信号与系统(习题课)

合集下载

信号与系统(习题课)

信号与系统(习题课)
全解y(t∴) = yh((t)t)=+½ype(t-3)t =+ K½e-e3-tt + t e-3t 根据初始条件有y(0)= K=1,
∴ y(t) = e-3t + t e-3t = (1+ t) e-3t
by wky
习题 3-6 (1)
已知系统的微分方程为 y’’(t) +5 y’(t) + 4 y(t) =2 f ’(t) + 5f(t), t >0; 初始状态y(0-) =1,y’(0-) =5, 求系统的零输入响应yx(t)。 解:系统特征方程为 s2+5s+4=0 , 解得特征根 s1=-1, s2=-4
特解 (强迫响应)
比较:完全响应=零输入响应 + 零状态响应 = e-t + (1 - 1/2e-t -1/2e-3t)
by wky
习题 3-4
已知微分方程为 y’(t) + 3 y (t) = f(t),t >0; y(0) =1,
求系统的固有响应(齐次解) yh(t)、强迫响应 (特解) yp(t)和完全响应(全解) y(t) 解:系统特征方程为 s+3=0,
f(t)
f(-t)
2
2
1
1
-3 -2 -1 0 1 2 3 t -3 -2 -1 0 1 2 3 t
2 f(t+2)
f(-3t)
2
1
1
-3 -2 -1 0 1 2 3 t -3 -2 -1 0 1 2 3 t by wky
2-10 已知信号波形, 绘出下列信号波形
f(t)
f(-t)
2
2
1
1
-3 -2 -1 0 1 2 3 t -3 -2 -1 0 1 2 3 t

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。

1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。

题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。

题图 1-10形图。

题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。

郑君里《信号与系统》(第3版)(上册)(课后习题 绪 论)【圣才出品】

郑君里《信号与系统》(第3版)(上册)(课后习题 绪 论)【圣才出品】

圣才电子书

(1) ut ut T sin 4π t ;
T
(2) ut 2ut T ut 2T sin 4π t 。
T
解:(1)信号 sin 4π t 的周期为 T ,截取信号 sin 4π t 在区间[0,T]上的波形如
T
2
T
图 1-5(a)所示。
(2)信号 sin 4π t 的周期为 T ,截取信号 sin 4π t 在区间[0,T]上的波形,在区
2
1-3 分别求下列各周期信号的周期 T:
(1) cos10t cos30t;
(2) e j10t ;
(3) 5sin8t2 ;
(4)
1n
ut
nT
ut
nT
T
n为正整数。
|
解:(1)分量 cos(10t) 的周期T1
2 10
5
,分量 cos(30t) 的周期T2
,两者的 15
最小公倍数是 ,所以此信号的周期T 。
eatu(t) 台eatu(t t0 ) eatu(t t0 ) ea(tt0 )u(t t0 )
eatu(t) ea(tt0 )u(t t0 )
(2)表达式(1-17)为
t
(f )d
1
=
a
(1 eat ), (0
t
t0 )
1 a
(1
e at
)
1 a
1
e a (tt0 )
以上各式中 n 为正整数。
解:(1) eat sin(t) 时间、幅值均连续取值,故为连续时间信号(模拟信号);
(2) enT 时间离散、幅值连续,故为离散时间信号(抽样信号);
(3) cos(n ) 时间、幅值均离散,故为离散时间信号(数字信号);

信号与系统习题

信号与系统习题
( ) r t = A1 e−t + A2 e−2t
因为方程(1)在t>0时,可写为
d2 r(t ) + 3 d r(t ) + 2r(t ) = 6u(t )
dt2
dt
(2)
显然,方程(1)的特解可设为常数D,把D代入方程 (2)求得
D=3
所以方程(1)的解为
( ) r t = A1 e−t + A2 e−2t + 3
(3)式的特征根为 α1 = −1,α2 = −2
方程(3)的齐次解即系统的零输入响应为
( ) rzi t = B1 e−t + B2 e−2t
第 22页
(3)
X
11
第 23页
( ) rzi t = B1 e−t + B2 e−2t
( ) ( ) 由rzi 0+ = 2,rzi′ 0+ = 0,代入(4)式解得
下面由冲激函数匹配法定初始条件。
X

由冲激函数匹配法定初始条件
20页
据方程(1)可设
d2 r(t
dt2
)
=

(t
)
+
bΔu(t
)
d r(t ) = aΔu(t )
dt
r(t )无跳变
代入方程(1),得
aδ (t)+ bΔu(t) + 3aΔu(t) + 2r(t) = 2δ (t) + 6u(t) 匹配方程两端的 δ (t ) ,及其各阶导数项,得
(t
)
+
6u(t
)
方法一:利用r′(0 + ), r(0 + )先来求完全响应,再求零输入

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。

信号与系统习题课(傅里叶变换

信号与系统习题课(傅里叶变换

才有
F

)
=
(
1 jω
)2
F
⎡ d2
⎢ ⎣
dt
2
f
( t ) ⎤⎥

Signals and Systems, Tsinghua University
7
强调

F
⎡d ⎢⎣ dt
f
( t )⎤⎥⎦
= Φ(ω)
得到
F
⎡⎣
f
(t )⎤⎦
=
1 jω
Φ (ω )
实际上是引用了FT的积分性质.
因此要考虑 f (−∞) = 0
法二,频移
F(ω) = F0(ω +ω0)+ F(ω −ω0)
求出f0(t)后,
1 F0(ω)
ω
−ω1 0 ω1
[ ] f (t) = f0(t) ejωt +e−jωt =2f0(t)cosω0t
如何求f0S(igt)na?ls
and
定义、对称性、查表。
Systems, Tsinghua University
−2
−1
1
( ) ejω −e−jω ejω +e−jω − ej2ω +e−j2ω
=2
+

ω2
= ......
(1)计算量大;(2)一些函数积分不收敛。
Signals and Systems, Tsinghua University
法二,利用FT的微积分性质
4 1 f(t)
思路:
f
(t
)
d
⎯⎯dt→δ
Φ(0) = 0
Signals and Systems, Tsinghua University

信号与系统第三章习题课3

信号与系统第三章习题课3
解:
(1) ℱ[ ]=
(2) ℱ[ ]-2ℱ[ ]
(3) ℱ[ ]-2ℱ[ ]
(4)
14.求图3-9所示梯形脉冲的傅里叶变换,并大致画出 情况下该脉冲的频谱图。
解:①利用线性性质
ℱ[ ]-ℱ[ ]
②利用时域卷积定理
令 , ,其中

ℱ[ ]ℱ[ ]
③利用时域积分性质
令 则
另外,求得一阶导数后,也可直接利用积分性质求解:
(4)
(5)因为
8.试分别利用下列几种方法证明 。
(1)利用符号函数 ;
(2)利用矩形脉冲取极限 ;
(3)利用积分定理 ;
(4)利用单边指数函数取极限 。
证明:(1)略
(2)
(3)略
(4)
9.若 的傅里叶变换为
,如图3-7所示,求 并画图。
解:
10.已知信号 , 的波形如图3-8(a)所示,若有信号 的波形如图3-8(b)所示。求 。

④当 时,
15.已知阶跃函数的傅里叶变换为 ;正弦、余弦函数的傅里叶变换为 ; 。求单边正弦 和单边余弦 的傅里叶变换。
解:同Biblioteka 可求:16.求 的傅里叶逆变换。
解: ,
另一种解法:
17.求信号 的傅氏变换。
解:信号周期为:
则 ,
18.信号 ,若对其进行冲激取样,求使频谱不发生混叠的最低取样频率 。
第三章习题
1.图3-1给出冲激序列 。求 的指数傅里叶级数和三角傅里叶级数。
解:
, ,因为偶函数
,上述
2.利用1题的结果求图3-2所示三角波 的三角傅里叶级数。
解:
①利用1题的结果求解:


,所以

奥本海姆《信号与系统》配套题库【课后习题】(线性时不变系统)

奥本海姆《信号与系统》配套题库【课后习题】(线性时不变系统)

第2章线性时不变系统2.1 设x[n]=δ[n]+2δ[n-1]-δ[n-3]和h[n]=2δ[n+1]+2δ[n-1],计算下列各卷积:;;。

解:(a)(b)(c)2.2 考虑信号将A和B用n来表示,以使下式成立:解:故A=n-9,B=n+3。

2.3 已知输入x[n]和单位脉冲响应h[n]为,求输出y[n]=x[n]*h[n],并画出y[n]。

解:设,h1[n]=u[n],则x[n]=x1[n-2],h[n]=h1[n+2]即y[n]的波形如图2-1所示。

图2-1 2.4 计算y[n]=x[n]*h[n],这里解:当,即12≤n≤18时,当,即7≤n<12时,当即18<n≤23时,当n为其他值时,y[n]=0,故2.5 设和,式中,N≤9是一个整数。

已知y[n]=x[n]*h[n]和y[4]=5,y[14]=0,试求N为多少。

解:当n<0及n>9+N时,y[n]=0。

由于y[14]=0,故9+N <14,即N<5。

而当即N≤n≤9时,有又y[4]=5,由此可得N=4。

2.6 计算卷积y[n]=x[n]*h[n],其中解:当n≥0时,当n<0时,故2.7 一个线性系统S有如下输入-输出关系:y[n]=,式中g[n]=u[n]-u[n-4]。

(a)当x[n]=δ[n-1]时,求y[n];(b)当x[n]=δ[n-2]时,求y[n];(c)S是线性时不变的吗?(d)当x[n]=u[n]时,求y[n]。

解:(a)(b)(c)S是线性的但非时不变的,因为当x[n]向右平移了1个单位时,y[n]向右平移了2个单位,故S不是线性时不变的。

(d)2.8 确定并并粗略画出下列两个信号的卷积:解:则y(t)的波形如图2-2所示。

奥本海姆《信号与系统》配套题库【课后习题】(周期信号的傅里叶级数表示)

奥本海姆《信号与系统》配套题库【课后习题】(周期信号的傅里叶级数表示)

第3章周期信号的傅里叶级数表示基本题3.1 有一实值连续时间周期信号x(t),其基波周期了T=8,x(t)的非零傅里叶级数系数为a1=a-1=2,a3=a-3=4j。

试将x(t)表示成:解:3.2 有一实值离散时间周期信号x[n],其基波周期N=5,x[n]的非零傅里叶级数系数为,试将x[n]表示成:解:3.3 对下面连续时间周期信号求基波频率ω0和傅里叶级数系数a k,以表示成解:即非零的傅里叶级数系数为3.4 利用傅里叶级数分析式计算下连续时间周期信号(基波频率ω0=π)的系数a k:解:因ω0=π,故3.5 设x1(t)是一连续时间周期信号,其基波频率为叫ω1,傅里叶系数为a k,已知x2(t)=x1(1-t)十x1(t-1),问x2(t)的基波频率ω2与ω1是什么关系?求x2(t)的傅里叶级数系数b k与系数a k之间的关系。

解:x1(1-t)和x1(t-1)的基波频率都是ω1,则它们的基波周期都是T1=2π/π。

因为x2(t)是x1(1-t)和x1(t-1)的线性组合,所以x2(t)的基波周期,即ω2=ω1。

又故即3.6 有三个连续时间周期信号,其傅里叶级数表示如下:利用傅里叶级数性质回答下列问题:(a)三个信号中哪些是实值的?(b)哪些又是偶函数?解:(a)与式对照可知,对于x1(t),有由共轭对称性可知,若x1(t)为实信号,则有显然故x1(t)不是实信号。

同理,对于x2(t),对于x3(t),由于故可知x2(t)和x3(t)都是实信号。

(b)由于偶函数的傅里叶级数是偶函数,由上可知,只有x2(t)的a k是偶函数,故只有x2(t)是偶信号。

3.7 假定周期信号x(t)有基波周期为T,傅里叶系数为,的傅里叶级数系数为b k。

已知,试利用傅里叶级数的性质求a k用b k和T表达的表达式。

解:当k=0时,故3.8 现对一信号给出如下信息:(1)x(t)是实的且为奇函数;(2)x(t)是周期的,周期T=2,傅里叶级数为a k;(3)对|k|>1,a k=0;(4)试确定两个不同的信号都满足这些条件。

《信号与系统》课程习题与解答

《信号与系统》课程习题与解答

《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。

图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。

段哲民信号与系统课后习题答案

段哲民信号与系统课后习题答案

第一章 习题答案1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。

解:(1))(1t f 的波形如图1.1(a )所示。

(2) 因t πcos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。

(1))42cos(2)(1π-=t t f (2)22)]6[sin()(π-=t t f(3))(2cos 3)(3t tU t f π=解:周期信号必须满足两个条件:定义域R t ∈,有周期性,两个条件缺少任何一个,则就不是周期信号了. (1) 是, s T 32π=; (2))]32cos(1[213)(π--⨯=t t f ,故为周期信号,周期s T ππ==22; (3) 因0<t 时有0)(=t f 故为非周期信号。

1-6 化简下列各式:(1)⎰∞--td ττδ)12(; (2))()]4[cos(t t dt d δπ+; (3)⎰∞∞-tdt t t dt d sin )]([cos δ解:(1) 原式 =)21(21)21(21]21(2[-=-=-⎰⎰∞-∞-t u d d t t ττδττδ(2) 原式 =)('22)](4[cos t t dt d δδπ=∙ (3) 原式 =⎰∞∞-==-=-=-=1|cos )](sin'[sin )('00t t t tdt t δ 1-7 求下列积分:(1)⎰∞--0)]2()3(cos[dt t t δϖ; (2)⎰∞+0)3(dt t e t j δω(3)⎰∞--⨯002)(dt t t e t δ。

解:(1) 原式 = ϖϖϖcos )cos()]302(cos[=-=- (2) 原式 =⎰∞--=⨯=+03300)3(ϖϖδj j e dt t e(3) 原式 =⎰∞---=⨯=-022021)(tt t e e dt t t e δ1-8 试求图题1-8中各信号一阶导数的波形,并写出其函数表达式,其中)]5()([2cos)(3--=t U t U t t f π。

信号与系统精品课程习题及答案

信号与系统精品课程习题及答案

第一章习题1.函数式x(t)=(1-)[u(t+2)-u(t-2)]cos所表示信号的波形图如图()(A) (B) (C) (D)2 .函数式的值为()( A )0 ( B ) 1 ( C ) 2 ( D )3 .已知x(3-2) 的波形如图1 所示,则x (t )的波形应为图()图1 (A)(B)(C)(D)4.已知信号x[n]波形如图2,信号的波形如图()图2 (A)(B)(C) (D)5 .卷积积分等于()(A)(B)-2 (C)(D)-2 (E)-26 .卷积和x[n] u[n-2] 等于()( A )( B )( C )( D )( E )7 .计算卷积的结果为()( A )( B )( C )( D )8 .已知信号x(t) 的波形如图3 所示,则信号的波形如图()图3 (A)(B)(C) (D) 题九图9 .已知信号x (t )如图所示,其表达式为()(A) (B)(C) (D)10 .已知x(t)为原始信号,y(t)为变换后的信号,y(t) 的表达式为()( A )( B )( C )( D )11 .下列函数中()是周期信号( A )( B )( C )( D )( E )12 .函数的基波周期为()。

( A )8 ( B )12 ( C )16 ( D )2413 .某系统输入—输出关系可表示为,则该系统是()系统。

( A )线性( B )时不变( C )无记忆( D )因果( E )稳定14 .某系统输入—输出关系可表示为,则系统为()系统。

( A )线性( B )时不变( C )无记忆( D )因果( E )稳定15.某系统输入—输出关系可表示为,则系统为()系统。

( A )线性( B )时不变( C )无记忆( D )因果( E )稳定16.某系统输入—输出关系可表示为,则系统为()系统。

( A )线性( B )时不变( C )无记忆( D )因果( E )稳定17 .某系统输入—输出关系可表示为,则系统为()系统( A )线性( B )时不变( C )无记忆( D )因果()稳定18 .下列系统中,()是可逆系统(A)y[n]=nx[n] (B)y[n]=x[n]x[n-1] (C)y(t)=x(t-4) (D)y(t)=cos[x(t)] ( E )y[n]=19 .如图系统的冲激响应为()( A )( B )( C )( D )20 .某系统的输入x (t )与输出y (t )之间有如下关系,则该系统为()(A)线性时变系统(B)线性非时变系统(C)非线性时变系统(D)非线性非时变系统21 .一个LTI 系统在零状态条件下激励与响应的波形如图,则对激励的响应的波形()(A) (B) (C) (D)22. 线形非时变系统的自然(固有)响应就是系统的()( A )零输入响应( B )原有的储能作用引起的响应( C )零状态响应( D )完全的响应中去掉受迫(强制)响应分量后剩余各项之和23 .零输入响应是()( A )全部自由响应( B )部分零状态响应( C )部分自由响应( D )全响应与强迫响应之差24 .下列叙述或等式正确的是()(A) (B)(C)若,则(D)x(t) 和h(t) 是奇函数,则是偶函数25.设是一离散信号,,,则下列说法( )是正确的(A) 若是周期的,则也是周期的(B) 若是周期的,则也是周期的(C) 若是周期的,则也是周期的(D) 若是周期的,则也是周期的26 .有限长序列经过一个单位序列响应为的离散系统,则零状态响应为()(A) (B)(C) (D)第二章习题1. 某LTI 连续时间系统具有一定的起始状态,已知激励为x (t )时全响应,t 0 ,起始状态不变,激励为时,全响应y (t )=7e +2e ,t 0 ,则系统的零输入响应为()( A )( B )( C )( D )2 .微分方程的解是连续时间系统的()(A) 零输入响应(B) 零状态响应(C) 自由响应(D) 瞬态响应(E)全响应3 .单位阶跃响应是()(A) 零状态响应(B) 瞬态响应(C) 稳态响应(D) 自由响应(E) 强迫响应4 .已知系统如图所示,其中h (t) 为积分器,为单位延时器,h (t) 为倒相器,则总系统的冲激响应h (t) 为()( A )( B )( C )( D )5 .如图所示电路以为响应,其冲激响应h (t) 为()(A) (B)(C) (D)6. 某LTI 系统如图所示,该系统的微分方程为()(A ) (B)(C) (D)7 .已知系统的微分方程, 则求系统单位冲激响应的边界条件h(0 ) 等于()(A) -1 (B) 0 (C) 2 (D) +18 .已知系统的微分方程则系统的单位冲激响应为()(A) (B) (C) (D)9 .已知描述系统的微分方程和初始状态0 值如下;y (0 ) =2 ,, , ,则初始条件0 值为()(A) (B)(C) (D)10 .已知描述系统的微分方程和初始状态0 值如y(t) +6 y (t) +8 y (t) =x (t) +2x (t) ,y (0 ) =1 ,y (0 ) =2 ,x (t) =(t )则初始条件0 值为()。

信号与系统课后习题与解答第一章

信号与系统课后习题与解答第一章

1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。

1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。

解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。

1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。

解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。

(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。

由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。

(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。

信号与系统课程习题与解答

信号与系统课程习题与解答

《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。

若:求直流分量大小以及基波、二次和三次谐波的有效值。

解:直流分量⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=n b)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-==)(21T n Sa T E a F n n πςτ== 基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。

解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。

信号与系统习题课(郑君里)

信号与系统习题课(郑君里)

d2 d d g (t ) g (t ) g (t ) u (t ) u (t ) (t ) u (t ) dt 2 dt dt
起始状态: 其解的形式为: 对

g (0 ) g (0 ) 0
g (t ) Ae
1 3 ( j )t 2 2
Ae
1 3 ( j )t 2 2

5t
C1 e1 ( )d C2 e2 ( )d

5
5t
C1r1 (t ) C2 r2 (t )
由于
e(t t0 ) e( t0 )d

5t


线性的
t0 a

5t t 0

e(a)da
5 ( t t 0 )

(t ) et u(t )
第二章
习题 2-4
连续时间系统的时域分析
2 2 2 0 (1)系统的特征方程: 特征根为:1 1 j, 2 1 j t 零输入响应的形式: rzi (t ) e ( A1 cost A2 sin t ) 将 r (0 ) 1, r(0 ) 2 代入上式,求出常数:
q(t ) a1q(t ) a0q(t ) e(t )
将代入原微分方程,得

q (t ) 和 r (t )

满足:
r (t ) b0q(t ) b1q(t )
将和用方框图实现,得到如下系统仿真框图
b1
e (t )

q(t )

q(t )


r (t )
a1

C1r1 (t ) C2 r2 (t ) C1 sin[e1 (t )]u(t ) C2 sin[e2 (t )]u(t )

信号与系统第一章习题

信号与系统第一章习题

(2)
1 2,为时变系统
X
图解说明
xt
1
x t
经系统 1 2
O 1t
O
右移1
2t
x t 1 12 O1
第 17 页
3t
xt
xt 1
1
右移1 1
经系统
x t 1 1 2
O 1t
O 1 2t
O
2
4t
X
例1-7
第 18

系统的输入为x(t),输出为y(t),系统关系如下,判断系统是否
是因果系统。
X
例1-6
第 16

判断系统 yt x t 是否为线性时不变系统?
2
此系统的作用是展宽输入系统的信号,一切变换都是 对t而言
xt
经系统, t t 2
x t 2
时移, t t0
x t t0 2
(1)
xt 时移, t t0
xt t0
经系统, t t 2
x
t 2
t0
X
例1-5
第 14

判断方程 yt x2t 描述的系统是否为线性系统?
在检验一个系统的线性时,重要的是要牢记:系统必须 同时满足可加性和齐次性。
设x1t, x2t为两个输入信号
先经系统
x1t y1t x12 t
x2 t y2 t x22 t
再线性运算
ay1t by2t ax12t bx22t
2
1
O 1 2 3t
d f 6 2t
dt
1
(1) (1)
3
O 12
t
(2)
对信号的波形进行微分变换时, 应注意在函数的跳变点处会出 现冲激信号。

[理学]信号与系统第四版课后习题燕庆明主编

[理学]信号与系统第四版课后习题燕庆明主编

《信号与系统》(第四版)习题解析高等教育出版社2007年8月目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (24)第5章习题解析 (32)第6章习题解析 (42)第7章习题解析 (50)第8章习题解析 (56)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。

](a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为 )()(t i R t u R R ⋅=t t i Lt u L L d )(d )(= ⎰∞-=t C C i C t u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S RS L S C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

信号与系统习题课

信号与系统习题课

dg (t ) = 2e −2t u (t ) 解: 系统冲激响应 h(t ) = dt 2 系统函数 H ( s ) = L [ h(t ) ] = s+2
R( s ) 1 s − 1 ( s + 2) − 1 ( s + 2)2 E ( s) = = H (s) 2 ( s + 2) 1 12 = − s s+2
2-12 有一系统对激励为 e ( t ) = u( t ) 时的完全响应 1 为 r ( t ) = 2e−tu( t ) ,对激励 e2 ( t ) =δ ( t ) 时的完全响应 1 为 r2 ( t ) =δ ( t ) ,求 (1)该系统的零输入响应 rzi ( t ) ; ) (2)系统的起始状态保持不变,求其对激励为 )系统的起始状态保持不变, e3 ( t ) = 2e−tu( t ) 的完全响应 r ( t ) 3
3-27 利用微分定理求图示半波正弦脉冲 f ( t ) d2 f ( t ) 2π 的频谱。 及其二阶倒数 2 的频谱。 ω =
f (t )
E
dt
1
f '(t )
Eω1 t
O
f '' ( t )(E ω1)源自ω1T(E ω1)
t
O -E ω1
2
O 3-27图
T/2
t
-Eω1
T/2
T/2
a
b
• 解
f ( t ) 的一阶及二阶导数的波形如图a,b所示, 由b可看出:
ωT −j 2 2 • 由微分定理 ( jω ) F (ω ) = −ω1 F (ω ) + Eω1 1 + e ωT −j 2 2 2 (ω1 − ω ) F (ω ) =Eω1 1 + e ωT −j 2 E ω1 1 + e F (ω ) = 从而: (ω12 − ω 2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解出 K1= 3, K2 = -2 ∴ 零输入响应为 yx(t) = 3 e-t - 2 e-4t
by wky
习题 3-6 (2)
已知系统的微分方程为 y’’(t) +4 y’(t) + 4 y(t) =3 f ’(t) + 2f(t), t >0; 初始状态y(0-) =-2,y’(0-) =3,
by wky
(3) 零状态响应 uCf(t) = f (t)* h(t)
= (e0 -1/2e-3t ) - (e-t -1/2e-t )
= (1 - 1/2e-t -1/2e-3t) u(t)
(4) 完全响应=零输入响应 + 零状态响应 uC(t) = uCx(t) + uCf(t)
= e-t u(t) + (1 - 1/2e-t -1/2e-3t) u(t)
t
(t-2) u(t) t-2
-2
by wky
2-4 利用单位阶跃信号u(t)表示下列信号 (a)
f(t) 2
-2
0
2
t
f(t)=(t +2) u(t +2) u(-t) + 2 u(t) u(2-t) = (t +2)u(t +2) --t u(t)] -2u(t -2) +2)[u(t +2) u(t) + 2[u(t) -u(t -2)]
u(t)
t -1
f(t) 1
0 -1 1 t
-1
-2
- 2 u(t-1)
by wky
2-1 定性绘出下列信号的波形
(2)
f(t) = u(t+1) - 2u(t) + u(t-1)
1
u(t+1) u(t-1) 1 - 2u(t)
by wky
f(t) 1
t -1 0 -1 1 t
-1
0 -1
2-1 定性绘出下列信号的波形
(2)
f(t) = u(t+1) - 2u(t) + u(t-1) f(t) = u(t+1) - u(t) -[u(t) - u(t-1)] 另一种思路:
f(t)Βιβλιοθήκη u(t+1) - u(t)=?
1 -1 0 -1
by wky
u(t) - u(t-1)=? -[u(t) - u(t-1)]=?
1
t
2-1 定性绘出下列信号的波形
利用冲激函数的筛选特性:e-3t u(t) yf(t) = h(t) * f(t) = t f (t) d (t) = f(0) d(t) 得 K d(t) = d(t),即 K =1
by wky
习题 3-7 (5)
已知连续时间LTI系统的微分方程为 y’’(t) +4 y’(t) + 3 y(t) = f(t), t >0; 求系统在输入激励 f(t) = e-2tu(t)作用下系统 的零状态响应yf(t)。 解:(1) 系统特征方程为 s2+4s+3=0 ,
by wky
2-10 已知信号波形, 绘出下列信号波形
f(t) 2 1 2 1
f(-t)
-3 -2 -1 0
1
2 3 t -3 -2 -1 0
2
1 2 3 t
2 f(t+2)
f(-3t)
1
-3 -2 -1 0
1
1 2 3 t -3 -2 -1 0 1 2
by wky
3 t
2-10 已知信号波形, 绘出下列信号波形
by wky
2-5 写出下列信号的时域表达式 (a)
-1 f(t) 1 0 -1 1 t
f(t)= t [u(t) -u(t -1)] +u(t-1) 或者 f(t)= t u(t)u(1-t) +u(t-1)
by wky
2-5 写出下列信号的时域表达式 (c)
-1 f(t) 1 0 -1 1 t
解出 K1= -2 , K2 = -1 ∴ 零输入响应为 yx(t) = (-2-t) e-2t
by wky
习题 3-7 (1)
已知连续时间LTI系统的微分方程为 y’(t) + 3 y(t) = f(t), t >0;
求系统在输入激励 f(t) = e-3tu(t)作用下系统 的零状态响应yf(t)。 解: (1) 系统特征方程为 s+3=0 ,
by wky
2-4 利用单位阶跃信号u(t)表示下列信号 (b)
3 2 1 -3 -2 -1 0 1 2 3 t f(t)
u(t+1)u(1-t) u(t+2) u(2-t)
u(t+3) u(3-t)
f(t)=u(t+3)u(3-t) +u(t+2)u(2-t)+u(t+1)-u(t-1) =u(t+3)-u(t-3) +u(t+2)-u(t-2) +u(t+1)u(1-t)
f(t) 2 1 2 1
f(-t)
-3 -2 -1 0
1
2 3 t -3 -2 -1 0
2
1 2 3 t
2 f(5-3t)
f(-3t)
1
-3 -2 -1 0
1
1 2 3 t -3 -2 -1 0 1 2
by wky
3 t
连续LTI系统的响应
经典时域分析方法 全解=齐次解+特解
卷积法
固有响应 强迫响应
Signals and Systems
习题课
by wky
《信号与系统》习题课
第2章 信号的时域分析 第3章 系统的时域分析 第4章 周期信号的频域分析 第5章 非周期信号的频域分析 第6章 系统的频域分析
by wky
2-1 定性绘出下列信号的波形
(1) f(t) = u(t) - 2 u(t-1) 1 -1 0 1
by wky
【采用经典法:】
齐次解 uCh(t) = K1e-t 特解 uCp(t) = A+Be-3t 特解代入原微分方程 -3Be-3t + A+Be-3t = 1+e-3t 解得 A = 1, B =-1/2 ∴ 特解 uCp(t) = 1 -1/2e-3t 全解(完全响应)=齐次解 + 特解 uC(t) = K1e-t + (1 -1/2e-3t )
∴ y(t) + y (t) + ½ e-t 全解y(t) = yh(t)= ½pe-3t = Ke-3t + t e-3t 根据初始条件有y(0)= K=1, ∴ y(t) = e-3t + t e-3t = (1+ t) e-3t
by wky
习题 3-6 (1)
已知系统的微分方程为 y’’(t) +5 y’(t) + 4 y(t) =2 f ’(t) + 5f(t), t >0; 初始状态y(0-) =1,y’(0-) =5,
求系统的零输入响应yx(t)。
解:系统特征方程为 s2+4s+4=0 ,
解得特征根 s1= s2= -2
by wky
零输入响应与齐次解的形式相同: yx(t)= (K1 + K2t)e-2t 根据初始状态,有 y(0-) = yx(0-) = K1= -2 y’(0-) = y’x(0-) = -2K1 + K2 = 3
f(t)=-t[u(t+1) -u(t)] + tt u(t) u(1-t) = -t u(t+1)u(-t) + [u(t) -u(t-1)]
by wky
2-5 写出下列信号的时域表达式 (e)
-1 f(t) 1 0 -1 1 t
f(t)= u(t+1)u(-t) +(1-2t)u(t) -u(t-1)] - u(t -1) f(t)= u(t+1) -u(t) +(1-2t) [u(t) u(1-t) - u(t -1)
解得特征根 s=-3, 且满足n>m
by wky
冲激响应与齐次解的形式相同: h(t)= Ke-3t u(t) 代入原微分方程 ,有 h(t)= e-3t u(t) ∴ 冲激响应 Ke-3t d(t)-3 Ke-3te-3tu(t) 时,零状态响应 u(t)+ 3 Ke-3t u(t)= d(t) (2) 当输入f(t) = 即为 Ke-3t d(t) = d(t)
完全响应=零输入响应+零状态响应
齐次解中0-时刻 对应的分量 卷积积分
by wky
例题:简单RC电路
已知 f (t) = (1+e-3t )u(t) 1W + 初始条件uC(0-)=1V f (t) 求uC(t)。 - 解: 根据电容电流 iC(t)=C duC(t)/dt 得微分方程 uC’(t) + uC(t)= f (t) 特征方程 s + 1 = 0 得特征根 s1=-1
by wky
2-4 利用单位阶跃信号u(t)表示下列信号 (c)
f(t) 2
0
1
2
3
4
t
-1 f(t) = 2u(t-1)u(2-t) -u(t-2)u(3-t) +u(t-3)u(4-t) =2[u(t-1)-u(t-2)] -[u(t-2)-u(t-3)] +u(t-3)-u(t-4) =2u(t-1) -3u(t-2) +2u(t-3) -u(t-4)
(4) f(t) = d (t-1) - 2d (t-2) + d (t-3) 2 1 -3 -2 -1 0 -1 f(t)
相关文档
最新文档