AC ,在直角三角形ABC 中,根据勾股定理得:226810AB (米).所以大树的高度是10616 (米).故答案为:16m .【点睛】本题考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.25.(2023春·湖北咸宁·八年级统考期末)如图,一梯子AB 斜靠在竖直的墙AO 上,测得5m AO ,若梯子的顶端沿墙下滑1m ,这时梯子的底端也沿水平方向向外滑动1m ,梯子到CD 的位置,则梯子的长度为m .【答案】41【分析】设m BO x ,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,然后由勾股定理求出AB 的长度.【详解】解:设m BO x ,由题意得:1m AC ,1m BD ,5m AO ,在Rt AOB △中,根据勾股定理得:222225AB AO OB x ,在Rt COD 中,根据勾股定理得: 22222511CD CO OD x ,∴ 22225511x x ,解得:4x ,∴ 22225441m AB AO BO ,即梯子AB 的长为41m .故答案为:41.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理,由勾股定理得出方程是解题的关键.26.(2023秋·八年级课时练习)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架,其中记载了一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面x 尺,则根据题意列方程为:.【答案】 222310x x 【分析】设折断处离地面x 尺,根据勾股定理建立方程即可求解.【详解】解:如图,设折断处离地面x 尺,根据题意可得:2223(10x)x ,.故答案为:2223(10x)x 【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.27.(2023春·河北保定·八年级统考期末)如图,矩形ABCD 中,8cm AB ,12cm BC ,动点P 从点A 出发沿A B C D A 运动,速度是2cm /秒;点Q 从点C 出发沿C B A D C 运动,速度是4cm /秒,设它们的运动时间为t 秒.(1)当1t 时,连接PQ ,PQcm ;(2)若P 、Q 两点第一次相遇时,t秒;第2次相遇时,t 秒.【答案】1010310【分析】(1)先求得8216BP ,12418BQ ,再利用勾股定理即可求解;(2)根据相遇时间=总路程÷速度和得出第一次相遇的时间,再求出第二次相遇的时间即可.【详解】解:(1)当1t 时,8216BP ,12418BQ ,∴226810PQ ,故答案为:10(2)若P 、Q 两点第一次相遇时,10812243t (秒),从第一次相遇到第二次相遇需要的时间为: 202812243,故P 、Q 两点第2次相遇时,10201033t(秒)故答案为:103;10.【点睛】本题考查了勾股定理的应用、行程问题中的相遇问题.抓住“相遇时间=路程和÷速度和”是解题关键.28.(2023秋·河南郑州·八年级郑州市扶轮外国语学校校考开学考试)如图,长方体的长15cm BE ,宽10cm AB ,高20cm AD ,点M 在CH 上.且5cm CM .(1)求线段DM的长;(2)一只蚂蚁如果耍沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?【答案】(1)55DM(2)蚂蚁爬行的最短距离是25cmCD ,利用勾股定理即可求解;【分析】(1)根据长方体的性质求出10(2)将立体图形展开成平面图形,然后根据两点之间线段距离最短,利用根据勾股定理进行求解,根据立体展开成平面图形情况分类讨论进行进行比较.【详解】(1)解:10CM ,AB CD∵,52222,10555DM CD CM线段DM的长为55.(2)解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm22AM2010525cm要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:22AM20510529cm只要把长方体的上表面剪开与左面所在的平面形成一个长方形,如第个图32220105537cmAM∵25529537∴蚂蚁爬行的最短距离是25cm.【点睛】本题考查了勾股定理的拓展应用,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.29.(2020秋·广东佛山·八年级校考阶段练习)如图,小巷左右两侧是竖直的墙,巷子宽5米,一架梯子斜靠在左墙时,梯子顶端到地面的距离AC 为3米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离ED 为2米,则CB 的长度为多少?【答案】CB 的长度为2米.【分析】根据勾股定理222AC BC AB ,222BD DE BE ,列方程即可得到结论.【详解】解:根据勾股定理得,222AC BC AB ,222BD DE BE ,∵AB BE ,∴2222AC BC BD DE ,∴ 2222352BC BC ,∴2BC ,答:CB 的长度为2米.【点睛】本题主要考查了勾股定理的应用,解题的关键是掌握勾股定理.30.(2023春·云南昭通·八年级统考期中)如图,四边形ABCD 为某街心花园的平面图,经测量50m AB BC AD ,503m CD ,且90B Ð=°.(1)试判断ACD 的形状,并说明理由;(2)若射线BA 为公园的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D 处安装一个监控装置来监控道路BA 的车辆通行情况,且被监控的道路长度要超过65m .已知摄像头能监控的最大范围为周围50m (包含50m ),请问该监控装置是否符合要求?并说明理由.(参考数据2 1.4 ,3 1.7 )【答案】(1)直角三角形,见解析(2)符合要求,见解析【分析】(1)根据90B Ð=°,勾股定理求出AC ,再根据勾股定理的逆定理,即可;(2)过点D 作DE BA 于点E ;作A 点关于DE 的对称点A ,连接DA ,根据直角三角形的性质,得45BAC ,根据90DAC ,则45DAE ∠,三角形ADE 是等腰直角三角形,根据勾股定理求出AE ,可推出AA ,即可.【详解】(1)解:(1)ACD 是直角三角形.理由如下:∵90B Ð=°,50m AB BC AD ,∴在Rt ABC △中222AB BC AC ,∵25000AC ,∵22502500AD , 25037500CD ,∴227500AD AC ,∴22AD AC CD ,∴CAD 是直角三角形.(2)符合要求,理由如下:过点D 作DE BA 于点E ;作A 点关于DE 的对称点A ,连接DA ,∴90DEA ,∵90B Ð=°,AB BC ,∴45BAC ,∵90DAC ,∴45DAE ∠,∴DE AE ,∴在Rt DEA V 中222DE EA AD ,∴222500AE ,∴252AE ,∴50270m AA ,∵70m 65m ,∴该监控装置符合要求.。
勾股定理易错易混淆专题集训
勾股定理易错易混淆专题集训大家好呀!今天咱们聊聊一个让不少小伙伴头疼的数学问题——勾股定理。
你别看这名字听起来挺牛逼,其实它非常简单。
咱们就用生活中的例子带你走一遍,保证你听完以后,不仅能理解,还能把这玩意儿牢牢记住!不过得先说,这个定理真是让人“上天入地”的,一开始学的时候,真是“云里雾里”,但是学懂了之后,又好像突然豁然开朗了。
咱们就来看看,这个勾股定理到底有啥魔力!首先啊,勾股定理是啥呢?简单来说,就是直角三角形的三条边之间有个神奇的关系。
大家一定听说过,“直角三角形”吧?就是那种两条边垂直,形成一个直角(90度)的三角形。
根据勾股定理,直角三角形的两条直角边(我们就叫它们“脚”吧)所对应的平方和,正好等于斜边(最长的那条边,咱们叫它“斜”)的平方。
就像你拿个尺子测量,假如直角三角形的两条直角边分别是3和4,那斜边的长度就应该是5。
怎么来的呢?3² + 4² = 9 + 16 = 25,√25 = 5。
这下明了吧!好啦,听上去是不是有点抽象?别着急,咱们举个生活中的例子。
假设你家住在一栋楼上,想从阳台跳到楼下的院子里。
那院子里有一棵大树,离你家有一段距离。
你问你自己,要是你直接跳过去,会不会摔个大跟头?或者说,要跳多远才能不摔倒?这就得用到勾股定理了。
你家阳台到地面之间有一段高度,这相当于是直角三角形的一个“脚”;而院子到你阳台的水平距离,就是另一个“脚”。
这俩距离加起来的平方根,结果就告诉你,跳下去的“斜边”有多长。
哦,话说回来,别真跳啊,还是小心点,学数学能用脑,不用身体!勾股定理本身不难,难的是大家常常记错或者搞混。
比如,很多同学在算的时候,容易把“斜边”当成其中一个直角边,结果算出来的数就大错特错。
记住了,咱们的“斜边”是最重要的那条边,最远的那个,千万不要搞错。
就像开车开到一半,导航突然掉链子了,结果你偏要走岔路。
那不就麻烦了嘛!接下来再跟你们说说一些常见的易错点。
勾股定理十大易错题(带答案)
勾股定理十大经典易错题1. 如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?露在杯子外边的长度为cm h ,则h 的取值范围为 .3. 如图,在 △ABC 中,∠C =90∘,AC =2,点 D 在 BC 上,∠ADC =2∠B ,AD =√,则 BC 的长为 .A . √3−1B . √3+1C . √5−1D . √5+1【答案】D4. 如图为一个棱长为1的正方体的展开图,A 、B 、C 是展开后小正方形的顶点,则∠ABC 的度数为( )5. ABC 的面积为 .6. 在Rt ABC ∆中,90C ∠=︒,若54a b c +==,,则ABC S ∆= .7. 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )A .x y =B .x y >C .x y < D8.如图网格中的△ABC ,若小方格边长为1,请你根据所学的知识(1)求△ABC 的面积;(2)判断△ABC 是什么形状?并说明理由.9. 如图,在长方形纸片 ABCD 中,已知 AD =8,折叠纸片使点 B 落在对角线 AC 上的点 F 处,折痕为 AE ,且 EF =3,求 AB 的长.10. 如图,有一个长、宽、高分别为3cm 、4cm 、5cm 的长方体,有一只蚂蚁想沿着外侧壁从A 点爬到C 1处,请你帮助小蚂蚁计算出最短路线.C A2. 【答案】1112h ≤≤3. 【答案】D4. 【答案】B5. 【解析】借助网格计算面积【答案】3.5 6. 【解析】 在Rt ABC ∆中,由勾股定理得,222a b c +=.又有()2222a b ab ab +=++,∴ ()222a b c ab +-= ∴1924ABC S ab ∆==. 【答案】94ABC S ∆=7. 化简得()2220a x y x y -=+>,x y >.【答案】B8. 解:(1)△ABC 的面积=4×4-1×2÷2-4×3÷2-2×4÷2=16-1-6-4=5.故△ABC 的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC 2=22+42=20,BC 2=32+42=25,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形.9. 【答案】610.【解析】我们将六个面标上:正、背、左、右、上、下,蚂蚁从A 到C 至少要走两个面,①正-右②正-上③左-上④左-背⑤下-背⑥下-右, 其中④⑤⑥和前面三种是重复的,比如①④,将拉伸长方体得棱AA 1和CC 1得到长方形AA 1C 1C ,两种路径是一样的,下面分情况讨论:①正-右:7457222121=+=+=CC AC AC ;②正-上:10393222121=+=+=BC AB AC ;③左-上:54482221121=+=+=C B AB AC【答案】cm 74。
勾股定理(10个考点梳理+题型解读+提升训练)(原卷版)24-25学年八年级数学上学期期中考点
勾股定理(10个考点梳理+题型解读+提升训练)【清单01】勾股定理直角三角形两直角边的平方和等于斜边的平方如图:直角三角形ABC 的两直角边长分别为,斜边长为,那么.注意:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:a b ,c 222a b c +=,, .运用:1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.利用勾股定理,作出长为的线段【清单02】勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.【清单03】勾股定理逆定理 222a c b =-222b c a =-()222c a b ab =+-1.定义:如果三角形的三条边长,满足,那么这个三角形是直角三角形.注意:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.2.如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.注意:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.【清单04】勾股数像 15,8,17 这样,能够成为直角三角形三条边长的三个正整数,称为勾股数 。
勾股数满足两个条件:①满足勾股定理 ②三个正整数【清单05】勾股定理应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 本专题分类进行巩固解决以下生活实际问题【考点题型一】一直直角三角形的两边,求第三边长【典例1】已知一直角三角形两直角边的长分别为9,12,则它的斜边长为( )A .15B .16C .17D .25【变式1-1】如图,在△ABC 中,∠C =90°,AC =8,AB =10,则BC 的长为( )a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ¹+222a b c +<222a b c +>cA.6B C.24D.2【变式1-2】如图,一个零件的形状如图所示,已知∠CAB=∠CBD=90°,AC=3cm,AB=4cm,BD=12cm,则CD长为()cm.D.15A.5B.13C.1445【变式1-3】如图,∠C=∠ABD=90∘,AC=4,BC=3,BD=12,则AD的长等于.【考点题型二】等面积法斜边上的高【典例2】如图,在Rt△ABC中,∠ACB=90°,若AC=6,CB=8.(1)求AB的长;(2)求AB边上的高CD是多少?【变式2-1】已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的高长为()A.52B.6C.132D.6013【变式2-2】如图,在△ABC中,∠ACB=90°,CD是高,AB=4,AC=2,则CD的长为.【变式2-3】在△ABC中,∠ACB=90°,AC=12,BC=5,则高CD=.【考点题型三】作无理数的线段【典例3】如图,在数轴上点A表示的数为a,则a的值为()A B.―1C.―1+D.―1―【变式3-1】如图,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,DC长为半径作弧,与数轴正半轴交于点A,则点A表示的是()A B+1C1D【变式3-2】如图,OC=2,BC=1,BC⊥OC于点C,连接OB,以点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A B.C―2D.2―【变式3-3】如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A3B.3―C3D.3―【考点题型四】勾股定理的证明【典例4】用图1所示的四个全等的直角三角形可以拼成图2的大正方形.请根据信息解答下列问题:(1)请用含a,b,c的代数式表示大正方形的面积.方法1:______.方法2:______.(2)根据图2,求出a,b,c之间的数量关系.(3)如果大正方形的边长为10,且a+b=14,求小正方形的边长.【变式4-1】下面四幅图中,能证明勾股定理的有()A.一幅B.两幅C.三幅D.四幅【变式4-2】勾股定理在数学和许多其他领域中都有广泛的应用,勾股定理是一个非常重要的数学定理,它在几何学、三角学、物理学、工程学等多个领域都有重要的应用.关于勾股定理的证明方法到现在为止有500多种,勾股定理常见的一些证明方法是:几何证明、代数证明、向量证明、复数证明、面积证明等.当两个全等的直角三角形按图1或图2摆放时,都可以用“面积法”来证明,以下是利用图1证明勾股定理的完整过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接BD ,过点D 作DF ⊥BC 交BC 延长线于点F ,则DF =EC =b ―a∵S 四边形ADCB =S △ACD +S △ABC =12b 2+12ab 又∵S 四边形ADCB =S △ADB +S △DCB =12c 2+12a (b ―a )∴∴12b 2+12ab =12c 2+12a (b ―a )∴a 2+b 2=c 2请参照上述证明方法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB =90°,求证:a 2+b 2=c 2.【变式4-3】我国是最早了解勾股定理的国家之一,汉代数学家赵爽为了证明勾股定理,创制了一幅如图1所示“赵爽弦图”(边长为c 的大正方形中放四个全等的直角三角形,两直角边长分别为a ,b ,斜边长为c ).(1)如图1,请用两种不同方法表示图中空白部分面积.方法1:S 阴影=______;方法2:S 阴影=______;根据以上信息,可以得到等式:______;(2)小亮将“弦图”中的4个三角形进行了运动变换,得到图2,请利用图2证明勾股定理;(3)如图3,将图2的2个三角形进行了运动变换,若a=6,b=3,求阴影部分的面积.【考点题型五】直角三角形的判定【典例5】下列长度的三条线段,能构成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.8,12,13【变式5-1】以下列各组数据为三角形三边,能构成直角三角形的是()A.4,8,7B.5,12,14C.2,2,4D.7,24,25【变式5-2】下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A B.1,C.6,7,8D.2,3,4【变式5-3】下列几组数中,不能构成直角三角形的是()A.9,12,15B.15,36,39C.10,24,26D.12,35,36【考点题型六】勾股定理的逆定理的运用【典例6】如图,一块四边形的空地,∠B=90°,AB的长为9m,BC的长为12m,CD的长为8m,AD的长为17m.为了绿化环境,计划在此空地上铺植草坪,若每铺植1m2草坪需要花费50元,则此块空地全部铺植草坪共需花费多少元?【变式6-1】绿都农场有一块菜地如图所示,现测得AB=12m,BC=13m,CD=4m,AD=3m,∠D=90°,求这块菜地的面积.【变式6-2】定义:顶点都在网格点上的多边形叫格点多边形.如图,在正方形网格中,每个小正方形的边长为1,四边形ABCD的每一个顶点都在格点上,(1)求∠ABC的度数;(2)求格点四边形ABCD的面积.【变式6-3】如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.【考点题型七】勾股数的应用【典例7】勾股数,又名毕氏三元数,则下列各组数构成勾股数的是( )A .13,14,512B .1.5,2,2.5C .5,15,20D .9,40,41【变式7-1】下列各组数中,是勾股数的是( )A .13,14,15B .3,4,7C .6,8,10D .12【变式7-2】下列数组是勾股数的是( )A .2,3,4B .0.3,0.4,0.5C .5,12,13D .8,12,15【变式7-3】下列各组数中是勾股数的是( )A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .12【考点题型八】构造直角三角形解决实际问题【典例8-1】如图,一架2.5m 长的梯子斜靠在墙上,此时梯足B 距底端O 为0.7m .(1)求OA 的长度.(2)如果梯子下滑0.4m ,则梯子滑出的距离是否等于0.4m ?请通过计算来说明理由.【典例8-2】小强和小伟都喜欢放风筝.一天放学后他们互相配合又放起了风筝(如图所示),小伟想测量风筝的铅直高度CE ,于是他进行了如下测量:①测得小强牵线的手到风筝的水平距离BD 为15m ;②根据小强手中剩余线的长度计算出风筝线BC (假设BC 是直的线)的长为39m ;③小强牵线的手离地面的距离DE 为1.5m .(1)求此时风筝的铅直高度CE.(2)若小强想使风筝沿CD方向下降16m(不考虑其他因素),则他应该收线多少米?【典例8-3】台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为25千米/时,则台风影响该海港持续的时间有多长?【变式8-1】一支铅笔斜放在圆柱体的笔筒中,如图所示,笔筒的内部底面直径是6cm,内壁高8cm.若这支铅笔在笔筒外面部分长度是5cm,则这支铅笔的长度是()cm.A.10B.15C.20D.25【变式8-2】如图是台阶的示意图,若每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB的长度是()A.185cm B.195cm C.205cm D.215cm【变式8-3】如图,庭院中有两棵树,小鸟要从一棵高10m的树顶飞到一棵高4m的树顶上,两棵树相距8m,则小鸟至少要飞米.【变式8-4】如图,大风把一棵树刮断,量得AC=4m,BC=3m,则树刮断前的高度为m.【变式8-5】我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是尺【变式8-6】如图,开州大道上A,B两点相距14km,C,D为两商场,DA⊥AB于A,CB⊥AB于B.已知DA=8km,CB=6km.现在要在公路AB上建一个土特产产品收购站E,使得C,D两商场到E站的距离相等,(1)求E站应建在离A点多少km处?(2)若某人从商场D以5km/h的速度匀速步行到收购站E,需要多少小时?【变式8-7】某市夏季经常受台风天气影响,台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,当AC⊥BC时,A点到B,C两点的距离分别为500km和300km,以台风中心为圆心周围250km以内为受影响区域.(1)求BC;(2)海港C受台风影响吗?为什么?【典例9】如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD 折叠,使点C落在边AB的C′点.(1)求DC′的长度;(2)求△ABD的面积.【变式9-1】如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH ,则线段BE 的长为( )A .53B .4C .52D .5【变式9-2】如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC 的长为( )A .3cmB .4cmC .3.5cmD .5cm【变式9-3】如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,求EC 的长.【考点题型十】面展开图-最短路径问题【典例10-1】如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 .【典例10-2】如图,圆柱形杯子容器高为18cm,底面周长为24cm,在杯子内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子外壁,离杯子上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.【变式10-1】临汾是帝尧之都,有着尧都之称.尧都华表柱身祥云腾龙,顶蹲冲天吼,底座浮雕长城和黄河壶口瀑布,是中华民族历史悠久、文化灿烂的标志.如图,在底面周长约为6米且带有层层回环不断的云朵石柱上,有一条雕龙从柱底沿立柱表面均匀地盘绕2圈到达柱顶正上方(从点A到点C,B为AC 的中点),每根华表刻有雕龙的部分的柱身高约16米,则雕刻在石柱上的巨龙至少为()A.20米B.25米C.30米D.15米【变式10-24cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9B.+6C.D.12【变式10-3】如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为cm.【变式10-4】如图,圆柱的底面周长是10cm,圆柱高为12cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为.【变式10-5】如图,是一个三级台阶,它的每一级的长、宽,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,则蚂蚁沿着台阶面爬到B点的最短路程是.【变式10-6】如图,学校有一块长方形花圃,有少数人为了走“捷径”,在花圃内走出一条不文明的“路”,其实他们仅仅少走了m,却踩伤了花草.【变式10-7】如图,在一个边长为6cm的正方形纸片ABCD上,放着一根长方体木块,已知该木块的较长边与AD平行,横截面是边长为的正方形,一只蚂蚁从点A爬过木块到达蜂蜜C处需爬行的最短路程是cm.。
勾股定理中考章节复习(知识点+经典题型分析总结)
勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
勾股定理经典易错题及知识点类题总结汇编
B人教版八年级下册勾股定理全章类题总结类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=90,AC=7,BC=24,C D ⊥AB 于D 。
(1)求AB 的长; (2)求CD 的长。
类型二:面积问题【例题】如下左图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
【练习1】如上右图,每个小方格都是边长为1的正方形, (1)求图中格点四边形ABCD 的面积和周长。
(2)求∠ADC 的度数。
【练习2】如图,四边形ABCD 是正方形,AE ⊥BE ,且AE =3,BE =4,阴影部分的面积是______. 【练习3】如图字母B 所代表的正方形的面积是( )A. 12B. 13C. 144D. 194类型三:距离最短问题【例题】 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?【练习1】如图,一圆柱体的底面周长为20cm ,高AB为4cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.【练习2】如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?ABCD7cmBDE 25A BCDL小河 A北 牧童类型四:判断三角形的形状【例题】如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。
【练习1】已知△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.【练习2】若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.【练习3】.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()三角形A.直角B.等腰C.等腰直角D.等腰或直角【练习4】三角形的三边长为abcba2)(22+=+,则这个三角形是( ) 三角形(A)等边(B)钝角(C)直角(D)锐角类型五:直接考查勾股定理【例题】在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b;(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.。
勾股定理专题知识点+常考题型+重难点题型
勾股定理专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (3)1.勾股定理: (3)2.勾股定理的逆定理: (3)3.勾股定理的证明 (3)4.含特殊角的直角三角形三边的关系 (3)5.逆命题与逆定理 (4)三、常考题型 (5)1.勾股定理在几何计算中的应用-求线段的长 (5)2. 勾股定理在几何计算中的应用-坐标平面内两点的距离 (6)3. 勾股定理在几何计算中的应用-面积问题 (8)4.构造直角三角形 (9)5.勾股定理的逆定理的应用 (11)四、重难点题型 (14)1.利用勾股定理解计算问题 (14)2勾股数组 (15)3.与线段平方关系有关的证明题 (16)4.矩形和直角三角形中的折叠问题 (18)二、基础知识点1.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2注:1)仅在直角三角形中存在勾股定理2)由于直角三角形的斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边两直角边的平方和,避免出现这样的错误2.勾股定理的逆定理:如果三角形三边长分别为a,b,c,且满足a2+b2=c2,那么这个三角形是以c为斜边的直角三角形。
注:在同一个三角形中,大边对大角,小角对小边3.勾股定理的证明方法一:方法二:4.含特殊角的直角三角形三边的关系勾股数:1)a=3,b=4,c=52)a=5,b=12,c=13特殊直角三角形①a=x,c=2x,b=√3x②a=x,b=x,c=√2x③AC=x,DC=x,AD=√2x,BD=√2x④AC=x,AF=2x,DC=√3x,BD=2x5.逆命题与逆定理命题与定理命题:判断一件事的语句定理:经过我们一定推理,得到的真命题互逆命题:两个命题的题设、结论正好相反的命题。
若将其中一个叫做原命题,则另一个就是它的逆命题逆定理:若一个定理的逆命题成立,则这个定理与原定理互为逆定理三、常考题型1.勾股定理在几何计算中的应用-求线段的长解析:应用勾股定理,在直角三角形中,“知二求一”。
勾股定理(易错必刷30题6种题型专项训练)(原卷版)
第1章勾股定理(易错必刷30题6种题型专项训练)一.勾股定理(共12小题)1.(2022春•潮安区校级月考)如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为.2.(2021秋•莱西市期中)如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为.3.(2023春•荔城区期末)若一直角三角形两直角边长分别为6和8,则斜边长为.4.(2023春•中宁县期末)如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.5.(2022春•大荔县期末)如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?6.(2021•中原区开学)在△ABC中,AB=13cm,AC=20cm,高AD=12cm,则BC的长为cm.7.(2022•鄂尔多斯)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE =,则AB的长是.8.(2023春•宣城月考)如图,等腰△ABC的底边长为16cm,腰长为10cm,D是BC上一动点,当DA与腰垂直时,则AD=cm.9.(2023春•南宁月考)如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.过点D作DE⊥AP于点E.在点P的运动过程中,当t为时,能使DE=CD?10.(2023春•抚顺月考)如图,在△ABC中,AB=AC,BC=20,D是AB上一点,且CD=16,BD=12.(1)求证:CD⊥AB;(2)求AC的长.11.(2022秋•秦淮区期末)如图,在△ABC中,∠BAC=90°,AD平分∠BAC,AB=4,AC=3,则BD的长是.12.(2022秋•平湖市期末)已知直角三角形的一直角边长为17,另两边的长为自然数,则满足条件的所有三角形的面积之和为.二.勾股定理的证明(共2小题)13.(2022春•连城县校级月考)观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,a>b,根据图中图形面积之间的关系及勾股定理,可直接得到等式()A.a(a﹣b)=a2﹣ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b214.(2020秋•永嘉县校级期末)如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,即赵爽弦图.连接AC,分别交EF、GH于点M,N,连接FN.已知AH=3DH,且S正方形ABCD=21,则图中阴影部分的面积之和为()A.B.C.D.三.勾股定理的逆定理(共10小题)15.(2023春•滑县月考)下列四组线段中,能组成直角三角形的是()A.3,4,5B.2,3,4C.6,8,11D.7,23,2516.(2020秋•平山区校级月考)满足下列条件的△ABC,不是直角三角形的是()A.b2=c2﹣a2B.a:b:c=5:12:13C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:517.(2022秋•高陵区月考)如图,在4×4的正方形网格中(每个小正方形边长均为1),点A,B,C在格点上,连接AB,AC,BC,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定18.(2022秋•南城县校级月考)以下列三条线段为边能够组成直角三角形的有()个.(1)3,4,5(2)6.5,2.5,3(3)2.6,2.4,2(4)5,6,7A.1B.2C.3D.419.(2022秋•萍乡月考)下列满足条件的三角形中,不是直角三角形的是()A.在△ABC中,a=m2+n2,b=m2﹣n2,c=2mn,且m>n>0B.三边长的平方之比为1:2:3C.三内角的度数之比为3:4:5D.三边长分别为a,b,c,c=1+n2,b=n2﹣1,a=2n(n>1)20.(2022秋•南海区校级月考)已知a、b、c是△ABC的三边长,且满足关系(a2﹣c2+b2)2+|a﹣b|=0,则△ABC的形状为.21.(2022秋•高陵区月考)已知△ABC的三边a,b,c满足(a﹣9)2+(b﹣12)2+|c﹣15|=0,试判断△ABC的形状.22.(2022秋•浑南区月考)如图所示,已知△ABC中,CD⊥AB于D,AC=2,BC=1.5,DB=0.9.(1)求CD的长;(2)判断△ABC的形状,并说明理由.23.(2022秋•西湖区校级期中)如图,在△ABC中,CD⊥AB,AB=5,BC=,CD=2.(1)求DB的长;(2)求证:AC⊥BC.24.(2022秋•和平区校级期末)如图,有一张四边形纸片ABCD,AB⊥BC,经测得AB=3dm,BC=4dm,CD=2dm,AD=dm,求这张纸片的面积S.四.勾股数(共2小题)25.(2022秋•浑南区月考)下列各组数中,是勾股数的一组是()A.6,7,8B.5,12,13C.0.6,0.8,1D.2,4,526.(2022春•郾城区期末)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.98五.勾股定理的应用(共1小题)27.(2021秋•牡丹区期末)在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A 处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.六.平面展开-最短路径问题(共3小题)28.(2022秋•中原区校级月考)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()cm.A.25B.20C.24D.1029.(2022秋•铁岭月考)如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是.30.(2022秋•钦南区校级月考)如图,长方体的高为9dm,底面是边长为6dm的正方形.一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为()A.10dm B.12dm C.15dm D.20dm。
八上数学 第一章勾股定理知识点归纳+易错题精选(含答案)
八年级数学上册 第一章 勾股定理知识点+易错题精选1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
勾股定理 易错题精选一.选择题1.以下列各组线段为边作三角形,能构成直角三角形的是( )A .2,3,4B .6,8,10C .5,8,13D .12,13,142.用四个边长均为a 、b 、c 的直角三角板,拼成如图中所示的图形,则下列结论中正确的是( )A .c 2=a 2+b 2B .c 2=a 2+2ab+b 2C .c 2=a 2﹣2ab+b 2D .c 2=(a+b )2.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D ,E ,F ,G ,H ,I 都是矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A.360 B.400 C.440 D.4844.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A.3 B.4 C.5 D.65.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c26.如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC的距离为()A. B.C. D.37.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:158.某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图).已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.长方形门框ABCD中,AB=2m,AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m.其中不能从门框内通过的木板有()A.0块 B.1块 C.2块 D.3块10.如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A 和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定二.填空题11.已知直角三角形的三边分别为6、8、x,则x= .12.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a= ,b= ,c= .15.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.16.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.17.如图,在四边形ABCD中,∠C=90°,AB=12cm,BC=3cm,CD=4cm,AD=13cm.求四边形ABCD的面积= cm2.18.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为米(精确到0.1m).19.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.20.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.二.解答题21.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)22.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.23.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB= ,BC= ,AC= ;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.25.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O 的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?26.如图,圆柱形容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A处,(1)求蚂蚁从A到B处吃到蜂蜜最短距离;(2)若蚂蚁刚出发时发现B处的蜂蜜正以每秒钟1cm沿杯内壁下滑,4秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是多少?参考答案一.选择题1.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项正确;C、52+82=89≠132,不能构成直角三角形,故本选项错误;D、122+132=313≠142,不能构成直角三角形,故本选项错误;故选:B.2.【分析】四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b﹣a,则有c2=ab×4+(b﹣a)2,整理得:c2=a2+b2.故选:A.3.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=6+8=14,所以,KL=6+14=20,LM=8+14=22,因此,矩形KLMJ的面积为20×22=440.故选:C.4.【分析】OA1=1,OA2==,OA3==,找到OA n=的规律即可计算OA1到OA25中长度为正整数的个数.【解答】解:找到OA n=的规律,所以OA1到OA25的值分别为,,……,故正整数为=1, =2, =3, =4, =5.故选:C.5.【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6.【分析】首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.【解答】解:根据勾股定理可知:AB==,AC==,BC==,则△ABC是等腰三角形,过点A作AD⊥BC,垂足为D,即BD=CD=BC=,AD===,即点A到BC的距离为.故选:C.7.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.8.【分析】根据三边上的树苗的数分别求得三边的长为13、47、49,根据三边的长判断三角形的形状即可.【解答】解:∵三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,∴三边的长分别为13米、47米、49米,假设为直角三角形且直角三角形的最长边为x,则:x2=132+472=2378,∵492=2401>2378,∴该三角形为钝角三角形.故选:B.9.【分析】求出长方形门框的对角线长,宽小于或等于长方形门框的对角线的长的木板就可通过.【解答】解:门框的对角线长是: =2.5m.宽小于或等于2.5m的有:①②③.故选:B.10.【分析】根据题意利用勾股定理得出AD2+AE2=BE2+BC2,进而求出即可.【解答】解:设AE=xkm,则BE=(40﹣x)km,∵DA⊥AB,CB⊥AB,C,D两村到煤栈的距离相等,∴AD2+AE2=BE2+BC2,故242+x2=(40﹣x)2+162,解得:x=16,则煤栈E应距A点16km.故选:B.二.填空题11.【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【解答】解:分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得x==10,②一直角边为6,一斜边为8,由勾股定理得x==2;故答案为:10或2.12.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.13.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故答案为: +1.14.【分析】由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【解答】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.15.【分析】根据题目中的式子和勾股定理的逆定理可以解答本题.【解答】解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.16.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,进而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为:9017.【分析】连接BD,根据勾股定理求出BD,根据勾股定理的逆定理求出△CBD是直角三角形,分别求出△ABD和△CBD的面积,即可得出答案.【解答】解:连结BD,在△ABD中,∵∠A=90°,BC=3cm,DC=4cm,∴BD==5(cm),S△BCD=BC•DC=×3×4=6(cm2),在△ABD中,∵AD=13cm,AB=12cm,BD=5cm∴BD2+AB2=AD2,∴△ABD是直角三角形,∴S△ABD=AB•BD=×12×5=30(cm2),∴四边形ABCD的面积=S△ABD+S△BCD=6+30=36(cm2).故答案为:36.18.【分析】根据已知条件得到∠BAC=90°,AB=150米,AC=120米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAC=90°,AB=150米,AC=120米,在Rt△ABC中,BC=≈192.2米,故答案为:192.219.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC=60海里,∴BC==30(海里)故答案为:3020.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2三.解答题(共6小题)21.【分析】根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即在直角三角形中斜边的平方等于两直角边的平方和.22.【分析】先根据勾股定理求出AC的长,在△ACD中,再由勾股定理的逆定理,判断三角形的形状.【解答】解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.23.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.24.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB 的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.25.【分析】(1)在Rt△AOB中利用勾股定理求得AO的长即可;(2)在梯子长度不变的情况下,求出DO的长后减去BO的长求得BD即可作出判断;(3)由直角三角形斜边上的中线的性质回答问题.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.(3)AB上的中点到墙角O的距离总是定值,因为直角三角形斜边上的中线等于斜边的一半.26.【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【解答】解:(1)如图所示,∵圆柱形玻璃容器,高12cm,底面周长为24cm,∴AD=12cm,∴AB===12(cm).答:蚂蚁要吃到食物所走的最短路线长度是12cm;(2)∵AD=12cm,∴蚂蚁所走的路程==20,∴蚂蚁的平均速度=20÷4=5(cm/s).。
勾股定理易错题整理
勾股定理易错题整理(总3页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1.直角三角形的两边长分别是6,8,则第三边的长为()A.10 B.2 C.10或2D.无法确定【答案】C【解析】第三边不一定是最长边,需要分类讨论,不能按照惯性思维。
2.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1【分析】根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积,找出规律即可.【解答】解:∵△ABC是边长为1的等腰直角三角形,∴S=×1×1==21﹣2;△ABCAC==,AD==2…,=××=1=22﹣2;∴S△ACDS=×2×2=1=23﹣2…△ADE∴第n个等腰直角三角形的面积是2n﹣2.故选A.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的边长为6cm,正方形B的边长为5cm,正的正方形的边长为10cm,正方形A2方形C的边长为5cm,则正方形D的面积是cm2.【分析】根据勾股定理的几何意义可直接解答.【解答】解:根据正方形的面积公式结合勾股定理,得正方形A,B,C,D的面积和等于最大的正方形的面积,2所以正方形D的面积=100﹣36﹣25﹣25=14cm2.4.如图,要将楼梯铺上地毯,则需要米的地毯.【分析】地毯的长显然是两条直角边的和;根据勾股定理,得另一条直角边的长.【解答】解:根据勾股定理,另一直角边==3,∴3+4=7,故应填7.5.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15C.6 D.以上答案都不对【分析】高线AD可能在三角形的内部也可能在三角形的外部,本题应分两种情况进行讨论.分别依据勾股定理即可求解.【解答】解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选D.6.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.18【分析】首先根据勾股定理和等腰三角形的性质,确定出底边的长,进而求出其周长.【解答】解:如图,作高AD,△ABC中,AB=AC=5,AD⊥BC,AD=4;Rt△ABD中,AB=5,AD=4;根据勾股定理,得:BD==3;∴BC=2BD=6;所以△ABC的周长=5+5+6=16;故选C.7.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:3【解答】解:若∠A:∠B:∠C=1:2:3,则根据三角形的内角和定理,得∠A=30°,∠B=60°,∠C=90°.设a=x,根据30°所对的直角边是斜边的一半,得c=2x,再根据勾股定理,得b=x,则a:b:c=1::2.故选A.8.在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,则△ABC的面积为7 .【分析】本题考查三角形的中线定义,根据条件先确定△ABC为直角三角形,再求得△ABC的面积.【解答】解:如图,在△ABC中,CD是AB边上的中线,∵CD=3,AB=6,∴AD=DB=3,∴CD=AD=DB,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠3=90°,∴△ABC是直角三角形,∴AC2+BC2=AB2=36,又∵AC+BC=8,∴AC2+2AC•BC+BC2=64,∴2AC•BC=64﹣(AC2+BC2)=64﹣36=28,=AC•BC,又∵S△ABC==7.∴S△ABC9.如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出以格点为端点、长度为的线段8 条..【分析】如图,由于每个小正方形的边长为1,那么根据勾股定理容易得到长度为的线段,然后可以找出所有这样的线段.【解答】解:如图,所有长度为的线段全部画出,共有8条.。
2023-2024学年八年级数学下册 专题04 勾股定理常考压轴题汇总(解析版)
专题04勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.18【答案】B【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴a+b=6+8=14,故选:B.2.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.【答案】B【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是6和3,则所走的最短线段是=3;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是5和4,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是7和2,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以它需要爬行的最短路线的长是,故选:B.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【答案】B【解答】解:∵四边形ABGF是正方形,∴∠FAB=∠AFG=∠ACB=90°,∴∠FAC+∠BAC=∠FAC+∠ABC=90°,∴∠FAC=∠ABC,在△FAM与△ABN中,,∴△FAM≌△ABN(ASA),=S△ABN,∴S△F AM=S四边形FNCM,∴S△ABC∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,=10.5,∵AB2﹣2S△ABC∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【答案】C【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.6.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.5【答案】B【解答】解:以AC为直径的半圆的面积=×π×=π,同理:以BC为直径的半圆的面积=π,以AB为直径的半圆的面积=π,∴S1+S2=π+π+△ABC的面积﹣π,∵∠ACB=90°,∴AC2+BC2=AB2,∴S1+S2=△ABC的面积=AC•BC=7,∵AC=3,∴BC=.故选:B.7.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【答案】A【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.410【答案】B【解答】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.9.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km【答案】D【解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=9﹣7+4﹣1=5(km),BC=3+2+1=6(km),在Rt△ACB中,AB=(km).答:门口A到藏宝点B的直线距离是km,故选:D.10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.6【答案】B【解答】解:∵∠ACB=90°,AB=9,BC=6,∴,∵,∴AC•BC=AB•CD,,,∵CD⊥AB,∴∠CDB=90°,∴,故选:B.11.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m【答案】D【解答】解:根据勾股定理求得,AB==10(m),∴AC+BC﹣AB=6+8﹣10=4(m),故选:D.12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.144【答案】A【解答】解:设将CA延长到点D,连接BD,根据题意,得CD=12×2=24,BC=7,∵∠BCD=90°,∴BC2+CD2=BD2,即72+242=BD2,∴BD=25,∴AD+BD=12+25=37,∴这个风车的外围周长是37×4=148.故选:A.13.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.【答案】C【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:C.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm【答案】A【解答】解:∵点C为线段AB的中点,∴AC=AB=4cm,在Rt△ACD中,CD=3cm;根据勾股定理,得:AD==5(cm);∵CD⊥AB,∴∠DCA=∠DCB=90°,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴AD=BD=5cm,∴AD+BD﹣AB=2AD﹣AB=10﹣8=2(cm);∴橡皮筋被拉长了2cm.故选:A.15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.【答案】A【解答】解:由题意可得∠BAC=90°,AB=1,AC=3﹣1=2,则CB==,那么点P表示的实数为3﹣,故选:A.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.【答案】D【解答】解:如下图,设图中直角三角形的两条直角边长分别为a、b,斜边为c,∵图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,∴可有,解得c2=18,解得或(不合题意,舍去),∴大正方形的边长是.故选:D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米【答案】C【解答】解:∵△ABC是直角三角形,BC=3m,AB=5m∴AC==4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AC+BC=7米,故选:C.18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.10【答案】D【解答】解:过点C作CM⊥EF于点M,交AB于点N,∵正方形ABFE面积为5,正方形BCIH面积为1,∴CN⊥AB,BC=1,AB=MN=,BN=FN,∵△ABC是直角三角形,∠ACB=90°,∴AC===2,∴,即=CN,∴CN=,∴BN=FM===,∴CM=CN+MN==,∴CF=10,∴以CF为边长的正方形面积为10.故选:D.19.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.30【答案】C【解答】解:如图,过E作BC的垂线交ED于D,连接EM.在△ACB和△BDE中,∠ACB=∠BDE=90°,∠CAB=∠EBD,AB=BD,∴△ACB≌△BND(AAS),同理,Rt△GDE≌Rt△HCB,∴GE=HB,∠EGD=∠BHC,∴FG=EH,∴DE=BC=CM,∵DE∥CM,∴四边形DCME是平行四边形,∵∠DCM=90°,∴四边形DCME是矩形,∴∠EMC=90°,∴E、M、N三点共线,∵∠P=∠EMH=90°,∠PGF=∠DGE=∠BHC=∠EHM,∴△PGF≌△MHE(AAS),∵图中S1=S Rt△EMH,S△BHC=S△EGD,∴S1+S3=S Rt△ABC.S2=S△ABC,∴S1+S2+S3=Rt△ABC的面积×2=20.故选:C.20.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.41【答案】A【解答】解:在Rt△ABC中,∠C=90°,∴AB2=AC2+BC2.∵S1=(AB)2π=AB2=25,∴AB2=25×.同理BC2=16×.∴AC2=AB2﹣BC2=25×﹣16×=9×.∴S1=(AC)2π=AC2=×9×=9.故选:A.21.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC=S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④【答案】A【解答】解:由题意有Rt△EBD≌Rt△ABC,∴S4=S;故①正确;过F作AM的垂线交AM于N,由题意,得Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,所以S2=S,故②正确;连接FP,FQ,由题意,可得△AQF≌△ACB,则F,P,Q三点共线,由Rt△NFK≌Rt△CAT可得Rt△FPT≌Rt△EMK,∴S3=S△FPT,可得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S,故③正确;S1+S2+S3+S4=(S1+S3)+S2+S4+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=S Rt△ABC=3S,故④不正确.故选:A.22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【答案】C【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.23.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.【答案】B【解答】解:∵将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFCH.正方形ABCD和正方形EFGH的边长比为1:5.∴设正方形ABCD的边长为a,则正方形EFGH的边长为5a,设AE=BF=CG=DH=x,在△BEF中,BE2+BF2=EF2,即(x+a)2+x2=(5a)2,x2+ax﹣12a2=0,(x+4a)(x﹣3a)=0,x=﹣4a(舍去)或x=3a,∴BE=4a,BF=3a,EF=5a,∵FM平分∠BFE,∴△EMF边EF上的高为BM,+S△MBF=S△BEF,则S△BMF即,∴,∴BM=,∵A'E=ME=BE﹣BM=4a﹣a,若”新型数学风车”的四个叶片面积和是m,=S△EF A'=m,∴S△EMF∴,∴a m,∴a=∴EF=5a=,=EF=,∴S正方形EFCH故选:B.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为16或10或.【答案】16或10或.【解答】解:在△ABC中,∠ACB=90°,由勾股定理得:BC=cm,∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当PA=PB时,如图:设BP=PA=x cm,则PC=(8﹣x)cm,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.故答案为:16或10或.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.【答案】.【解答】解:当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN===,故答案为:.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=136.【答案】136.【解答】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,∴BO2+CO2=CB2,OB2+OA2=AB2=36,OA2+OD2=AD2,OC2+OD2=CD2=100,∴BO2+CO2+OA2+OB2=36+100,∴AD2+CB2=BO2+CO2+OA2+OB2=136;故答案为:136.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为(9,12)或(3,12)或(24,12).【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为101寸.【答案】101.【解答】解:设OA=OB=AD=BC=r寸,如图,过D作DE⊥AB于点E,则DE=10寸,OE=CD=1(寸),AE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101,即门槛AB长为101寸,故答案为:101.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为80.【答案】80.【解答】解:延长AE、BF相交于点C,∵∠AOB=30°+90°+30°=150°,∠EOF=75°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(60°+60°)=180°,延长FB至D,使BD=AE,连接OD,∵∠OBD=∠OBC,∴.∠OBD=∠A,∴△OBD≌△OAE(SAS),∴OD=OE,∠BOD=∠AOE,∵∠EOF=∠AOB=∠EOD,∴.∠EOF=∠DOF,又∵OF=OF,∴△EOF≌△DOF(SAS),∴EF=AE+BF,即EF=1.5×(60+m)=210.解得m=80.故答案为:80.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.【解答】解:由图可知∠AED=90°,AB=5,EF=1,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设DE=x,则在Rt△AED中,AD=AB=5,AE=1+x,根据勾股定理,得AD2=DE2+AE2,即52=x2+(1+x)2,解得:x1=3,x2=﹣4(舍去).过点M作MN⊥FB于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NB=GB﹣GN=3﹣a,∵MN∥AF,∴△BMN∽△BAF,∴=,将MN=a,AF=3,BN=3﹣a,BF=4代入,得=,解得a=,∴MN=GN=,在Rt△MGN中,由勾股定理,得GM===.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A10千米.【答案】10.【解答】解:设AP=x千米,则DP=(25﹣x)千米,∵B、C两村到P站的距离相等,∴BP=PC.在Rt△APB中,由勾股定理得BP2=AB2+AP2,在Rt△DPC中,由勾股定理得PC2=CD2+PD2,∴AB2+AP2=CD2+PD2,又∵AB=15km,CD=10km,∴152+x2=102+(25﹣x)2,∴x=10.故答案为:10.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【答案】见试题解答内容【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【答案】.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ的值最小,令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为2.【答案】2.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.【答案】.【解答】解:∵在△ABC中,AB=9cm,AC=12cm,BC=15cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB•AC=BC•AM,∴9×12=15AM,AM=,即DE的最小值是cm.故答案为:.37.如图,Rt△ABC中,.点P为△ABC内一点,PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是.【答案】.【解答】解:如图所示,取AC中点O,连接PO,BO,∵PA2+PC2=AC2,∴∠APC=90°,∴,∵BP+OP≥OB,∴当B、P、O三点共线时BP+OP有最小值,即此时BP有最小值,∵∠ACB=90°,∴,∴BP=BO﹣OP=2,∴BP=PO,又∠ACB=90°,∴PC=BO=2,∴PC=PO=CO,∴△OPC是等边三角形,∴∠PCO=60°,∠PAC=30°∴AP==2,∴,故答案为:.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【答案】见试题解答内容【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【答案】或10或16.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】见试题解答内容【解答】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.。
勾股定理错题集(八年级数学)
勾股定理错题集一、盲目套用勾股定理致错例1在△ABC 中,a ,b ,c 分别是△A ,△B ,△C 的对边,且a =3,b =4,且b <c .若c 为整数,则c =____________. 错解:填5.剖析:错解受“勾3,股4,弦5”的思维定势,将△ABC 当作直角三角形,盲目套用勾股定理计算,而本题并没有说△ABC 是直角三角形,因此只能运用三角形三边关系求解.正解:_______________.二、考虑不全发生漏解致错例2 若直角三角形的两边长分别为5和12,则该三角形的第三边长为____________.错解:填13.剖析:错解将第三边当成斜边直接计算,而本题中已知的两边并未说明是直角边还是斜边,因此要分类讨论. 正解:_______________.三、不理解勾股弦数的概念致错例3 下列各组数:△0.07,0.24,0.25;△6,8,10;△7,8,10;△53,54,1.其中是勾股数的有____________.(填序号)错解:填△△△.剖析:错解把勾股数理解为满足勾股定理的三个数即为勾股数,而勾股弦数不仅要满足勾股定理,还必须是一组正整数.正解:_______________.四、不验证勾股定理致错例4 有下列各组数:△3,4,5;△3,4,5;△32,42,52;△6,8,10.其中分别以它们为三边长的三角形中,是直角三角形的有( )A. 1组B. 2组C. 三组D. 4组错解:选D.剖析:错解并未验证各组数是否满足勾股定理,想当然地认为勾股数“3,4,5”及它们的倍数、平方数和开方后的数都满足勾股定理,而将勾股数同时平方或开方,得到新的一组数不再满足勾股定理.正解:_______________.例1 由三角形三边关系,得4-3<c <4+3,即1<c <7.因为b < c ,所以4< c < 7.又因为c 为整数,所以c 的值为5或6.故填5或6.例2 设该直角三角形的第三边长为x .当x 为斜边时,由勾股定理,得52+122=x 2,解得x =±13;(负值舍去)当x 为直角边时,由勾股定理,得52+x 2=122,解得x =±119.(负值舍去)故填13或119.例3 △ 例4 B。
期末复习 《勾股定理》常考题与易错题精选(35题)(解析版)
期末复习- 《勾股定理》常考题与易错题精选(35题)一.勾股定理(共11小题)1.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是3、5、2、3,则最大正方形E的面积是( )A.10B.13C.15D.26【分析】分别设中间两个正方形和最大正方形的边长为x,y,z,由勾股定理得出x2=8,y2=5,z2=x2+y2,即最大正方形的面积为z2.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=3+5=8,y2=2+3=5,z2=x2+y2=13,即最大正方形E的面积为:z2=13.故选:B.【点评】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.如图,长方形ABCD的顶点A,B在数轴上,点A表示﹣1,AB=3,AD=1.若以点A为圆心,对角线AC长为半径作弧,交数轴正半轴于点M,则点M所表示的数为( )A.B.C.D.【分析】先利用勾股定理求出AC,根据AC=AM,求出OM,由此即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=3,AD=BC=1,∴,∴AN=AC=,∵点A表示﹣1,∴OA=1,∴OM=AM﹣OA=﹣1,∴点M表示点数为﹣1.故选:A.【点评】本题考查实数与数轴、勾股定理等知识,解题的关键是灵活应用勾股定理求出AC,AM的长.3.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=5,BC=12,则S△ACD :S△ABD为( )A.12:5B.12:13C.5:1 3D.13:5【分析】过D作DF⊥AB于F,根据角平分线的性质得出DF=DC,再根据三角形的面积公式求出△ABD 和△ACD的面积,最后求出答案即可.【解答】解:过D作DF⊥AB于F,∵AD平分∠CAB,∠C=90°(即AC⊥BC),∴DF=CD,设DF=CD=R,在Rt△ABC中,∠C=90°,AC=5,BC=12,由勾股定理得:AB==13,∴S△ABD ===R,S△ACD===R,∴S△ACD :S△ABD=(R):(R)=5:13,故选:C.【点评】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF=CD是解此题的关键.4.图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=2,且∠AOB=30°,则OC的长度为( )A.B.C.4D.【分析】先根据含30°角的直角三角形的性质得出OB的长,再根据勾股定理求出OC的长即可.【解答】解:在Rt△ABO中,∠AOB=30°,∴OB=2AB=4,在Rt△BOC中,由勾股定理得,OC===2,故选:D.【点评】本题考查了勾股定理,含30°角的直角三角形的性质,熟练掌握勾股定理,含30°角的直角三角形的性质是解题的关键.5.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为( )A.5B.7C.5或7D.【分析】在Rt△ADB中,根据∠ABC=60°,,求得BD=6,然后分情况讨论即可求得BC的长.【解答】解:在Rt△ADB中,∠ABC=60°,,∴,如图,当点C在点D右边时,BC=BD+DC=6+1=7;如图,当点C在点D左边时,BC=BD﹣CD=6﹣1=5,故BC的长为:5或7.故选:C.【点评】本题考查解直角三角形以及分类讨论,解题关键是正确画出分类讨论的三角形图形求解.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,则点C到直线AB的距离是( )A.B.3C.D.2【分析】作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.【解答】解:作CD⊥AB于点D,如右图所示,∵∠C=90°,AC=3,BC=4,∴AB===5,∵,∴,解得CD=2.4,故选:C.【点评】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.7.已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.【分析】(1)利用勾股定理计算c=;(2)利用勾股定理计算b=.【解答】解:(1)在Rt△ABC中,∠C=90°,由勾股定理得:c===25;(2)在Rt△ABC中,由勾股定理得:b===5.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意勾股定理应用的前提条件是在直角三角形中.8.如图,Rt△ABC中,∠C=90°(1)若AB=,AC=,求BC2(2)若AB=4,AC=1,求AB边上高.【分析】(1)根据勾股定理可求BC 2;(2)由勾股定理求出BC ,根据三角形面积公式即可得出结果.【解答】解:(1)Rt △ABC 中,∠C =90°,AB =,AC =,则BC 2=AB 2﹣AC 2=(+1)2﹣(﹣1)2=4;(2)BC ==,AB 边上高=×1÷2×2÷4=.【点评】本题考查了勾股定理、三角形面积的计算;熟练掌握勾股定理是解决问题的关键.9.如图,在四边形ABCD 中,∠B =90°,∠BCA =60°,AC =2,DA =1,CD =3.求四边形ABCD的面积.【分析】先根据勾股定理求出AB 的长,再根据勾股定理逆定理判断△ACD 是直角三角形,然后把四边形ABCD 的面积分割成两个直角三角形的面积和即可求解.【解答】解:∵∠B =90°,∠BCA =60°,AC =2,∴BC =,∴AB ===,又∵DA =1,CD =3,AC =2,∴DA 2+AC 2=12+(2)2=1+8=9=CD 2,∴△ACD 是直角三角形,∴四边形ABCD 的面积=S △ACD +S △ABC =AD •AC +AB •BC =×1×2+××=+.【点评】本题考查勾股定理,关键是对勾股定里的掌握和运用.10.如图,每个小正方形的边长都为1.求出四边形ABCD 的周长和面积.【分析】利用勾股定理求出AB、BC、CD和DA的长,即可求出四边形ABCD的周长;利用割补法即可求出四边形的面积.【解答】解:根据勾股定理得AB==2,BC==3,CD==,AD==2,故四边形ABCD的周长为;2+3++2=5++2;四边形ABCD的面积为6×8﹣×2×4﹣×6×3﹣1﹣×3×2﹣×2×6=26.【点评】本题主要考查了勾股定理以及三角形的面积公式,掌握勾股定理是解决问题的关键.11.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.【分析】(1)根据三角形的面积公式计算,求出AB;(2)根据勾股定理的逆定理求出∠C=90°,根据三角形的面积公式计算即可.【解答】解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,=AC•BC=×6×8=24,∴S△ABC答:△ACB的面积24.【点评】本题考查的是勾股定理、三角形的面积计算,根据勾股定理的逆定理求出∠C=90°是解题的关键.二.勾股定理的证明(共3小题)12.如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.【分析】(1)根据直角三角形的定义和垂直的定义,可以证明结论成立;(2)①根据AAS可以证明结论成立;②根据S梯形ADEB=S△ADC+S△ACB+S△CEB,代入字母计算即可证明结论成立.【解答】证明:(1)∵∠ACB=90°,AD⊥DE于点D,∴∠DAC+∠ACD=90°,∠ADC+∠BCE=90°,∴∠DAC=∠BCE;(2)①∵AD⊥DE于点D,BE⊥DE于点E,∴∠ADC=∠CEB=90°,由(1)知:∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE;②由图可知:S梯形ADEB =S△ADC+S△ACB+S△CEB,∴=,化简,得:a2+b2=c2.【点评】本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.13.【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.【分析】【尝试探究】根据阅读内容,图中梯形的面积分别可以表示为ab+(a2+b2)=ab+c2,即可证得a2+b2=c2;【定理应用】分解因式,根据勾股定理即可得到结论.【解答】证明:【尝试探究】梯形的面积为S =(a +b )(b +a )=ab +(a 2+b 2),利用分割法,梯形的面积为S =S △ABC +S △ABE +S ADE =ab +c 2+ab =ab +c 2,∴ab +(a 2+b 2)=ab +c 2,∴a 2+b 2=c 2;【定理应用】∵a 2c 2+a 2b 2=a 2(c 2+b 2),c 4﹣b 4=(c 2+b 2)(c 2﹣b 2)=(c 2+b 2)a 2,∴a 2c 2+a 2b 2=c 4﹣b 4.【点评】本题主要考查勾股定理的验证,解题关键是利用面积相等建立等量关系,判定勾股定理成立.14.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明勾股定理,请完成证明过程.(提示:BD 和AC 都可以分割四边形ABCD )【分析】连接DB ,过点D 作BC 边上的高DF ,根据S 四边形ADCB =S △ACD +S △ABC =S △ADB +S △DCB 即可求解.【解答】证明:连接DB ,过点D 作BC 边上的高DF ,则DF =EC =b ﹣a .∵S 四边形ADCB =S △ACD +S △ABC =b 2+ab .又∵S 四边形ADCB =S △ADB +S △DCB =c 2+a (b ﹣a )∴b 2+ab =c 2+a (b ﹣a )∴a 2+b 2=c 2.【点评】本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.三.勾股定理的逆定理(共8小题)15.下列各组中的三条线段,能构成直角三角形的是( )A.7,20,24B.,,C.3,4,5D.4,5,6【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【解答】解:A、72+202≠242,故不是直角三角形,不符合题意;B、()2+()2≠()2,故不是直角三角形,不符合题意;C、32+42=52,故是直角三角形,符合题意;D、42+52≠62,故不是直角三角形,不符合题意;故选:C.【点评】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.16.三角形的三边长分别为a、b、c,则下面四种情况中,不能判断此三角形为直角三角形的是( )A.a=3,b=4,c=5B.a=8,b=15,c=17C.a=5,b=12,c=13D.a=12,b=15,c=18【分析】根据勾股定理的逆定理解决此题.【解答】解:A.根据勾股定理的逆定理,由32+42=52,即a2+b2=c2,那么这个三角形是直角三角形,故A不符合题意.B.根据勾股定理的逆定理,由82+152=172,即a2+b2=c2,那么这个三角形是直角三角形,故B不符合题意.C.根据勾股定理的逆定理,由52+122=132,即a2+b2=c2,那么这个三角形是直角三角形,故C不符合题意.D.根据勾股定理的逆定理,由122+152≠182,即a2+b2≠c2,那么这个三角形不是直角三角形,故D符合题意.故选:D.【点评】本题主要考查勾股定理,熟练掌握勾股定理的逆定理是解决本题的关键.17.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.【分析】(1)连接AC ,根据勾股定理可知AC 2=BA 2+BC 2,再根据AC 2=DA 2+DC 2即可得出结论;(2)根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【解答】(1)解:∠D 是直角.理由:连接AC ,∵∠B =90°,∴AC 2=BA 2+BC 2=400+225=625,∵DA 2+CD 2=242+72=625,∴AC 2=DA 2+DC 2,∴△ADC 是直角三角形,即∠D 是直角;(2)解:∵S 四边形ABCD =S △ABC +S △ADC ,∴S 四边形ABCD =AB •BC +AD •CD ,=,=234.【点评】本题考查的是勾股定理的逆定理,解题的关键是掌握熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.18.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB =3m ,AD =4m ,CD =12m ,BC =13m ,又已知∠A =90°.求这块土地的面积.【分析】先把解四边形的问题转化成解三角形的问题,再用勾股定理解答.【解答】解:连接BD,∵∠A=90°,∴BD2=AD2+AB2=25,则BD2+CD2=132=BC2,因此∠CDB=90°,S四边形ABCD =S△ADB+S△CBD=36(平方米),答:这块土地的面积为36平方米.【点评】本题考查勾股定理,掌握勾股定理是解答此题的关键.19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,DA=1.(1)求∠DAB的度数;(2)求四边形ABCD的面积.【分析】(1)连接AC,在Rt△ABC中,利用勾股定理求出AC的长,∠BAC=∠ACB=45°,然后利用勾股定理的逆定理证明△ADC是直角三角形,从而可得∠DAC=90°,最后进行计算即可解答;(2)根据四边形ABCD的面积=△ABC的面积+△ADC的面积,进行计算即可解答.【解答】解:(1)连接AC,∵∠B=90°,AB=BC=2,∴AC===2,∠BAC=∠ACB=45°,∵CD=3,DA=1,∴AD2+AC2=12+(2)2=9,CD2=32=9,∴AD2+AC2=CD2,∴△ADC是直角三角形,∴∠DAC=90°,∴∠DAB=∠BAC+∠DAC=135°,∴∠DAB的度数为135°;(2)由题意得:四边形ABCD的面积=△ABC的面积+△ADC的面积=AB•BC+AD•AC=×2×2+×1×2=2+,∴四边形ABCD的面积为2+.【点评】本题考查了勾股定理,勾股定理的逆定理,熟练掌握勾股定理,以及勾股定理的逆定理是解题的关键.20.如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.【分析】(1)根据中点的定义和勾股定理的逆定理即可求解;(2)根据中点的定义和勾股定理即可求解.【解答】(1)证明:∵AD、BE分别为边BC、AC的中线,CD=4,CE=3,∴AC=6,BC=8,∵AB=10,∴AB2=AC2+BC2,∴△ABC是直角三角形,∴∠C=90°;(2)解:∵∠C=90°,AD=6,BE=8,∴AC2+CD2=AD2,BC2+CE2=BE2,∵AD、BE分别为边BC、AC的中线,∴CD=BC,CE=AC,∴AC2+(BC)2=36,BC2+(AC)2=64,∴AC2+BC2=100,∴AC2+BC2=80,∴AB==4.【点评】此题考查了勾股定理,熟练掌握勾股定理和勾股定理的逆定理是解本题的关键.21.如图,在△ABC中,AD为BC边上的高,若BD=4,DC=5,AD=2,判断△ABC的形状,并说明理由.【分析】依据AD为BC边上的高,依据勾股定理即可得到Rt△ABD中,AB2=AD2+BD2=36,Rt△ACD 中,AC2=AD2+CD2=45,再根据AB2+AC2=BC2,即可得到△ABC是直角三角形.【解答】解:△ABC是直角三角形.理由:∵AD为BC边上的高,∴∠ADB=∠ADC=90°,Rt△ABD中,AB2=AD2+BD2=20+16=36,Rt△ACD中,AC2=AD2+CD2=20+25=45,又∵BC2=81,∴AB2+AC2=BC2,∴△ABC是直角三角形.【点评】本题主要考查了勾股定理以及勾股定理的逆定理的运用,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.22.如图,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求∠ACB的度数.【分析】(1)运用勾股定理求得AB,BC及AC的长,即可求出△ABC的周长.(2)运用勾股定理的逆定理求得AC2=AB2+BC2,得出∠ABC=90°.【解答】解:(1)AB==5,BC==2,AC==,∴△ABC的周长=2++5=3+5;(2)∵AC2=()2=5,AB2=52=25,BC2=(2)2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形,AB是斜边,∴∠ACB=90°.【点评】本题主要考查了勾股定理及勾股定理的逆定理,熟记勾股定理是解题的关键.四.勾股数(共3小题)23.下列四组数中不是勾股数的是( )A.3,4,5B.2,3,4C.5,12,13D.8,15,17【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.【点评】考查了勾股数,理解勾股数的定义,并能够熟练运用.24.下列各组数中,是勾股数的为( )A.,2,B.8,15,17C.,D.32,42,52【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、不满足三个数都是正整数,故A选项不符合题意;B、三个数都是正整数且82+152=172,故B选项符合题意;C、不满足三个数都是正整数,故C选项不符合题意;D、三个数都是正整数但(32)2+(42)2≠(52)2,故D选项不符合题意.故选:B.【点评】本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整数的平方,这两个条件同时成立,缺一不可.25.观察下列各组勾股数有哪些规律:3,4,5;9,40,41;5,12,13;……;7,24,25;a,b,c.请解答:(1)当a=11时,求b,c的值;(2)判断21,220,221是否为一组勾股数?若是,请说明理由.【分析】(1)由a=11,b+1=c,c2﹣b2=a2,得(b+1)2﹣b2=(b+1+b)(b+1﹣b)=121,然后求得b和c的值即可;(2)利用勾股数的定义进行判定即可.【解答】解:(1)由a=11,b+1=c,c2﹣b2=a2,得(b+1)2﹣b2=(b+1+b)(b+1﹣b)=121.解得b=60,c=b+1=6;(2)是勾股数,理由如下:2212﹣2202=(221+220)(221﹣220)=441,212=441,∴2212﹣2202=212,∴21,220,221是勾股数.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.五.勾股定理的应用(共10小题)26.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B=90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?【分析】(1)直接利用勾股定理AC,再用勾股定理的逆定理得出∠ACD=90°,进而得出答案;(2)利用(1)中所求得出所需费用.【解答】解:(1)连接AC∵∠B=90°,AB=6m,BC=8m,∴,∵CD=24m,AD=26m,∴AC2+CD2=AD2,∴∠ACD=90°,∴S 四边形ABCD =S △ABC +S △ACD ===144(m 2);即空地ABCD 的面积为144m 2.(2)144×350=50400元,即总共需投入50400元.【点评】此题主要考查了勾股定理及其逆定理的应用,将四边形化为三角形后,正确用勾股定理及其逆定理是解题关键.27.由四条线段AB 、BC 、CD 、DA 所构成的图形,是某公园的一块空地,经测量∠ADC =90°,CD =3m 、AD =4m 、BC =12m 、AB =13m .现计划在该空地上种植草皮,若每平方米草皮需200元,则在该空地上种植草皮共需多少元?【分析】如图,连接AC ,运用勾股定理求出AC ,在△ABC 中利用勾股定理逆定理证明得∠ACB =90°,最后根据S ABCD =S △ABC ﹣S △ACD 求出草坪面积从而求出费用.【解答】解:如图,连接AC ,∵∠ADC =90°,∴,在△ABC 中,∵AC 2+BC 2=52+122=169,AB 2=132=169,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴,200×24=4800(元).答:若每平方米草皮需200元,则在该空地上种植草皮共需4800元.【点评】本题考查了勾股定理及勾股定理逆定理的实际应用;掌握勾股定理求边长和逆定理证垂直是解题的关键.28.如图,某校攀岩墙AB的顶部A处安装了一根安全绳AC,让它垂到地面时比墙高多出了2米,教练把绳子的下端C拉开8米后,发现其下端刚好接触地面(即BC=8米),AB⊥BC,求攀岩墙AB的高度.【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB 的长即可.【解答】解:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴攀岩墙AB的高为15米.【点评】此题考查了勾股定理的应用,解题的关键是从实际问题中整理出直角三角形.29.如图,甲、乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东42°方向航行,乙船向南偏东48°方向航行,0.5小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距17海里,问乙船的航速是多少?【分析】先根据方位角求出∠BAC=180°﹣42°﹣48°=90°,然后根据勾股定理求出,最后根据速度公式算出速度即可.【解答】解:根据题意可知:∠BAC=180°﹣42°﹣48°=90°,AC=16×0.5=8(海里),在Rt△ABC中(海里),乙船的航速是:(海里/时),答:乙船的航速是30海里/时.【点评】本题主要考查了方位角,勾股定理,解题的关键是根据勾股定理求出AB的长度.30.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE(如图),他们进行了如下操作:①测得水平距离BD的长为8米;②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的小明的身高为1.5米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降9米,则他应该往回收线多少米?【分析】(1)利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度;(2)根据勾股定理即可得到结论.【解答】解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.5=16.5(米),答:风筝的高度CE为16.5米;(2)由题意得,CM=9,∴DM=6,∴BM===10(米),∴BC﹣BM=17﹣10=7(米),∴他应该往回收线7米.【点评】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.31.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出飞机影响C持续的时间,即可做出判断.【解答】解:(1)着火点C受洒水影响.理由:如图,过点C作CD⊥AB于D,由题意知AC=600m,BC=800m,AB=1000m,∵AC2+BC2=6002+8002=10002,AB2=10002,∴AC2+BC2=AB2,∴△ABC是直角三角形,=AC•BC=CD•AB,∴S△ABC∴600×800=1000CD,∴CD=480,∵飞机中心周围500m以内可以受到洒水影响,∴着火点C受洒水影响;(2)当EC=FC=500m时,飞机正好喷到着火点C,在Rt△CDE中,ED===140(m),∴EF=280m,∵飞机的速度为10m/s,∴280÷10=28(秒),∵28秒>13秒,∴着火点C能被扑灭,答:着火点C能被扑灭.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.32.一架云梯长25m,如图所示斜靠在一面墙上,梯子底端C离墙7m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多少米?【分析】(1)在Rt△ABC中,利用勾股定理可求出AB的长度,此题得解;(2)在Rt△DBE中,利用勾股定理可求出BE的长度,用其减去BC的长度即可得出结论.【解答】解:(1)在Rt△ABC中,∠ABC=90°,AC=25m,BC=7m,∴AB==24(m).答:这个梯子的顶端A距地面24m.(2)在Rt△DBE中,BD=24﹣4=20m,DE=25m,∴BE==15(m),∴CE=BE﹣BC=15﹣7=8(m).答:如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了8m.【点评】本题考查了勾股定理的应用,解题的关键是:(1)利用勾股定理求出AB;(2)利用勾股定理求出BE.33.在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原由C 到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求原来的路线AC的长.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴△CHB是直角三角形,∴CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,答:原来的路线AC的长为1.25千米.【点评】此题考查勾股定理的应用,关键是根据勾股定理的逆定理和定理解答.34.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面3米,问:发生火灾的住户窗口距离地面BD有多高?【分析】根据AB和AC的长度,构造直角三角形,根据勾股定理就可求出直角边BC的长.【解答】解:过点A作AC⊥BD,垂足为C,由题意可知:AE=CD=3米,AC=9米,AB=15米;在Rt△ABC中,根据勾股定理,得AC2+BC2=AB2,即,BC2+92=152,BC2=152﹣92=144,∴BC=12(米),∴BD=BC+CD=12+3=15(米);答:发生火灾的住户窗口距离地面15米.【点评】此题主要考查了勾股定理的应用,熟练记忆勾股定理公式是解题关键.35.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB==15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.【点评】此题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
专题02勾股定理(考题猜想,易错4个考点40题专练)解析版
专题02勾股定理(考题猜想,易错4个考点40题专练)易错点1没有明确斜边与直角边导致出错特别提醒:在直接三角形中,已知边长但未明确斜边与直角边时,需要分类讨论.易错点2对勾股数的理解出错特别提醒:勾股定理首先需要满足较小的两个数的平方和等于最大数的平方,其次必须是正整数,每组勾股数的相同正整数倍也是勾股数,即同时扩大为原来的k (k 为正整数)倍,依然是勾股数.勾股定理勾股定理的逆定理 勾股数 勾股定理的应用一.勾股定理(共12小题)1.(2023春•岳池县期末)一个直角三角形的两条直角边分别长3和4,则斜边的长为()A B .5C .5D .5或7【分析】根据勾股定理求解即可.【解答】解:∴直角三角形的两条直角边分别长3和4,∴5=.故选:B .【点评】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么222a b c +=.2.(2023春•鄂州期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm ,则图中所有正方形的面积的和是1922cm .【分析】设图中正方形的面积分别为A ,B ,C ,D ,E ,F ,根据勾股定理得A B E +=,C D F +=,2864E F +==,从而解决问题.【解答】解:如图,设图中正方形的面积分别为A ,B ,C ,D ,E ,F ,由勾股定理得,A B E +=,C D F +=,2864E F +==,∴图中所有正方形的面积的和2643192()cm ⨯=,故答案为:192.【点评】本题主要考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(2023春•滑县月考)如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以AB ,BC ,CD ,DA 为一边向外作正方形甲、乙、丙、丁,若用S 甲,S 乙,S 丙,S 丁来表示它们的面积,则S S +乙甲=S S +丙丁(填>,<或)=.【分析】连接AC ,分别在Rt ABC ∆和Rt ADC ∆中,利用勾股定理可得222AB BC AC +=,222AD CD AC +=,从而可得2222AB BC AD CD +=+,即可解答.【解答】解:连接AC ,90ABC ADC ∠=∠=︒ ,222AB BC AC ∴+=,222AD CD AC +=,2222AB BC AD CD ∴+=+,S S S S ∴+=+乙甲丙丁,故答案为:=.【点评】本题考查了勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.4.(2023春•潜江月考)已知a 的整数部分,2b c +=+,其中b 是整数,且01c <<,那么以a 、b 为两边的直角三角形的第三边的长度是【分析】先估算出的值的范围,从而可得2a =,再估算出2+从而可得4b =,1c =,然后分两种情况:当4b =为直角边时;当4b =为斜边时,分别利用勾股定理进行计算,即可解答.【解答】解:469<< ,23∴<<,∴的整数部分是2,2a ∴=,23<< ,425∴<+<,2b c +=+,其中b 是整数,且01c <<,4b ∴=,242c =+-=-,分两种情况:当4b =为直角边时,∴第三边的长度===;当4b=为斜边时,∴第三边的长度===综上所述:第三边的长度是或,故答案为:.【点评】本题考查了勾股定理,估算无理数的大小,分两种情况讨论是解题的关键.5.(2023春•江门校级期中)两根木条的长度分别是4cm和5cm,再添加一根木条,钉成一个直角三角形木架,则所添加木条的长度可以是或3cm.【分析】分两种情况分别利用勾股定理列式计算即可:添加的木条作为斜边;添加的木条作为直角边.)cm=;3()cm=或3cm.【点评】本题考查了勾股定理在计算中的应用,明确勾股定理并分类计算是解题的关键.6.(2022春•铁东区校级期中)如图,在Rt ABC∆中,90C∠=︒,3BC=,1AC=,AB的垂直平分线DE 交BC于点D,连接AD,则CD的长为43.【分析】根据线段垂直平分线的性质可得DA DB=,从而可设DA DB x==,则3CD BC BD x=-=-,然后在Rt ACD∆中,利用勾股定理列出关于x的方程,进行计算即可解答.【解答】解:DE是AB的垂直平分线,DA DB∴=,设DA DB x==,3BC=,3CD BC BD x∴=-=-,90C∠=︒,222AC CD AD∴+=,2221(3)x x∴+-=,解得:53x =,433CD x ∴=-=,故答案为:43.【点评】本题考查了勾股定理,线段垂直平分线的性质,熟练掌握勾股定理是解题的关键.7.(2023春•甘井子区校级月考)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,若3AD =,5BC =,则22AB CD +=34.【分析】根据“垂美”四边形的定义得到BD AC ⊥,根据勾股定理计算,得到答案.【解答】解: 四边形ABCD 为“垂美”四边形,BD AC ∴⊥,90AEB AED BEC DEC ∴∠=∠=∠=∠=︒,在Rt AED ∆中,2229AE DE AD +==,在Rt BEC ∆中,22225BE CE BC +==,222292534AE DE BE CE ∴+++=+=,在Rt AEB ∆中,222AE BE AB +=,在Rt CED ∆中,222CE DE CD +=,22222292534AB CD AE DE BE CE ∴+=+++=+=,故答案为:34.【点评】本题考查的是勾股定理、“垂美”四边形的定义,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222a b c +=.8.(2023春•张店区期末)如图,在平面直角坐标系xOy 中,点A ,B 分别是x 轴正半轴和y 轴正半轴上的动点,连接AB ,作AB 的中点P ,在x 轴和y 轴上分别取点(4,0)C ,(0,6)D ,连接CP ,DP .若4AB =,2CP DP m +=,则m 的最小值为【分析】如图,在OA 上取一点J ,使得1OJ =,连接PJ ,OP ,DJ .构造相似三角形解决问题.【解答】解:如图,在OA 上取一点J ,使得1OJ =,连接PJ ,OP ,DJ .(4,0)C ,(0,6)D 4OC ∴=,6OD =,90AOB ∠=︒ ,4AB =,PB PA =,122OP AB ∴==,2OP OJ OC ∴=⋅,∴OP OC OJ OP=,POJ COP ∠=∠ ,POJ COP ∴∆∆∽,∴12PJ OP PC DO ==,2PC PJ ∴=,22()2m CP PD PJ PD DJ ∴=+=+,226137DJ =+= 237m ∴,m ∴的最小值为37故答案为:237【点评】本题主要考查了勾股定理的知识、二次根式的知识,有一定的难度.9.(2023春•岳麓区期中)如图,在Rt ABC ∆,90ACB ∠=︒,以ABC ∆的三边为边向外作正方形ACDE ,正方形CBGF ,正方形AHIB ,P 是HI 上一点,记正方形ACDE 和正方形AHIB 的面积分别为1S ,2S ,若116S =,225S =,则四边形ACBP 的面积等于18.5.【分析】根据正方形的面积公式可得:4AC =,5AB AH ==,然后在Rt ABC ∆中,利用勾股定理求出BC 的长,最后根据四边形ACBP 的面积ABC =∆的面积ABP +∆的面积,进行计算即可解答.【解答】解: 正方形ACDE 和正方形AHIB 的面积分别为1S ,2S ,116S =,225S =,4AC ∴=,5AB AH ==,90ACB ∠=︒ ,3BC ∴===,∴四边形ACBP 的面积ABC =∆的面积ABP +∆的面积1122AC BC AB AH =⋅+⋅11435522=⨯⨯+⨯⨯612.5=+18.5=,故答案为:18.5.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.10.(2023春•海淀区校级期中)如图所示的边长为1的正方形网格中,ABC ∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到边BC 的距离等于13.【分析】先用割补法求出三角形的面积、BC边的长,再利用三角形面积公式列方程求解.【解答】解:设点A到边BC的距离等于h,ABC∆的面积111 535122336222=⨯-⨯⨯-⨯⨯-⨯⨯=,BC=,12BC h ABC⋅=∆的面积,13h∴==.故答案为:626 13.【点评】本题以网格背景考查勾股定理、三角形面积计算公式,网格中图形面积的计算.熟练利用面积法是解题的关键.11.(2023秋•邳州市期中)如图,在Rt ABC∆中,90ACB∠=︒,4AC=,3BC=,将ABC∆扩充为等腰三角形ABD,使扩充的部分是以AC为直角边的直角三角形,则CD的长为3或76或2.【分析】分三种情况讨论:①当AD AB=时,容易得出CD的长;②当AD BD=时,设CD x=,则3AD x=+,由勾股定理得出方程,解方程即可;③当BD AB=时,由勾股定理求出AB,即可得出CD的长.【解答】解:分三种情况:①如图1所示:当AD AB=时,由AC BD⊥,可得3CD BC==;②如图2所示:当AD BD=时,设CD x=,则3AD x=+,在Rt ADC∆中,由勾股定理得:222(3)4x x+=+,解得:76 x=,76CD∴=;③如图3所示:当BD AB=时,在Rt ABC∆中,5AB==,5BD∴=,532CD∴=-=;综上所述:CD的长为3或76或2.故答案为:3或76或2.【点评】本题主要考查对勾股定理,等腰三角形的性质等知识点的理解和掌握,能通过分类求出等腰三角形的所有情况是解此题的关键.12.(2023春•金安区校级期末)如图,在ABC ∆中,15AB =,14BC =,13AC =,求ABC ∆的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD BC ⊥于D ,设BD x =,用含x 的代数式表示CD ,则CD =14x -;(2)请根据勾股定理,利用AD 作为“桥梁”建立方程,并求出x 的值;(3)利用勾股定理求出AD 的长,再计算三角形的面积.【分析】(1)直接利用BC 的长表示出DC 的长;(2)直接利用勾股定理进而得出x 的值;(3)利用三角形面积求法得出答案.【解答】解:(1)14BC = ,BD x =,14DC x ∴=-,故答案为:14x -;(2)AD BC ⊥ ,222AD AC CD ∴=-,222AD AB BD =-,222213(14)15x x ∴--=-,解得:9x =;(3)由(2)得:12AD ===,1114128422ABC S BC AD ∆∴=⋅⋅=⨯⨯=.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD 的长是解题关键.二.勾股定理的逆定理(共15小题)13.(2023秋•鼓楼区校级期末)以下列各组数为三角形的三边长,其中能构成直角三角形的是()A .2,3,4B .6,8,9C .1,2D .5,12,13【分析】利用勾股定理的逆定理进行计算,逐一判断即可解答.【解答】解:A 、222313+= ,2416=,222234∴+≠,∴不能构成直角三角形,故A 不符合题意;B 、2268100+= ,2981=,222689∴+≠,∴不能构成直角三角形,故B 不符合题意;C 、22215+= ,27=,22221∴+≠,∴不能构成直角三角形,故C 不符合题意;D 、22512169+= ,213169=,22251213∴+=,∴能构成直角三角形,故D 符合题意;故选:D .【点评】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.14.(2023春•福田区校级期末)满足下列条件时,ABC ∆不是直角三角形的是()A .AB =,4BC =,5AC =B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .1123A B C ∠=∠=∠【分析】依据勾股定理的逆定理以及三角形内角和定理进行计算,即可得出结论.【解答】解:A 、22254251641+=+== ,ABC ∴∆是直角三角形,不合题意;B 、222222(3)(4)91625(5)x x x x x +=+== ,ABC ∴∆是直角三角形,不合题意;C 、::3:4:5A B C ∠∠∠= ,51807590345C ∴∠=⨯︒=︒≠︒++,ABC ∴∆不是直角三角形,符合题意;D 、1123A B C ∠=∠=∠ ,90C ∴∠=︒,30A ∠=︒,60B ∠=︒,ABC ∴∆是直角三角形,不合题意;故选:C .【点评】本题主要考查了勾股定理的逆定理,勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.15.(2023春•保山期末)满足下列条件的三角形中,不是直角三角形的是()A .三个内角之比为1:2:3B .三条边长分别为1,2C .三条边长之比为3:4:5D .三个内角之比为3:4:5【分析】根据勾股定理的逆定理,三角形内角和定理进行计算,逐一判断即可解答.【解答】解:A 、 三个内角之比为1:2:3,三角形内角和是180︒,∴三个内角分别为30︒,60︒,90︒,∴此三角形是直角三角形,故A 不符合题意;B 、2214+= ,224=,22212∴+=,∴此三角形是直角三角形,故B 不符合题意;C 、 三条边长之比为3:4:5,∴设三条边分别为3a ,4a ,5a ,222(3)(4)25a a a += ,22(5)25a a =,222(3)(4)(5)a a a ∴+=,∴此三角形是直角三角形,故C 不符合题意;D 、 三个内角之比为3:4:5,三角形内角和是180︒,∴三个内角分别为45︒,60︒,75︒,∴此三角形不是直角三角形,故D 符合题意;故选:D .【点评】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.16.(2023春•长寿区期末)若ABC ∆的三边长为a ,b ,c ,则下列不是直角三角形的是()A .6a =,7b =,8c =B .1a =,b =,c =C . 1.5a =,2b =, 2.5c =D .3a =,4b =,5c =【分析】根据勾股定理的逆定理进行计算,逐一判断即可解答.【解答】解:A 、22226785a b +=+= ,22864c ==,222a b c ∴+≠,ABC ∴∆不是直角三角形,故A 符合题意;B 、22221(2)3a c +=+= ,22(3)3b ==,222a c b ∴+=,ABC ∴∆是直角三角形,故B 不符合题意;C 、22221.52 6.25a b +=+= ,222.5 6.25c ==,222a b c ∴+=,ABC ∴∆是直角三角形,故C 不符合题意;D 、22223425a b +=+= ,22525c ==,222a b c ∴+=,ABC ∴∆是直角三角形,故D 不符合题意;故选:A .【点评】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.17.(2023春•汕尾期末)如图,在正方形方格中,每个小正方形的边长都为1,则ABC ∠是()A .锐角B .直角C .钝角D .无法确定【分析】连接AC ,根据勾股定理的逆定理可证ABC ∆是直角三角形,从而可得90ABC ∠=︒,即可解答.【解答】解:连接AC ,由题意得:222125AB =+=,222125CB =+=,2221310AC =+=,222AB BC AC ∴+=,ABC ∴∆是直角三角形,90ABC ∴∠=︒,故选:B .【点评】本题考查了勾股定理,勾股定理的逆定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.18.(2023秋•环翠区期末)在下列条件:①A B C ∠+∠=∠;②90A B ∠-∠=︒;③::1:310AB AC BC =④2()()AC BC AC BC AB +-=中,能确定ABC ∆是直角三角形的条件有()A .1个B .2个C .3个D .4个【分析】根据勾股定理的逆定理,三角形内角和定理进行计算,逐一判断即可解答.【解答】解:①A B C ∠+∠=∠ ,180A B C ∠+∠+∠=︒,2180C ∴∠=︒,90C ∴∠=︒,ABC ∴∆是直角三角形;②90A B ∠-∠=︒ ,90A B ∴∠=︒+∠,ABC ∴∆不是直角三角形;③::1:310AB AC BC = ,∴设AB a =,则3AC a =,10BC a =,22222(3)10AB AC a a a +=+= ,222(10)10BC a a ==,222AB AC BC ∴+=,ABC ∴∆是直角三角形;④2()()AC BC AC BC AB +-= ,222AC BC AB ∴-=,222AC AB BC ∴=+,ABC ∴∆是直角三角形;所以,上列条件,能确定ABC ∆是直角三角形的条件有3个,故选:C .【点评】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.19.(2023春•绥江县期中)在ABC ∆中,点D 在直线AB 上,且222AD CD AC +=,则下列结论正确的是()A .90ACB ∠=︒B .90BCD ∠=︒C .90BDC ∠=︒D .90CAD ∠=︒【分析】根据勾股定理的逆定理,即可解答.【解答】解:如图:222AD CD AC += ,ADC ∴∆是直角三角形,90ADC ∴∠=︒,点D 在直线AB 上,18090BDC ADC ∴∠=︒-∠=︒,故选:C .【点评】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.20.(2023春•蚌山区月考)已知a ,b ,c 是ABC ∆的三条边,满足下列条件仍不能判断ABC ∆是直角三角形的是()A .222b c a -=B .::5:12:13a b c =C .::3:4:5A B C ∠∠∠=D .C A B∠=∠-∠【分析】根据勾股定理的逆定理,三角形内角和定理,进行计算逐一判断即可解答.【解答】解:A 、222b c a -= ,222b a c ∴=+,ABC ∴∆是直角三角形,故A 不符合题意;B 、::5:12:13a b c = ,∴设5a k =,则12b k =,13c k =,222169a b k += ,22169c k =,222a b c ∴+=,ABC ∴∆是直角三角形,故B 不符合题意;C 、::3:4:5A B C ∠∠∠= ,180A B C ∠+∠+∠=︒,518075345C ∴∠=︒⨯=︒++,ABC ∴∆不是直角三角形,故C 符合题意;D 、C A B ∠=∠-∠ ,C B A ∴∠+∠=∠,180A B C ∠+∠+∠=︒ ,2180A ∴∠=︒,90A ∴∠=︒,ABC ∴∆是直角三角形,故D 不符合题意;故选:C .【点评】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.21.(2023春•西乡塘区校级月考)如图,在四边形ABCD 中,AB BC ⊥,AB =,BC =7CD =,24AD =,求四边形ABCD 的面积.【分析】连接AC ,根据垂直定义可得90ABC ∠=︒,然后在Rt ABC ∆中,利用勾股定理求出AC 的长,再利用勾股定理的逆定理证明ADC ∆是直角三角形,从而可得90ADC ∠=︒,最后根据四边形ABCD 的面积ABC =∆的面积ADC +∆的面积,进行计算即可解答.【解答】解:连接AC ,AB BC ⊥ ,90ABC ∴∠=︒,105AB = 55BC =2222(105)(55)25AC AB BC ∴=++,7CD = ,24AD =,2222724625AD CD ∴+=+=,2225625AC ==,222AD CD AC ∴+=,ADC ∴∆是直角三角形,90ADC ∴∠=︒,∴四边形ABCD 的面积ABC =∆的面积ADC +∆的面积1122AB BC AD DC =⋅+⋅111055524722=⨯+⨯⨯12584=+209=,∴四边形ABCD 的面积为209.【点评】本题考查了勾股定理的逆定理,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.(2023春•巨野县期中)如图所示,是一块地的平面图,其中4AD =米,3CD =米,13AB =米,12BC =米,90ADC ∠=︒,求这块地的面积.【分析】连接AC ,在Rt ACD ∆中,利用勾股定理求出AC 的长,然后利用勾股定理的逆定理证明ABC ∆是直角三角形,从而可得90ACB ∠=︒,最后根据这块地的面积ABC =∆的面积ADC -∆的面积,进行计算即可解答.【解答】解:连接AC ,90ADC ∠=︒ ,4AD =米,3CD =米,2222345AC CD AD ∴=+=+=(米),13AB = 米,12BC =米,2222512169AC BC ∴+=+=,2213169AB ==,222AC BC AB ∴+=,ABC ∴∆是直角三角形,90ACB ∴∠=︒,∴这块地的面积ABC =∆的面积ADC -∆的面积1122AC BC CD AD =⋅-⋅115123422=⨯⨯-⨯⨯306=-24=(平方米),∴这块地的面积为24平方米.【点评】本题考查了勾股定理的逆定理,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.23.(2023春•思明区校级期中)如图,在ABC ∆中,D 是边BC 上的一点,已知52AB =5AD =,17BC =,12DC =,求边AC 的长.【分析】根据已知可得5BD =,然后利用勾股定理的逆定理证明ABD ∆是直角三角形,从而可得90ADB ∠=︒,进而可得90ADC ∠=︒,然后在Rt ADC ∆中,利用勾股定理进行计算即可解答.【解答】解:17BC = ,12DC =,17125BD BC CD ∴=-=-=,52AB = ,5AD =,22225550AD BD ∴+=+=,22(52)50AB ==,222AD BD AB ∴+=,ABD ∴∆是直角三角形,90ADB ∴∠=︒,18090ADC ADB ∴∠=︒-∠=︒,222251213AC AD CD ∴=+=+=,AC ∴的长为13.【点评】本题考查了勾股定理的逆定理,勾股定理,熟练掌握勾股定理的逆定理,以及勾股定理是解题的关键.24.(2023春•玉州区期中)如图,四边形ABCD 中,25AB =45BC =6AD =,8CD =,90B ∠=︒.(1)直接写出AC 的长为10;(2)求四边形ABCD 的面积.【分析】(1)连接AC ,在Rt ABC ∆中,利用勾股定理进行计算即可解答;(2)先利用勾股定理的逆定理证明ACD ∆是直角三角形,再利用四边形ABCD 的面积ABC =∆的面积ADC +∆的面积进行计算即可解答.【解答】解:(1)连接AC ,25AB = ,5BC =,90B ∠=︒,2222(25)(45)10AC AB BC ∴=++,故答案为:10;(2)6AD = ,8CD =,10AC =,222268100AD CD ∴+=+=,2210100AC ==,222AD CD AC ∴+=,ACD ∴∆是直角三角形,90D ∴∠=︒,∴四边形ABCD 的面积ABC =∆的面积ADC +∆的面积1122AB BC AD CD =⋅+⋅112556822=⨯+⨯⨯2024=+44=,∴四边形ABCD 的面积为44.【点评】本题考查了勾股定理的逆定理,勾股定理,熟练掌握勾股定理的逆定理是解题的关键.25.(2023春•兰山区期中)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的顶点均在格点上.(Ⅰ)直接写出线段AC 、CD 、AD 的长;(Ⅱ)求ACD ∠的度数;(Ⅲ)求四边形ABCD 的面积.【分析】(Ⅰ)利用勾股定理,进行计算即可解答;(Ⅱ)利用(Ⅰ)的结论,根据勾股定理的逆定理进行计算即可解答;(Ⅲ)根据四边形ABCD 的面积ABC =∆的面积ACD +∆的面积,进行计算即可解答.【解答】解:(Ⅰ)由题意得:222425AC =+=,22125CD =+=,22345AD =+=,∴线段AC 的长为25,线段CD 5,线段AD 的长为5;(Ⅱ)由(1)得:22(25)20AC ==,22(5)5CD ==,22525AD ==,222AC CD AD ∴+=,ACD ∴∆是直角三角形,90ACD ∴∠=︒,ACD ∴∠的度数为90︒;(Ⅲ)如图:由题意得:四边形ABCD 的面积ABC =∆的面积ACD +∆的面积1122BC AE AC CD =⋅+⋅114422=⨯⨯+⨯85=+13=,∴四边形ABCD 的面积为13.【点评】本题考查了勾股定理,勾股定理的逆定理,熟练掌握勾股定理,以及勾股定理的逆定理是解题的关键.26.(2023春•张北县期末)如图,AD 是ABC ∆的中线,DE AC ⊥于点E ,DF 是ABD ∆的中线,且2CE =,4DE =,8AE =.(1)求证:90ADC ∠=︒;(2)求DF 的长.【分析】(1)利用勾股定理的逆定理,证明ADC ∆是直角三角形,即可得出ADC ∠是直角;(2)根据三角形的中线的定义以及直角三角形的性质解答即可.【解答】证明:(1)DE AC ⊥ 于点E ,90AED CED ∴∠=∠=︒,在Rt ADE ∆中,90AED ∠=︒,222228480AD AE DE ∴=+=+=,同理:220CD =,22100AD CD ∴+=,8210AC AE CE =+=+= ,2100AC ∴=,222AD CD AC ∴+=,ADC ∴∆是直角三角形,90ADC ∴∠=︒;(2)AD 是ABC ∆的中线,90ADC ∠=︒,AD ∴垂直平分BC ,10AB AC ∴==,在Rt ADB ∆中,90ADB ∠=︒,点F 是边AB 的中点,152DF AB ∴==.【点评】本题主要考查了直角三角形的性质与判定,熟记勾股定理与逆定理是解答本题的关键.27.(2023春•武昌区期中)如图,在四边形ABCD 中,已知90B ∠=︒,30ACB ∠=︒,3AB =,10AD =,8CD =.(1)求证:ACD ∆是直角三角形;(2)求四边形ABCD 的面积.【分析】(1)根据直角三角形的性质得到26AC AB ==,根据跟勾股定理的逆定理即可得到结论;(2)根据勾股定理得到BC =【解答】(1)证明:在Rt ABC ∆中,90B ∠=︒,30ACB ∠=︒,3AB =,26AC AB ∴==,在ACD ∆中,6AC =,8CD =,10AD =,2228610+= ,即222AC CD AD +=,90ACD ∴∠=︒,即ACD ∆是直角三角形;(2)解:在Rt ABC ∆中,90B ∠=︒,3AB =,6AC =,BC ∴==,Rt ABC ∴∆的面积为11322AB BC ⋅⋅=⨯⨯又Rt ACD ∆ 的面积为11862422AC CD ⋅⋅=⨯⨯=,∴四边形ABCD 的面积为:93242+.【点评】本题考查了勾股定理,勾股定理的逆定理,三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.三.勾股数(共2小题)28.(2023秋•衡阳期末)勾股定理222a b c +=本身就是一个关于a ,b ,c 的方程,满足这个方程的正整数解(a ,b ,)c 通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),⋯.分析上面勾股数组可以发现,41(31)=⨯+,122(51)=⨯+,243(71)=⨯+,⋯分析上面规律,第5个勾股数组为(11,60,61).【分析】由勾股数组:(3,4,5),(5,12,13),(7,24,25)⋯中,41(31)=⨯+,122(51)=⨯+,243(71)=⨯+,⋯可得第5组勾股数中间的数为:5(111)60⨯+=,进而得出(11,60,61).【解答】解:由勾股数组:(3,4,5),(5,12,13),(7,24,25)⋯中,41(31)=⨯+,122(51)=⨯+,243(71)=⨯+,⋯可得第4组勾股数中间的数为4(91)40⨯+=,即勾股数为(9,40,41);第5组勾股数中间的数为:5(111)60⨯+=,即(11,60,61),故答案为:(11,60,61).【点评】本题主要考查了勾股定理的逆定理,关键是找出数据之间的关系,掌握勾股定理逆定理.29.(2022春•西山区期末)在学习“勾股数”的知识时,爱思考的小琪同学发现了一组有规律的勾股数,并将它们记录在如下的表格中,则当18a =时,b c +的值为()a 68101214⋯b815243548⋯c 1017263750⋯A .242B .200C .188D .162【分析】根据表格中数据确定a 、b 、c 的关系,然后再代入18a =求出b 、c 的值,进而可得答案.【解答】解:根据表格中数据可得:222a b c +=,并且2c b =+,则222(2)a b b +=+,当18a =时,22218(2)b b +=+,解得:80b =,则80282c =+=,则162b c +=.故选:D .【点评】此题主要考查了勾股数,关键是注意观察表格中的数据,确定a 、b 、c 的数量关系.四.勾股定理的应用(共11小题)30.(2023春•怀柔区期末)如图,在我军某次海上演习中,两艘航母护卫舰从同一港口O 同时出发,1号舰沿东偏南60︒方向以9节(1节1=海里/小时)的速度航行,2号舰沿南偏西60︒方向以12节的速度航行,离开港口2小时后它们分别到达A ,B 两点,此时两舰的距离是()A .9海里B .12海里C .15海里D .30海里【分析】根据题意可得:18AO =海里,24BO =海里,60AOE ∠=︒,60COB ∠=︒,90EOC ∠=︒,从而可得30AOC ∠=︒,然后利用角的和差关系可得90AOB ∠=︒,从而在Rt AOB ∆中,利用勾股定理求出AB 的长,即可解答.【解答】解:如图:由题意得:2918AO =⨯=(海里),21224BO =⨯=(海里),60AOE ∠=︒,60COB ∠=︒,90EOC ∠=︒,30AOC EOC EOA ∴∠=∠-∠=︒,90AOB AOC BOC ∴∠=∠+∠=︒,在Rt AOB ∆中,2222182430AB AO OB =+=+=(海里),∴此时两舰的距离是30海里,故选:D .【点评】本题考查了勾股定理的应用,根据题目的已知条件并结合图形进行分析是解题的关键.31.(2023春•新抚区期中)小莉在秀美安顺的某风景处划船结束后,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5/m s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【分析】在Rt ABC ∆中,利用勾股定理计算出AB 长,再根据题意可得CD 长,然后再次利用勾股定理计算出AD 长,再利用BD AB AD =-可得BD 长.【解答】解: 在Rt ABC ∆中,90CAB ∠=︒,13BC m =,5AC m =,2213512()AB m ∴=-=,此人以0.5/m s 的速度收绳,10s 后船移动到点D 的位置,130.5108()CD m ∴=-⨯=,22228539()AD CD AC m ∴=-=-=,(1239)BD AB AD m ∴=-=-.答:船向岸边移动了(1239)m .【点评】此题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,正确理解图形.领会数形结合的思想的应用.32.(2023春•巴东县月考)【问题背景】勾股定理是重要的数学定理,它有很多种证明方法【定理表述】(1)用文字语言叙述勾股定理的内容:如果直角三角形的两直角边长为a ,b ,斜边长为c ,那么222a b c +=【定理证明】(2)以图1中的直角三角形为基础,延长BE 到点C ,使CE a =,过点C 作:CD CE ⊥,使CD b =,连接DE ,AD (如图2),则AE DE ⊥,AD =,四边形ABCD 是以a 为底、()a b +为高的直角梯形,请利用图2证明勾股定理.【定理应用】(3)当a b ≠时,利用图2,可以证明a b +<.证明步骤如下:如图3,过点A 作AF CD ⊥于点F ,则AF AD <,90AFC ∠=︒,又,90ABC BCF ∠=∠=︒,∴四边形ABCF 为,AF ∴=,BC ∴AD ,又BC a b =+ ,AD =,a b ∴+<.【分析】【定理表述】(1)由勾股定理得出结论;【定理证明】(2)利用SAS 可证ABE ECD ∆≅∆,可得对应角相等,结合90︒的角,可证90AED ∠=︒,利用梯形面积等于三个直角三角形的面积和,可证222a b c +=;【定理应用】(3)根据题干中的过程及矩形的性质可直接得出结论.【解答】【定理表述】(1)解:如果直角三角形的两直角边长为a ,b ,斜边长为c ,那么222a b c +=.故答案为:如果直角三角形的两直角边长为a ,b ,斜边长为c ,那么222a b c +=.【定理证明】(2)证明:Rt ABE Rt ECD ∆≅∆ ,AEB EDC ∴∠=∠;又90EDC DEC ∠+∠=︒ ,90AEB DEC ∴∠+∠=︒;90AED ∴∠=︒;Rt ABE Rt DEC Rt AED ABCD S S S S ∆∆∆∴=++梯形,∴21111()()2222a b a b ab ab c ++=++,即2221111(2)2222a ab b ab abc ++=++,整理得222a b c +=.【定理应用】(3)如图3,过点A 作AF CD ⊥于点F ,则AF AD <,90AFC ∠=︒,又,90ABC BCF ∠=∠=︒,∴四边形ABCF 为矩形,AF BC ∴=,BC AD ∴<,又BC a b =+ ,AD =,a b ∴+<.故答案为:矩形;BC ;<.【点评】本题考查了勾股定理的应用,涉及全等三角形的判定和性质,矩形的性质,面积分割法,勾股定理等知识.熟练掌握勾股定理的证明是解题的关键.33.(2023春•岳池县期末)图1是某品牌婴儿车,图2为其简化结构示意图.根据安全标准需满足BC CD ⊥,现测得6AB CD dm ==,3BC dm =,9AD dm =,其中AB 与BD 之间由一个固定为90︒的零件连接(即90)ABD ∠=︒,通过计算说明该车是否符合安全标准.【分析】在Rt ABD ∆中,由勾股定理求出BD ,在BCD ∆中,通过计算,根据勾股定理逆定理判断即可.【解答】解:在Rt ABD ∆中,222229645BD AD AB =-=-=,在BCD ∆中,22223645BC CD +=+=,222BC CD BD ∴+=,90BCD ∴∠=︒,BC CD ∴⊥.故该车符合安全标准.【点评】本题主要考查了勾股定理和勾股定理逆定理,熟练掌握勾股定理逆定理的应用是解决问题的关键.34.(2023春•久治县期末)为推进乡村振兴,把家乡建设成为生态宜居、交通便利的美丽家园,某地大力修建崭新的公路.如图,现从A 地分别向C 、D 、B 三地修了三条笔直的公路AC 、AD 和AB ,C 地、D 地、B 地在同一笔直公路上,公路AC 和公路CB 互相垂直,又从D 地修了一条笔直的公路DH 与公路AB 在H 处连接,且公路DH 和公路AB 互相垂直,已知9AC =千米,15AB =千米,5BD =千米.(1)求公路CD 、AD 的长度;(2)若修公路DH 每千米的费用是2000万元,请求出修建公路DH 的费用.【分析】(1)根据勾股定理得出2212BC AB AC -=千米,再求出7CD =千米,然后根据勾股定理即可得出答案;(2)根据面积相等得出1122ABD S BD AC AB DH ∆=⋅=⋅,即可得出答案.【解答】解:(1)90C ∠=︒ ,9AC =千米,15AB =千米,∴12BC =千米,5BD = 千米,7CD ∴=千米,∴AD 千米;(2)DH AB ⊥ ,∴1122ABD S BD AC AB DH ∆=⋅=⋅,解得:3DH =千米,∴修建公路DH 的费用为320006000⨯=(万元).【点评】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.35.(2023春•防城港期末)【问题情境】某数学兴趣小组想测量学校旗杆的高度.【实践发现】数学兴趣小组实地勘查发现:系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.【实践探究】设计测量方案:第一步:先测量比旗杆多出的部分绳子的长度,测得多出部分绳子的长度是1米;第二步:把绳子向外拉直,绳子的底端恰好接触地面的点C ,再测量绳子底端C 与旗杆根部B 点之间的距离,测得距离为5米;【问题解决】设旗杆的高度AB 为x 米,通过计算即可求得旗杆的高度.(1)依题知BC =5米,用含有x 的式子表示AC 为米;(2)请你求出旗杆的高度.【分析】(1)根据“测量绳子底端C 与旗杆根部B 点之间的距离,测得距离为5米”和“测得多出部分绳子的长度是1米”填空;(2)因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x 米,则绳子的长度为(1)x +米,根据勾股定理即可求得旗杆的高度.【解答】解:(1)根据题意知:5BC =米,(1)AC x =+米.故答案为:5;(1)x +;(2)在直角ABC ∆中,由勾股定理得:222BC AB AC +=,即2225(1)x x +=+.解得12x =.答:旗杆的高度为12米.【点评】本题考查了勾股定理的应用,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.36.(2023春•镇江期末)我国某巨型摩天轮的最低点距离地面10m ,圆盘半径为50m .摩天轮的圆周上均匀地安装了若干个座舱(本题中将座舱视为圆周上的点),游客在距离地面最近的位置进舱.小明、小丽先后从摩天轮的底部入舱出发开始观光,当小明观光到点P 时,小丽到点Q ,此时90POQ ∠=︒,且小丽距离地面20m .(1)OCP ∆与QDO ∆全等吗?为什么?(2)求此时两人所在座舱距离地面的高度差.【分析】(1)分别证明90QDO OCP ∠=∠=︒,Q COP ∠=∠,即可利用AAS 证明OCP QDO ∆≅∆;(2)由全等三角形的性质可得QD OC =,再根据线段之间的关系求出40OD m =,进而利用勾股定理求出30OC QD m ==,则10CD OD OC m =-=,由此可得两人所在座舱距离地面的高度差为10m .【解答】解:(1)OCP QDO ∆≅∆,理由如下:QD BD ⊥ ,PC BD ⊥,90QDO OCP ∴∠=∠=︒,90POQ ∠=︒ ,90DOQ Q DOQ COP ∴∠+∠=︒=∠+∠,Q COP ∴∠=∠,。
《勾股定理》易错题集用
《勾股定理》易错题集选择题1、工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A、80cmB、错误!未找到引用源。
C、80cm或错误!未找到引用源。
D、60cm考点:勾股定理的应用。
分析:可将截取的钢条做为直角边或斜边,然后根据勾股定理,计算出钢条的长度,看其是否符合题意.解答:解:将钢条看作直角边,则钢条长度l2+3600=10000,得到l=80(cm),将钢条看作斜边,则l2=3600+10000,所以l=错误!未找到引用源。
>90cm,不合题意;故选A.点评:本题主要考查对于勾股定理的应用,要注意钢条的长度是否符合题意.2、现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A、错误!未找到引用源。
米B、错误!未找到引用源。
米C、错误!未找到引用源。
米或错误!未找到引用源。
米D、错误!未找到引用源。
米考点:勾股定理的应用。
专题:分类讨论。
分析:分两种情况讨论:①第三根铁棒的长为斜边;②第三根铁棒的长为直角边.解答:解:①第三根铁棒为斜边时,其长度为:错误!未找到引用源。
=错误!未找到引用源。
米;②第三根铁棒的长为直角边时,其长度为:错误!未找到引用源。
=错误!未找到引用源。
米.故选C.点评:本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A、30厘米B、40厘米C、50厘米D、以上都不对考点:勾股定理的应用。
分析:由于不明确直角三角形的斜边,故应分两种情况讨论.解答:解:此题要分两种情况:(1)当50是直角边时,所需木棒的长是错误!未找到引用源。
=10错误!未找到引用源。
;(2)当50是斜边时,所需木棒的长是30.故选D.点评:解答此题的关键是运用勾股定理解答,注意此题的两种情况.4、(2005•贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A、6cmB、12cmC、13cmD、16cm考点:平面展开-最短路径问题。
勾股定理经典易错题及知识点类题总结
勾股定理经典易错题及知识点类题总结【例题】如图,△ABC中,∠ACB=900,AC=7,BC=24,CD⊥AB于D。
(1)求AB的长;(2)求CD的长。
类型二:面积问题【例题】如下左图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2。
ABCD7cmmmmmmmm 【练习1】如上右图,每个小方格都是边长为1的正方形,(1)求图中格点四边形ABCD的面积和周长。
(2)求∠ADC的度数。
【练习2】如图,四边形是正方形,⊥,且=3,=4,阴影部分的面积是______、【练习3】如图字母B所代表的正方形的面积是( )A、12B、13C、144D、194类型三:距离最短问题【例题】如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺ABCDL设水管的费用最节省,并求出总费用是多少?【练习1】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径、一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程、【练习2】如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家、他要完成这件事情所走的最短路程是多少?小河AB东北牧童小屋类型四:判断三角形的形状【例题】如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。
【练习1】已知△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形、【练习2】若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状、【练习3】、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()三角形A、直角B、等腰C、等腰直角D、等腰或直角【练习4】三角形的三边长为,则这个三角形是( )三角形(A)等边(B)钝角(C)直角(D)锐角类型五:直接考查勾股定理【例题】在Rt△ABC中,∠C=90(1)已知a=6, c=10,求b;(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
人教版八年级下册勾股定理全章
类题总结
类型一:等面积法求高
【例题】如图,△ABC 中,∠
ACB=90
,
AC=7,BC=24,C D ⊥AB 于D 。
(1)求AB 的长; (2)求CD 的长。
类型二:面积问题
【例题】如下左图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,
则正方形A ,B ,C ,D 的面积之和为___________cm 2。
【练习1】如上右图,每个小方格都是边长为1的正方形, (1)求图中格点四边形ABCD 的面积和周长。
(2)求∠ADC 的度数。
【练习2】如图,四边形ABCD 是正方形,AE ⊥BE ,且AE =3,BE =4,阴影
部分的面积是______. 【练习3】如图字母B 所代表的正方形的面积是( )
A. 12
B. 13
C. 144
D. 194
类型三:距离最短问题
【例题】 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供
水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并
求出总费用是多少?
【练习1】如图,一圆柱体的底面周长为20cm ,高
AB为4cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.
【练习2】如图,一个牧童在小河的南4km 的A 处
牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
A
B
C
D
7cm
B
D
E 25
A B
C
D
L
小河 A
北 牧童
类型四:判断三角形的形状
【例题】如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。
【练习1】已知△ABC的三边分别为m2-n2,2mn,
m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.
【练习2】若△ABC的三边a、b、c满足条件
a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.
【练习3】.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()三角形
A.直角
B.等腰
C.等腰直角
D.等腰或直角
【练习4】三角形的三边长为
ab
c
b
a2
)
(2
2+
=
+,则
这个三角形是( ) 三角形
(A)等边(B)钝角(C)直角(D)锐角类型五:直接考查勾股定理
【例题】在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b;(2)已知a=40,b=9,求c;
(3)已知c=25,b=15,求a.。
【练习】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?
类型六:构造应用勾股定理
【例题】如图,已知:
在中
,
,,. 求:BC的长.
【练习】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。
类型七:利用勾股定理作长为n 的线段
例1在数轴上表示的点。
作法:如图所示在数轴上找到A 点,使OA=3,作AC ⊥OA 且截取AC=1,以OC 为半径,
以O 为圆心做弧,弧与数轴的交点B 即为。
【练习】在数轴上表示13的点。
类型八:勾股定理及其逆定理的一般用法
【例题】若直角三角形两直角边的比是3:4,斜边
长是20,求此直角三角形的面积。
【练习1】等边三角形的边长为2,求它的面积。
【练习2】以下列各组数为边长,能组成直角三角形的是( ) A 、8,15,17 B 、4,5,6 C 、5,8,10 D 、8,39,40
类型九:生活问题
【例题】如下左图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.
【练习1】种盛饮料的圆柱形杯(如上右图),测得内部
底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外
面至少要露出4.6㎝,问吸管要做 ㎝。
【练习2】如下左图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。
他们仅仅少走了__________步路(假设2步为1m ),却踩伤了花草。
【练习3】如上右图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.
类型十:翻折问题
【例题】如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
【练习1】如图所示,折叠矩形的一边AD ,使点D 落
在BC 边的点F 处,已知AB=8cm ,BC=10cm ,求EF 的长。
【练习2】如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,求AC的长。