《二次函数与一元二次方程》PPT课件

合集下载

二次函数与一元二次方程_课件

二次函数与一元二次方程_课件

=0
没有交点
没有实根
<0
有交点
有实根
≥0
归纳
△<0 △=0
△>0
求抛物线与坐标轴的交点 如何求抛物线与坐标轴的交点? 如何确定抛物线与x轴的交点个数?
例题 答案:
例题
答案:有(2.5,0),(-1,0) 归纳:一元二次方程
,则抛物线
例题 不与x轴相交的抛物线是( D )
练习——求交点 (0,-5)
例题
可以通过不断缩小根所在的范围,来估计一元二次方程的根 第二步:取平均数 取2和3的平均数2.5, 当x=2.5,y=-0.75<0. 那根是在2与2.5之间, 还是2.5与3之间呢?
例题
可以通过不断缩小根所在的范围,来估计一元二次方程的根 第三步:取异号缩小范围 一定得让相应的y值异号, 这样才能保证抛物线穿过x轴, 即根在该范围之间. 当x=2.5时,y<0, 当x=2时,y<0, 当x=3时,y>0, 所以根是在2.5与3之间
解:(3)当h = 20.5时,
因为
,所以方程无实根.
球的飞行高度达不到 20.5m .
思考 (4)球从飞出到落地要用多少时间? 解:(4)落地即h = 0,
当球飞行 0s 和 4s 时,它的高度为 0m , 即0s时,球从地面飞出,4s 时球落回地面.
讨论
通过刚才的例子可以发现,
二次函数
何时为一元二次方程?
例题
可以通过不断缩小根所在的范围,来估计一元二次方程的根 第四步:再取平均数 取2.5和3的平均数2.75, 当x=2.75,y=0.0625 > 0. 第五步:再取异号 所以根是在2.5与2.75之间
所以该抛物线与 x 轴有两个交点.

二次函数与一元二次方程二次函数优秀ppt课件

二次函数与一元二次方程二次函数优秀ppt课件
7.一元二次方程 3 x2+x-10=0的两个根是x1=-
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .

《二次函数与一元二次方程》(上课)课件PPT1

《二次函数与一元二次方程》(上课)课件PPT1

有两个交点:
有两个不相等的 实数根
b2-4ac > 0
有一个交点
b2-4ac = 0
没有交点
没有实数根
b2-4ac < 0
学习目标(1分钟)
1.能够利用二次函数的图象求一元二次方程的 近似根.
2.能利用图象确定方程的根和不等式的解集。
还可以解一元二自次学方指导一(3分钟) 思程考求:近由似图值象如何估计一元二次方程x2 +2x-10=0的根? 由图象知方程有两个根,一个在-5和-4之间,另一个在2 和3之间. (1)先求-5和-4之间的根.
(2)经过_1_0_s ,炮弹落在地上爆炸.
3.一元二次方程ax2+bx+c=h的根就是二次函数 y=ax2+bx+c与直线__y_=_h___交点的__横__坐标.
变式:(2019春•天心区校级期中)函数y=ax²+bx+c 的图象 如图所示,那么关于一元二次方程ax²+bx+c-2=0的根的情况
对应值:
x
1
1.1 1.2 1.3 1.4
y
-1 -0.49 0.04 0.59 1.16
那么方程x²+3x-5=0的一个近似根是( C )
A.1
B.1.1
C.1.2
D.1.3
2.在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)
与飞行时间x(s)的关系满足:y=-x2+10x. (1)经过_5___s,炮弹达到最高点,最高点的高度是_2_5_m.
x -4.1 -4.2 -4.3 -4.4
y -1.39 -0.76 -0.11 0.56 因此x=-4.3是方程的一用个图近象似法根求一元二次 (2)另一个根可以类似的方求程出的:近似根时,结 x 2.1 2.2 2.3 果只2.取4到十分位

《二次函数与一元二次方程》二次函数PPT教学课件

《二次函数与一元二次方程》二次函数PPT教学课件

情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1

(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,

九年级数学上册教学课件《二次函数与一元二次方程》

九年级数学上册教学课件《二次函数与一元二次方程》
解:
t2 - 4t+4=0.
t1 =t2 =2.
当小球飞行2s时,它的飞行高度为20m.
你能结合图指出为什么只在一个时间小球的高度为20m吗?
2s
20m
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
h=20t-5t2.
20.5=20t-5t2.
解:
t2 - 4t+4.1=0.
因为(-4)2 – 4×4.1<0,
有两个不同实根有两个相同实根没有根
有两个交点有一个交点没有交点
△ > 0
△ = 0
△ < 0
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系(2)
ax2+bx+c = 0 的根
抛物线 y=ax2+bx+c与x轴
若抛物线 y=ax2+bx+c 与 x 轴有交点,则________________ 。
无公共点
先画出函数图象:
公共点的函数值为 。
0
对应一元二次方程的根是多少?
x1 =-2,
x2 =1.
x1 =x2 =3.
方程无解
有两个不等的实根
有两个相等的实根
没有实数根
由上述问题,你可以得到什么结论呢?
方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x轴公共点的横坐标。当抛物线与x轴没有公共点时,对应的方程无实数根.
综合应用
解:(1)如图所示.(2)由图象可知,铅球推出的距离为10.
拓展延伸
7.把下列各题中解析式的编号①②③④与图象的编号A、B、C、D对应起来.①y=x2+bx+2; ②y=ax(x-3); ③y=a(x+2)(x-3); ④y=-x2+bx-3.

二次函数与一元二次方程ppt课件

二次函数与一元二次方程ppt课件
垂直于直线x=2于点E.
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值

(

)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D

数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),

九年级上《22.2二次函数与一元二次方程》课件

九年级上《22.2二次函数与一元二次方程》课件

2.自主探究:
问题1
以 40 m/s 的速度将小球沿与地面成 30°角的 方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度 h (单位 :m )与飞行时间t(单位:s)之间具有函数关 系 h = 20t - 5t 2. (2)小球的飞行高度能否达到 20 m? 如能,需 要多少飞行时间?
归纳 一般地,从二次函数 y = ax 2 + bx + c 的图象可知: (1)如果抛物线 y = ax 2 + bx + c 与 x 轴有公共点, 公共点的横坐标是 x0,那么当 x = x0 时,函数值是 0, 因此 x = x0 是方程 ax 2 + bx + c = 0 的一个根. (2)二次函数 y = ax 2 + bx + c 的图象与 x 轴的位置 关系有三种:没有公共点,有一个公共点,有两个公共 点. 这对应着一元二次方程 ax 2 + bx + c = 0 的根的三种 情况:没有实数根,有两个相等的实数根,有两个不等 的实数根.
y=ax2+bx+c的图 象和x轴交点
方程ax2+bx+c=0 的根
b2-4ac
函数的图象
y . o y o y o . x
有两个交点
方程有两个不相等 b2-4ac 的实数根
> 0
只有一个交点 方程有两个相等 b2-4ac = 0
的实数根
x
没有交点
方程没有实数根
b2-4ac
< 0
x
2.小组合作,类比探究
1.复习知识,回顾方法
问题1:一次函数y=kx+b与一次方程 kx+b=0之间有什么关系?

沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)

沪科版数学九年级上册21.3二次函数与一元二次方程  课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.

二次函数与一元二次方程ppt课件

二次函数与一元二次方程ppt课件

(3,0)
相应方程的根 x1=-2,x2=1
x1=x2=3
y x2 x 1
无交点 无实根
二次函数与一元二次方程的关系(2)
确定二次函数图象与 x 轴的位置关系
解一元二次方程的根
二次函数 y=ax2+bx+c 的图象和x轴交点
的三种情况与一元二次方程根的关系
y=ax2+bx+c 的图象与x轴
有两个交点 有一个交点 没有交点
已知函数 y ax2 bx c 的图象如图所示,那么 关于ax2 bx c 2 0 的方程的根的情况是( D )
A.无实数根
B.有两个相等实根
C.有两个异号实数根
D.有两个同号不等实数根
-3
随堂练习
A组
1.抛物线 y=2x2-3x-5 与y轴交于点_(0_,_-_5), 与xபைடு நூலகம்交于点 (5/2,0) (-1,0) .
3.二次函数图像
与x轴的位置关系有3种,分别是
,,

对应的一元二次方程的根的三种情况:


课后作业
【必做】课本47页,复习巩固1、2 【选做】实际生活中有哪些问题可 以用二次函数的知识解决?
老师寄语
ax2+bx+c = 0 的根
有b2 两– 4个ac根> 0 有b2 一– 4个ac根=(0两个相同的根) 没b2 有– 4根ac < 0
若抛物线 y=ax2+bx+c 与 x 轴有交点,则 __b_2_–_4_a_c_≥__0______ 。
△ = b2 – 4ac
y △<0
△=0
△>0
o
x
例题讲解

人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

人教版数学九年级上册22.2  二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O

二次函数与一元二次方程ppt课件

二次函数与一元二次方程ppt课件
-19-
2.5 二次函数与一元二次方程
▍考点集训/夯实基础
■考点 1 二次函数与一元二次方程的关系 1. 一位篮球运动员跳起投篮,篮球运行的高度 y(m)关于篮球运动的水
平距离 x(m)的函数解析式是y= - (x-2.5)2+3.5.已知篮圈中心到地面 的距离 3.05 m,如果篮球运行高度达到最高点之后能准确投入篮圈,那么 篮球运行的水平距离为 ( )
■考点二 二次函数与 x 轴的交点 1. 函数 y=ax2+bx+c(a≠0),当 y=0 时,得到一元二次方程 ax2+bx+c
=0(a≠0).因此,一元二次方程的解就是二次函数的图象与 x 轴交点的横坐 标,所以二次函数 y=ax2+bx+c(a≠0)的图象与 x 轴的交点情况决定了一元 二次方程 ax2+bx+c=0(a≠0)根的情况.具体关系如下:
次函数分别进行讨论.
答案:解:分两种情况:
(1)m+6=0,此时 m=-6,y=-14x-5,此直线与 x 轴必有交点;
(2)m+6≠0,此时关于 x 的二次函数 y=(m+6)x2+2(m-1)x+m+1 的图
象与x 轴总有交点,
∴Δ=b2-4ac=4(m-1)2-4(m+6)(m+1)≥0,解得 m≤
x
6.17
6.18
6.19
6.20
y
-0.03
-0.01
0.02
0.04
-10-
2.5 二次函数与一元二次方程
解析:由表格中的数据看出-0.01 和 0.02 更接近于 0, 故 x 应取对应的范围. 答案:6.18<x<6.19 易错:6.17<x<6.18 错因:不明白“用图象法求一元二次方程的近似根,解题的关键是找到 y 由正(负)变为负(正)时,自变量的取值”. 满分备考:根据表格数据确定一元二次方程的近似解(或范围),重点在 函数值符号发生变化时刻取 x 的值(或范围).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与一元二次方程
新课引入
问题1:如图,以 40 m /s的速度将小球沿与地面成 30度角的方向 击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的 飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系: h= 20 t – 5t2
考虑下列问题:
(1)球的飞行高度能否达到 15 m? 若能,需要多少时间?
(3) y = x2 – x+ 1
新知讲授
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方 程ax2+bx+c=0的根有什么关系?
有两个交点 只有一个交点 没有交点
有两个不相 等的实数根
有两个相等 的实数根
没有实数根
b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
新知讲授
点.
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
△>0
O
X
练习巩固
1.抛物线y=2x2-3x-5 与y轴交于点_(_0,-_5)_,与x轴交 于点 (5/2,0) (-1,0) .
2.一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是 _(-2_,0_) (_5/_3,0. )
(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
(3)球的飞行高度能否达到 20.5 m? 若能,需要多少时间?
(4)球从飞出到落地要用多少时间?
问题2: 下列二次函数的图象与 x 轴有交点吗? 若有,求出交 点坐标.
(1) y = 2x2+x-3
(2) y = 4x2 - 4x +1
归纳: 一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点 坐标是(x1,0),(x2,0)
练习巩固
3.如图,抛物线y=ax2+bx+c的对称轴是直线 x=-1,由
图象知,关于x的方程ax2+bx+c=0的两个根分别是
x1=1.3 ,x2=_-_3.3_
二次函数y=ax2+bx+c的图象和x轴交点有三种情况:
(1)有两个交点
b2 – 4ac > 0
(2)有一个交点
b2 – 4ac= 0
(3)没有交点
b2 – 4ac< 0
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
新知讲授
二次函数y=ax2+bx+c的图象和x轴交点 Y △<0 △=0
y
3
.
A -1 o1.3
x
X=-1
思考:已知抛物线y=x2 + mx +m – 2 求证: 无论 m取何值,抛物线总与x轴有两个交点.
冲击中考
1.若抛物线 y=x2 + bx+ c 的顶点在第一象限,则方程
x2 + bx+ c =0 的根的情况是_没_有_实__数.根
2.直线 y=2x+1 与抛物线 y= x2 + 4x +3 有_0_个交
汇报人:XXX 汇报日期:20XX年10月10日
2020年9月28日
Байду номын сангаас
10
相关文档
最新文档