坡印廷定理详解sc1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坡印廷定理详解
坡印廷定理,英文表示Poynting theorem,是1884年约翰·坡印亭(John Poynting)提出的关于电磁场能量守恒的定理。他认为电磁场中的电场强度E与磁场强度H叉乘所得的矢量,即E×H=S,代表电磁场能流密度,表示一个与垂直通过单位面积的功率相关的矢量。人们称这个矢量S为坡印廷矢量。坡印廷定理表明,在电磁场中的任意闭合面上,坡印廷矢量的外法向分量的闭面积分,等于闭合面所包围的体积中所储存的电场能和磁场能的时间减少率减去容积中转化为热能的电能耗散率。
坡印廷定理是根据麦克斯韦方程组(包含法拉第电磁感应定律及改进的安培定律等)推导出来的。
首先考虑法拉第电磁感应定律(公式5),对其两边取B的点积得公式6;然后利用改进的安培定律(公式7),对其两边取与E的点积,得公式8。然后将等式(8)减去(6)并将恒等式(9)带入,得到等式(10)。由于坡印廷矢量S定义为公式(11),带入(10)化简就可以得到等式(4)。这就推导出了表征电磁能量守恒关系的坡印廷定理。
公式
坡印廷定理的微分形式参见公式(1),式中S是坡印廷矢量,表示能量的流动;J是电流密度;E 是电场强度。真空中的能量密度u的表达式参见公式(2),式中ε0是真空电导率,μ0是真空磁导率。由于电场不做功,(1)式的右端便给出了电磁场每秒·立方米所做的总功的负值。
坡印廷定理的积分形式参见式(3),dV是包围着体积V的曲面。
积分形式的坡印廷定理
对于由闭合曲面A所限定的体积V,有:
这就是电源外区域的、积分形式的坡印廷定理。它的含义是:垂直穿过闭合面A进入体积V的功率,等于体积内电磁储能的增长率与由传导电流Jc引起的功率损耗之和。更一般的情况是:
式中Ec为电源中的局外场强,Jc为传导电流,σ为体积V内介质的电导率,ρ为运动电荷的电荷密度,v为该电荷的运动速度,E=J c/σ-E e为总场强。整个方程的含义是:外源提供的功率等于体积v内电磁能量的增加率、传导电流的功率损耗、运动电荷作功耗损的功率、垂直穿过曲面A向外界输送的功率之
总和。
3.2微分形式的坡印廷定理
这是就场中某一点而言的。式中