电网络

合集下载

电网络理论 第二章图论

电网络理论    第二章图论

电网络理论第二章图论第二章图论图论是电网络理论的重要分支,主要研究对象是图。

图是由节点和边构成的一种抽象模型,被广泛应用于计算机科学、数学和其他相关领域。

本章将介绍图论的基本概念、常用算法以及在电网络中的应用。

1. 图的定义和表示方式图由节点(也称为顶点)和边组成。

节点表示图中的元素,边表示节点之间的关联关系。

图可以分为有向图和无向图两种类型。

有向图中的边有方向性,表示从一个节点到另一个节点的单向关系。

无向图中的边没有方向性,表示节点之间的无序关系。

图可以用邻接矩阵或邻接表来表示。

邻接矩阵是一个二维数组,用于表示节点之间的关系。

邻接表则是由链表构成的数组,每个节点对应一条链表,链表中记录了该节点与其他节点的关系。

2. 图的基本术语和性质图论中有一些基本的术语和性质,包括:- 路径:指从一个节点到达另一个节点所经过的一系列边和节点。

- 简单路径:路径中不含有重复节点的路径。

- 环:起点和终点相同的路径。

- 连通图:图中任意两个节点之间都存在路径的图。

- 强连通图:有向图中任意两个节点之间都存在路径的图。

- 子图:由图中部分节点和对应的边组成的图。

- 度:节点所连接的边的数量。

- 入度和出度:有向图中节点的入边和出边的数量。

3. 常用图论算法图论中有许多重要的算法,下面介绍其中几个常用算法:- 广度优先搜索(BFS):用于查找图中从起点到终点的最短路径,同时可以用于遍历图的所有节点。

- 深度优先搜索(DFS):用于遍历图的所有节点,通过递归的方式沿着路径向前搜索,直到没有未访问的节点。

- 最小生成树(MST):通过连接图中的所有节点,使得生成的树具有最小的总权重。

- 最短路径算法:例如迪杰斯特拉算法和贝尔曼-福特算法,用于查找图中两个节点之间的最短路径。

- 拓扑排序:用于对有向无环图进行排序,使得图中的节点满足一定的顺序关系。

4. 图论在电网络中的应用图论在电网络领域有广泛的应用,包括:- 网络拓扑分析:通过图论算法可以对电网络的拓扑结构进行分析,了解网络中节点之间的连接关系。

电网络分析

电网络分析

u(t ) Ri (t )

(1-1-9)
i(t ) Gu(t )
(1-1-10)
1.1.2 电容元件
如果一个 n 端口元件的端口电压向量 u 和端口电流向量 i 之间为代数成分关系:


f C (u (t ), q (t ), t ) 0
(1-1-11)
则称该元件为电容性 n 端口元件,或 n 端口电容元件。下面侧重研究一端口(二端)电 容元件。
i(t )
得到下列几种 u q 特性的情形:
dq(t ) dt
(1-1-17)
(1)压控性非线性时变电容。元件特性为:
q(t ) f (u(t ), t )
-4-
(1-1-18)
则 u i 关系方程为:
i(t )
d f (u, t ) du f (u, t ) f (u (t ), t ) dt u dt t
q(t ) C (t )u(t )
(1-1-15)
式中 C (t ) 是线性电容元件于 t 时刻的电容之值。如果 C (t ) 是不随时间而改变的常数,即电 容元件特性方程为:
q(t ) Cu(t )
(1-1-16)
则该电容元件称为时不变的,反之则是时变的。如不特别声明,一般电容器的电路模型就是 线性时不变电容。 对于电网络的四个基本变量 i 、 u 、 q 、 ,在网络分析与综合以及工程实践中经常使 用的是电压与电流这两个便于检测的变量, 可称为常用网络变量。 由于电容元件的特性不是 由常用网络变量 i 、 u 关系来定义的,故有必要研究电容元件于电压电流之间的关系。为了 根据电容元件的 u q 特性得到 u i 关系方程,应用关系式:

电网络理论

电网络理论

电网络理论电网络理论是电力系统的基础理论,通过对电路中电流、电压、功率和能量等参数的分析和研究,以及电路中的元件如电阻、电容和电感等的特性和相互关系,来研究电路中的电能传输、控制和转换问题。

本文将从电网络的基本原理、电路分析方法、交直流电路、三相电路和磁电路等方面来介绍电网络理论。

一、电网络的基本原理电网络是由电路元件按照一定的连接方式组成,在电路中产生或传输电能的一种电学系统。

它包含基本电路、复合电路和控制电路等三种基本类型。

其中,基本电路只由一种电路元件构成,例如电阻、电容和电感等单元,例子如图1所示。

图1:基本电路复合电路由多种电路元件组合而成,可以分为串联、并联、树型等不同结构,例子如图2所示。

图2:复合电路控制电路则在复合电路的基础上增加了逻辑控制包括开关、计算机等,在实现空间、时间、功能上高度复杂,例子如图3所示。

图3:控制电路每种电路元件都有其对电能的特性消耗、储存、转换的贡献,而每种电路结构规则所连接的电路元件也影响了电路的性能特征。

因此,电网络理论的基本任务是分析和预测电路中电信号之间的关系和影响。

二、电路分析方法为了研究电路中的各种性质,需要采用适当的方法来分析电路。

电路分析方法主要分为两大类,即基本法和派生法。

1.基本法基本法是指对简单电路采用基本关系式和物理学原理求解电路中的电压、电流和功率各种参数的方法。

其中包括:(1)基尔霍夫电压定律法和基尔霍夫电流定律法,用于求解电路中各节点的电压和电流。

(2)欧姆定律法,用于求解电路中电阻元件的电流和电压。

(3)功率方程法,用于求解电路中的功率分配和传输。

(4)电荷守恒定律法,用于求解电路中的电荷分布和电场特性等。

如图4所示的简单电路,可以采用基本法来计算其中的电路参数。

图4:简单电路2.派生法派生法是指通过用已知电路中的节点电压、电流或电阻替换未知元件来简化复杂电路求解问题的方法。

其中的常用方法有:(1)串并联电路转换,用于求解串联、并联电路特性和电路等效性分析。

电网络理论

电网络理论
二端电容元件 的成分关系 fC (u(t), q(t), t) 0
又称为二端电容元件的特性方程。
非线性 荷控电容 u(t) h(q(t), t)
二端电
容元件 压控电容 q(t) f (u(t), t)
单调型、 时不变、 时变
电容元件的电压与电流之间的关系
(1)压控型非线性时变电容
q(t) f (u(t),t)
dt
(1)流控型非线性时变电感 (t) f (i(t), t)
u(t) d f (i(t), t) f (i, t) di f (i, t)
dt
i dt t
(2) 磁控型非线性时变电感
i(t) h( (t), t)
di(t) h( , t) u(t) h( , t)
dt
t
(3)线性时变电感
t0
ik
(
)d
qk (t0 )
t
t0 ik ( )d
动态无关的网络变量偶:
(uk,ik)、(uk,qk)、(ik,k)和(k,qk)这四
种组合的二变量之间存在预先规定的依赖于元件 N的关系。
由一对 动态无关的网络变量向量构成的向量偶
称为动态无关变量向量偶,记为
(ξ, η )(u,i), (u,q), (i,ψ ), (ψ ,q)
泛地应用于整流、变频、调制、限幅等信号处理的许 多方面。
由例1可以看出,在时变偏置电源作用下,一个非线性 时不变电阻元件的小信号等效电阻是线性时变的,这是
一个十分有用的结果。显然,如果希望得到线性时不变 的小信号等效电阻,只需将偏置电源换为直流电源即可。
例2说明流控非线性电阻可以改变频率。即流控非线 性电阻元件的电压与电流虽然都是正弦的,但频率不 同。

2023年博士生入学考试初试科目考试大纲科目名称:电网络理论

2023年博士生入学考试初试科目考试大纲科目名称:电网络理论

2023年博士生入学考试初试科目考试大纲
科目名称:电网络理论
一、考试总体要求
《电网络理论》是介绍现代电路分析中一些较为成熟和先进的内容,是了解现代电路理论的“窗口”。

牢记基本概念,掌握基本方法,与大学电路原理的内容有机地联系在一起。

掌握与电气工程及电子工程相关的电路理论的一些新思想、新方法、新元件和新进展。

综合利用所学知识解决复杂电路分析计算问题。

二、考试内容
1.网络理论基础:网络元件的新体系,网络的互联规律性以及网络及元件的基本性质,如(1)线性与非线性、(2)无源性和有源性、(3)时变性与时不变性、(4)互易性与非互易性等。

2.简单非线性电路:非线性电阻电路的基本概念和常用分析方法以及一、二阶非
线性动态电路的分析方法。

重点掌握低阶自治电路的定性分析。

3.多口网络:含源及无源多口网络的常见矩阵表示法,重点掌握不定导纳矩阵的计算方法及其应用。

4.电路的代数方程:电路代数方程的矩阵形式,混合分析法,稀疏表格法和改进节点法,重点掌握混合分析法和改进节点法。

5.动态电路的时域方程:网络分析的状态变量法,状态方程的列写,线性状态方程的解析解法,重点掌握含有高阶元件、非线性元件或非常态电路的状态方程的列写。

6.网络的灵敏度分析:灵敏度分析的意义和在本专业分析计算中的主要应用,重点掌握伴随网络法。

三、考试题型
证明题、计算题、论述题
四、参考书目
1.梁贵书.高等电网络.讲义..2..高等电力网络分析. 2007。

电网络分析与综合课后答案

电网络分析与综合课后答案

电网络分析与综合课后答案在现代社会中,电子网络无疑是我们生活中不可或缺的一部分。

与此同时,电网络分析也成为了一个越来越重要的领域。

本文将探讨电网络分析的基本概念以及综合课后答案的重要性。

电网络分析是关于电学电路中的电气量、电路结构、电气特性及其相互关系的分析解决方法。

电网络由电气元件按一定的规则所组成。

在任何一个电网络分析中,我们都希望能够清楚地了解电路中各个元件之间的相互关系。

在电网络分析中,我们会用到许多基础概念。

其中一个重要的概念是欧姆定律,它指出电流与电压成正比。

此外,还有基尔霍夫定律,它是用来研究串联电路和并联电路的定律,它指出在一个闭合电路中,进入节点的总电流等于离开节点的总电流。

这些基础概念是电网络分析的基础,任何一个电网络问题都需要依靠这些概念来解决。

电网络分析在工程学,特别是电子工程学,是一个非常重要的领域。

电网络分析不仅可以帮助设计和修复电路,还可以帮助我们理解电信号如何在一个系统中流动,并且可以通过改变电路的结构或参数来实现特定的功能。

此外,电网络分析还可以用于优化电路,使其具有更好的性能,或者使用更少的元件来实现同样的功能。

对于学习电网络分析的学生来说,综合课后答案是非常重要的。

在综合课后答案中,我们可以通过对各种问题的解决方法进行分析,来加深对电网络分析的理解。

此外,在综合课后答案中,许多常见的电路问题都有相应的解决方法,学生们可以从中学到许多实用的技巧和方法。

综合课后答案还可以帮助学生纠正自己的错误。

在学习电网络分析的过程中,很容易犯一些小错误,如计算错误或错误的符号。

这些错误可能会导致答案完全不同。

在综合课后答案中,学生可以和正确答案进行比较,以找出自己的错误,并在下一次练习中避免这些错误。

不仅如此,综合课后答案还可以帮助学生提高他们的思考能力。

在解决电网络问题之前,学生需要仔细考虑问题,并选择适当的方法和技巧来解决问题。

这种思考过程可以帮助学生建立自己的思维模式,并促进他们的创造性思维能力。

电网络理论简介

电网络理论简介
电网络故障诊断
电网络理论简介
发展轨迹
1930年前物理学中电磁学的一个分支(欧姆定 律)、基尔霍夫定律、 等效电源定理、复数理论 用于电路理论、星形--三角形变换、 对偶原理、 阻抗概念、电气滤波器概念、对称分量法、理想 变压器概念、滤波器实现、四端网络和黑盒子概 念、瞬态响应概念
3.引入了新型元件模拟现代电路
4.引入了冲激函数到时域分析中
5.引入了离散信号ቤተ መጻሕፍቲ ባይዱ
6.在计算方法上引入了“系统步骤”
电网络理论简介
电网络理论内容:
输入 结构、参数 输出
(激励)
(响应)
电网络分析
1.已知输入、结构、参数,求输出
2.已知输入、输出,求结构、参数
3.已知输入、输出、结构,求结构、参数
电网络综合
电网络理论简介
回顾:电路理论
研究任务
发展轨迹 •经典电路理论、近代电路理论
电网络理论简介
1.网络:数学意义 物理意义
电网络理论简介
2.电网络理论(电路理论)、系统理论
经典电路理论 近代电路理论 电路与系统理论
电网络理论简介
电网络理论的特征:
1.引入了一维拓扑学的成果
2.引入了动力学中状态变量和状态空间的概念

电网络分析重点知识总结

电网络分析重点知识总结

励骏求职加油站电网络分析重点知识复习一、课程性质及学分“电网络理论”是电气工程类硕士研究生的学科基础课,3学分。

二、课程内容1 电网络概述1.1 电网络性质。

图论术语和定义1.2 树、割集1.3 图的矩阵表示*1.4 矩阵形式的基尔霍夫定律*2 网络矩阵方程2.1 复合支路法、修正节点法、撕裂法*#2.2 含零泛器网络的节点电压方程2.3 支路法3 多端和多端口网络3.1 多端口网络的参数3.2 含独立源多端口网络3.3 多端口网络的不定导纳矩阵* 4 网络的拓扑公式4.1 用节点导纳矩阵行列式表示开路参数4.2 无源网络入端阻抗、转移阻抗的拓扑公式* 4.3 Y参数的拓扑公式* 4.4 用补树阻抗积表示的拓扑公式* 4.5 不定导纳矩阵的伴随有向图*# 4.6 有源网络的拓扑公式*# 5 状态方程5.1 状态方程的系统编写法*5.2 多端口法5.3 差分形式的状态方程* #5.4 网络状态方程的解励骏求职加油站6 无源网络的策动点函数6.1 归一化与去归一化6.2 无源网络策动点函数、无源导抗函数的性质* #6.3 LC、RC、RL、RLC一端口网络7 传递函数的综合7.1 转移参数的性质、传输零点7.2 梯形RC网络、一臂多元件梯形RC网络*7.3 LC网络、单边带载LC网络、双边带载LC网络 8 逼近问题和灵敏度分析8.1 巴特沃思逼近*8.2 切比雪夫逼近、倒切比雪夫逼近8.3 椭圆函数8.4 贝塞尔-汤姆逊响应8.5 频率变换8.6 灵敏度分析*#9 单运放二次型有源滤波电路9.1 单运放二次型电路的基本结构9.2 Sallen-Key电路*9.3 RC-CR变换电路 9.4 正反馈结构的带通电路9.5 实现虚轴上的零点 9.6 负反馈低通滤波器、负反馈带通滤波器 9.7 全通滤波器 9.8 单运放二次型通用滤波器*10 直接实现法10.1 仿真电感模拟法10.2 频变负阻法10.3 梯形网络的跳耦模拟法*10.4 带通跳耦滤波器励骏求职加油站10.5 状态变量法10.6 入端导纳法*10.7 多运放双二节电路 11 现代电路理论分析方法介绍11.1 概述11.2 开关网络的分析 11.3 模拟电路故障诊断 11.4 人工神经网络电路 复习建议:大家根据这部分重点大纲内容,找到相关的章节去看,不但要掌握一些重点的概念,还要相关章节学会之后要尝试会做题,这部分题出计算题的可能性非常大。

电网络理论概述

电网络理论概述

电网络分析综述电路CAD技术是电路分析、设计、验证的有力工具,随着集成电路特征尺寸进入纳米时代,电路的规模越来越大,工作频率越来越高,芯片上市时间越来越短,以集成电路CAD为基础的电子设计自动化(EDA)已经成为提高设计效率、优化电路性能,增加芯片可靠性和提高芯片合格率的新兴产业,渗入到集成电路设计的每一阶段。

电路CAD已经有近40年的历史,涉及电路理论、半导体器件物理、线性与非线性方程组的求解方法、最优化涉及、数值分析和计算机软件等多个领域。

纳米时代的到来既为电路CAD技术带来了机遇,也使之前面临更大的挑战。

随着集成电路与计算机的迅速发展,以电子计算机辅助设计为基础的电子设计自动化技术已经成为电子学领域的重要学科,并已形成一个独立的产业。

它的兴起与发展,又促进了集成电路和电子系统的迅速发展。

当前,集成电路的集成度越来越高,电子系统的复杂程度日益增大,而电子产品在市场上所面临的竞争却日趋激烈,产品在社会上的收益寿命越来越短,甚至只有一二年时间。

处于如此高速发展和激烈竞争的电子世界,电路设计工作者必须拥有强大有力的EDA 工具才能面对各种挑战,高效地创造出新的电子产品。

20世纪70年代到80年代初期,电子计算机的运算速度、存储量和图形功能还正在发展之中,电子CAD和EDA技术还没有形成系统,仅是一些孤立的软件程序。

这些软件在逻辑仿真、电路仿真和印刷电路板(PCB)、IC版图绘制等方面取代了设计人员靠手工进行繁琐计算、绘图和检验的方式,大大提高了集成电路和电子系统的设计效率和可靠性。

但这些软件一般只有简单的人机交互能力,能处理的电路规模不是很大,计算和绘图的速度都受限制。

而且由于没有采用统一的数据库管理技术,程序之间的数据传输和交换也不方便。

20世纪80年代后期,是计算机与集成电路高速发展的时期,也是EDA技术真正迈向自动化并形成产业的时期。

这一阶段,EDA的主要特点是:能够实现逻辑电路仿真、模拟电路仿真、集成电路的布局和布线、IC版图的参数提取与检验、印制电路板的布图与检验、以及设计文档制作等各设计阶段的自动设计,并将这些工具集成为一个有机的EDA系统,在工作站或超级微机上运行。

高等电力网络分析-基本概念

高等电力网络分析-基本概念

2)电感
i
L u

di uL dt
u,i取关联参考 方向
j L I U
jLI jx I U L xL L ——感抗
du iC dt
u,i取关联参考 方向
3)电容
i C
u
1 j C I
U

jCU I 1 xC C
bt
bl ( n 1)b
qij 1
qij 0
C1 [Q f ] E QL Cn 1

C1
按T-L编号的割集矩阵矩阵
y1 y2 C2 y4 y3 y5
C3
1 0 0 1 0 Q 0 1 0 0 1 0 0 1 1 1
树支数目=独立节点数目=n
如上图T1、T2中:
T1:
y6
T2
y6

y4
y1

y3y2③①来自y4y1②
y3
y2

y5
y5


( y4 , y5, y6 ) 为连支。
( y3 , y5, y6 ) 为连支
1.4 电力网络的的4个基本矩阵
1、关联矩阵A

y1
A表示节点与支路的关联关系。A 的元素 aij 1,1,0

z 1,2,1;2,3,2;2,0,3;1,0,4;3,0,5;1,3,6;
k1 0, Ak 2 , i 1
k 2 0, Ak1 , i 1
Ak1 , i 1, Ak 2 , i 1
§1.6 网络运行拓扑约束的电压、电流表示法
1 2 b 1 [ B] l

电网络分析与综合

电网络分析与综合
组成
电网络通常由输入、输出和中间环节三部分组成,其中中间环节可以包含多种 元件,如电阻器、电容器、电感器等。
电网络的基本元件
01
02
03
电阻器
电阻器是一种常见的元件, 其作用是限制电流的流动, 产生电压降。
电容器
电容器是一种储能元件, 可以存储电荷。在交流电 路中,电容器的容抗与频 率成反比。
电感器
电网络分析与综合
目 录
• 引言 • 电网络基础知识 • 电网络的分析方法 • 电网络的综合方法 • 电网络分析与综合的应用实例 • 电网络的发展趋势与展望
01 引言
主题简介
电网络分析
对电路中电压、电流和功率等电 气量的计算、分析和预测。
电网络综合
根据特定要求,设计和构建满足 特定性能指标的电路。
详细描述
通过对通信系统的电网络进行分析,可以优化信号传输路径,提高信 号质量和传输效率,确保通信系统的可靠性和稳定性。
总结词
通信系统的电网络分析在5G和未来通信技术的发展中具有重要意义。
详细描述
随着5G和未来通信技术的不断发展,电网络分析在优化信号传输、提 高频谱利用率等方面发挥着越来越重要的作用。
基尔霍夫电流定律指出,在任意时刻,流入节点 的电流之和等于流出节点的电流之和;基尔霍夫 电压定律指出,在任意回路上,各段电压的代数 和等于零。
诺顿定理
将一个复杂的电路等效为一个电流源(诺顿等效 电流)和一个电阻(诺顿等效电阻)的并联。
节点分析法
定义
节点分析法是一种通过求 解节点电压来分析电路的 方法。
步骤
先设定节点的参考电压, 然后根据基尔霍夫定律列 出节点电流方程组,求解 节点电压。
适用范围

电网络

电网络

第1篇网络图论第1章电网络概述第2章网络矩阵方程第3章网络撕裂法第4章多端和多端口网络第5章网络的拓扑公式第6章网络的状态方程电网络分析方法(重点:节点电压法及其应用)拓扑分析暂态分析第1章电网络概述1.1 电网络的基本性质1.2图论的术语和定义1.3树1.4割集1.5图的矩阵表示1.6关联矩阵、回路矩阵和割集矩阵之间的关系1.7 矩阵形式的基尔霍夫定律基本概念、性质矩阵表示1.1 电网络的基本性质物理模型V I P数学模型实际电系统研究对象分布参数和集中参数网络线性和非线性网络、时变和非时变网络、有源和无源网络、有损和无损网络、互易和非互易网络、性质解决问题网络分析、网络综合和网络诊断1.1 电网络的基本性质1.1.1 线性和非线性1.1.2 时变和非时变1.1.3 有源网络和无源网络1.1.4 有损网络和无损网络1.1.5 互易网络和非互易网络1.1.6 分布参数与集中参数电路传统线性网络1.1.1 线性和非线性3种定义:(1)含有非线性元件的网络称为非线性网络,否则为线性网络;(2)所建立的网络电压、电流方程是线性微分方程的称为线性网络,否则为非线性网络;(3)按输入与输出之间是否满足线性和叠加性来区分三者不完全等价线性叠加端口线性网络1.1.2 时变和非时变(1)含时变元件的网络称为时变网络,否则为定常网络;(2)建立的方程为常系数方程者为定常网络,否则为时变网络;(3)输入、输出间满足延时特性的网络为定常网络,否则为时变网络3种定义:()F t ()R t )(0t t F -)(0t t R -1.1.3 有源网络和无源网络[]12()()()()()k m t v t v t v t v t =T V []T 12()()()()()k m t i t i t i t i t =I T()()0t d τττ-∞≥⎰V I 关联参考方向无源半导体器件?1.1.4 有损网络和无损网络T()()0d τττ∞-∞=⎰VI ()()()()0-∞∞-∞∞=、、、V V I I 无损条件1.1.5 互易网络和非互易网络符合互易关系1.1.6 集中参数电路实际电路的几何尺寸远小于电路工作频率下的电磁波的波长。

电网络 - 第一章网络理论基础(1)

电网络 - 第一章网络理论基础(1)

例1-1:对图示三极管任选一端为参考 点则为二端口元件
b
c
e
3 容(允)许信号偶和赋定关系:
容(允)许信号流容(允)许信号偶,简称容许偶。记做:
u(t ) , i(t )
, 对n端口为: u(t ) , i(t )
容(允)信号偶相当于我们熟知的自变量的定义域和函数 值域的组合(构成的集合)。 赋定关系: 容(允)信号偶的全体称为赋定关系。
u 1
i1
多端口网络:按端口定义,二端网络一定是一端口(单口)网 络,四端网络不一定是二端口(一般不是)。如 果四端网络两对端子都满足端口条件,称为双口 (二端口)网络,是最简单的多口网络。如:理 变,运放,回转器等都是典型的双口网络。
(n+1)端元件→共地n端口元件 2
i2 i1
1
in n in 1
3.本课程的主要内容:
教材的第一章~第七章的大部分内容,计划 40学时,21周考,详见后面的教学安排。
4.要求:
掌握基本概念和基本分析计算方法。使对电网络的 分析在“观念”和“方法”上有所提高。
5.参考书:
肖达川:线性与非线性电路
电路分析 邱关源:网络理论分析(新书,罗先觉)
第一章 网络理论基础
dL (t ) di1 (t ) d 1 i1 (t ) L(t ) u1 (t ) dt dt dt d 2 dL (t ) di2 (t )dL (t ) di1 (t T ) u 2 (t ) i2 (t ) L(t ) i1 (t T ) L(t ) dt dt dt dt dt
4 网络及其元件的性质(一)(分类依据): 1) 集中性与分布性: 如果在任何时刻 t ,流入任一端子的电流恒等于其它端子流 出的电流的代数和,则该元件称为集中参数元件(简称集 中元件),否则称为分布参数元件(简称分布元件)。

电网络第六章网络函数与稳定性

电网络第六章网络函数与稳定性

电网络第六章网络函数与稳定性第六章网络函数与稳定性6.1 网络函数的定义与概念在研究网络系统稳定性的过程中,网络函数是非常重要的工具。

网络函数可以描述网络系统输入输出之间的关系,是一个用来表示系统动态行为的数学函数。

网络函数通常使用传递函数(Transfer function)来表示。

传递函数是通过对网络系统进行拉氏变换得到的,可以用来描述输入和输出之间的传递关系。

传递函数通常表示为G(s),其中s是一个复变量,表示连续时间域的频率。

对于一个线性时不变(LTI)系统,其传递函数可以表示为一个比率多项式,其中分子是输入的拉氏变换,分母是输出的拉氏变换。

例如,对于一个连续时间域的系统,传递函数可以表示为:G(s) = Y(s)/X(s)其中Y(s)是输出的拉氏变换,X(s)是输入的拉氏变换。

网络函数描述了系统的频率响应特性,也是研究系统稳定性的重要工具。

6.2 稳定性的概念与判定稳定性是指系统在输入信号有限的情况下,输出有界。

简而言之,稳定系统不会出现无限增长或无限衰减的情况。

对于连续时间域的系统,稳定性可以通过网络函数的极点位置来判定。

对于一个连续时间域的系统,如果其网络函数的所有极点实部都小于0,则系统是稳定的。

如果存在一个或多个极点实部大于0,则系统是不稳定的。

对于一个离散时间域的系统,稳定性的判定与连续时间域类似,只是极点位置的定义上稍有不同。

对于离散时间域的系统,极点位置在单位圆内的系统是稳定的,极点在单位圆外的系统是不稳定的。

稳定性的判定对于系统设计和分析非常重要,一个稳定的系统可以保证输出的可控性和可预测性。

6.3 Bode图与频率响应Bode图是一种用来表示系统传递函数频率响应的图形工具。

通过绘制传递函数的幅度和相位随频率变化的曲线,可以直观地了解系统对不同频率的输入信号的响应。

Bode图可以从网络函数中直接得到。

对于连续时间域的系统,网络函数表达式中的s变量可以替换为jω(其中j是虚数单位,ω是角频率),然后再对网络函数进行幅度和相位分析。

“电网络理论”课程教学体会与探讨

“电网络理论”课程教学体会与探讨

“电网络理论”课程教学体会与探讨随着社会不断进步,电力系统技术发展迅速,电网络理论在电力工程领域发挥着越来越重要的作用。

本文就电网络理论的教学实践和探讨进行详细分析。

一、电网络理论课程介绍电网络理论课程讲授的内容包括,电力系统的基本概念,各种网络及其结构,网络的短路计算,网络的功率流分析,电力系统的控制,电力系统的有功功率控制,电力系统的容错性等。

学生在学习过程中可以深入理解电力系统的基本概念、各种网络及其结构、各种控制、容错机制等内容。

二、教学实践1、引入课程内容在上课之前,教师要强调课程内容的重要性,以及学习这门课程对于学生从事电力行业的重要性。

此外,还应该给学生介绍相关的基础概念,包括电力系统的基本概念,各种网络及其结构,网络的短路计算,网络的功率流分析,电力系统的控制,电力系统的有功功率控制,电力系统的容错性等。

学生在了解完相关基础概念后,可以有效的学习本课程的内容。

2、讲解推导课程内容在讲解理论内容时,教师首先要把相关理论概念讲解清楚,注重理论概念的逻辑性和证明过程,以便学生能够更好的理解理论内容。

此外,在讲解理论概念的同时,教师应该重点强调短路计算、功率流分析和电力系统的控制,以便帮助学生深入理解理论内容,并达到学以致用的目的。

3、布置实验为了更好地掌握课程内容,教师应该把课堂教学与实验教学相结合,给学生布置实验作业,以帮助学生更好地理解理论内容。

此外,实验还可以帮助学生进一步掌握电力系统的计算方法,以及电力系统中的设计思想,有效地应用理论到实际工程中。

三、探讨电网络理论课程的学习不仅涉及理论知识的学习,更强调理论与实践的有机结合。

因此,教师在授课的过程中,应该充分重视实践训练的重要性,为学生提供实践训练的机会,从而有效地掌握电力系统的知识,为从事电力行业打下良好的基础。

此外,教师在授课过程中,还应该重视理论与实践的有机结合,让学生在理论概念的认知的同时,也能够学习到实践应用。

综上所述,电网络理论课程在电力工程领域发挥着重要的作用,教师应该能够正确引导学生对电网络理论的学习,做到理论与实践的有机结合,从而为学生从事电力行业打下坚实的基础。

电网络第一讲(大纲125)讲义——

电网络第一讲(大纲125)讲义——

电⽹络第⼀讲(⼤纲125)讲义——电⽹络理论讲义(⼀)1 ⽹络元件和⽹络的基本性质1.1 ⽹络及其元件的基本概念1.1.1 ⽹络的基本表征量(1)基本表征量分为三类:1)基本变量:电压u (t )、电流i (t )、电荷q (t )和磁链Ψ(t )。

2)基本复合量:功率P (t )和能量W (t )。

3)⾼阶基本变量:()uα和()iβ()0 1αβ≠-、,()d d k k k xxt =,2()112...()...ktt t k kx x d d d ττττ--∞-∞-∞=0k ?? ?>例如,22d d i u E t =,22d d u i D t =等基本变量和⾼阶基本变量⼜可统⼀成()u α和()i β两种变量,其中α和β为任意整数。

(2)基本表征量之间存在着与⽹络元件⽆关的下述普遍关系:()()d t u t dt ψ=(1)()()tt u u d ττ--∞ψ==?()()dq t i t dt =(1)()()tq t ii d ττ--∞==?()()()()dW t p t u t i t dt ==()()()()t t W t p d u i d τττττ-∞-∞==??(3)容许信号偶和赋定关系可能存在于(多⼝)元件端⼝的电压、电流向量随时间的变化或波形称为容许的电压—电流偶,简称容许信号偶,记作{}(),()t t u i 。

3Ω电阻的伏安关系为,3u i =,{}3cos ,cos t t ωω是容许信号偶,{3, 1}不是容许信号偶。

容许信号偶必须是向量或者时间的函数。

元件所有的容许信号偶的集合,称为该元件的赋定关系(本构关系) 。

(3)基本⼆端代数元件基本⼆段元件的定义为:()()()()(){}, , , ,u i u q i q ηθ∈ψψ,,,,或(), 0f ηθ=例如线性电阻元件u=iR , 电容元件q=Cu 等。

如图所⽰。

⼀般性分类:η控元件:θ=θ(η) θ控元件:η=η(θ)单调元件:元件既是η控的,⼜是θ控的多值元件:元件既不是η控的,也不是θ控的这个概念与数学上的函数定义可以类⽐,若η是θ的函数,则元件是θ控元件;若θ是η的函数,则元件是η控元件;若函数单调,元件既是η控的,⼜是θ控的;若η不是θ的函数,且θ也不是η的函数,则元件既不是η控的,也不是θ控的。

电网络理论全套PPT课件共计210页

电网络理论全套PPT课件共计210页

9
第1章 电网络概述
1.2 图论的术语和定义
自环

点和边的集合,边连于两点
图 G 为线形图、拓扑图或称 线图 孤点 边集 点集
e ( Vd ) 1 Va
Va Vb Vc Vd V f
10
第1章 电网络概述

( V3 ) e ( V4 ) e ( V2 ) e 2 V2 3 V3 1 V1
Vp 1 V1
变网络
F (t )
R(t )
F (t t0 )
R(t t0 )
6
第1章 电网络概述
1.1.3 有源网络和无源网络
V (t ) v1 (t ) v2 (t ) vk (t ) vm (t ) I (t ) i1 (t ) i2 (t ) ik (t ) im (t )
线性和非线性网络、时变和非时变网络、有源和无源网络、 有损和无损网络、互易和非互易网络、
网络分析、网络综合、网络设计和网络诊断
解决 问题
4
第1章 电网络概述
1.1.1 线性和非线性 3 种定义: (1)含有非线性元件的网络称为非线性网络,否则为线性网络; (2)所建立的网络电压、电流方程是线性微分方程的称为线性网
17
第1章 电网络概述
A
1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0
独立
A Al
At
det A t 1
(1)(1) det( AA ) 所有树
T
树数目
18
第1章 电网络概述
回路矩阵 构成元素
关于边和回路的连接信息 Ba
支路k不包含在回路 j 0, b jk 1, 支路k包含在回路 j,与回路j方向一致 1, 支路k包含在回路j,与回路j方向相反
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 噪声比较 一般说来,VFOA的同相和反相输入电流噪声 相同,CFOA的电流噪声比VFOA要大,主要由 于CFOA的偏置电流一般比VFOA大,且由于 CFOA放大器的独特结构,其同相输入端和反 相输入端的电流噪声并不相等,在大多数情 况下,反相端的电流噪声是同相端的3倍。 CFOA的电压噪声比VFOA要低,这是因为CFOA 放大器输入偏置电流较大,因此减少了发射 极电阻,从而降低了电压噪声
电流反馈运算放大器(Current Feedback Operational Amplifier,CFOA)克服了电压反馈运算放大器的一些 缺点,它的一个显著优点就是理论上有很高的转换速 率和与增益关系不大的带宽。CFOA与传统电压反馈运 算放大器相比,具有完全不同的拓扑结构和工作原理, 是集成运算放大器的新成果,其性能优于传统的电压 反馈放大器。CFOA与传统电压反馈运算放大器相比, 最突出的优点是CFOA输入级摒弃了差动电路,而采用 互补源级跟随器。基于日趋成熟的双极互补集成工艺, CFOA具有极佳的动态性能,在处理模拟信号时表现出 的高速度和高转换速率的良好性能是现在公认的,其 处理大幅度、高频率信号的能力远优于传统的VFOA, 因此在要求高速、宽带的场合常用CFOA代替VFOA。电 流反馈运算放大器在高性能视频系统、高精度模/数及 数/模转换、高速数据采集等领域有较高的应用价值
电流反馈运算放大器和电压反馈运 算放大器的区别
VFOA简化模型
CFOA简化模型
• 输入级结构不同 电压反馈运算放大器的同相输入端与反相 输入端不仅结构基本相同,而且输入阻抗基 本相同 电流反馈运算放大器的输入端是一个连接 同相输入端与反相输入端的单位增益缓冲器, 同相输入端与反相输入端输入阻抗相差极大
谢谢大家!
• 由于非平衡电流In在CFOA的放大中起决定 性作用,正是为了强调CFOA的这种特点, 才将其称为电流反馈型运放 • 由于CFOA整个放大器只有一级放大,就是 跨阻Z对In的放大,所以也称为跨阻运算放 大器
• 从功能上看,CFOA的最大优势在于:高频 特性好;理论上增益和带宽可以分别控制, 不受常规运放增益带宽积限制;转换速率 较高
• 电源抑制比和共模抑制比 • 电源抑制比PSRR可以定义为由电源电压变化引 起的输入参考偏移电压变化率,共模抑制比 CMRR可以定义为由输入共模电压变化引起的 输入参考偏移电压误差变化率。这两个定义都 假定偏置电流足够小,可以忽略不计。VFOA 的电源抑制比和共模抑制比总体上很好。而 CFOA的电源抑制比和共模抑制比较差,主要由 于输入级不对称,输入偏置电流不相等
电流反馈运算放大器的工作原理
• CFOA的拓扑结构 CFOA的简化拓扑结构如图所示,它主要由 输入缓冲级、跨阻放大级和输出缓冲级组成
输入缓冲级
• 输入缓冲级接在两个输入端之间,具有单位电 压增益,其作用有三个:强制Vn跟随Vp;使同 相输入端为高阻抗的电压输入端;使反相输入 端为低阻抗的电流输入端,信号电流在反相输 入端容易流进或流出。
• 影响放大器带宽的因素不同 VFOA放大器的基本性质:闭环带宽与闭环 增益的乘积为常数
CFOA的闭环带宽由反馈电阻R2和内部电容 CP决定,而与增益设置电阻R1无关
• 转换速率 CFOA的输入级设计为其提供了更高的转换 速率,使大振幅、高频率输入表现出低失真 度
• 失真 放大器的失真可以由其开环失真和整个闭环电路 的工作速度决定,CFOA具有基本对称的结构, 其开环失真较小。CFOA放大器结构中,对于每 一个NPN晶体管,都有一个互补的PNP晶体管。 工作速度是决定失真的另外一个主要原因。在很 多放大器电路中,CFOA放大器比相应的VFOA放 大器具有更宽的带宽。对于一个给定的信号频率, 速度更快的器件具有更高的环路增益,因此也具 有更低的失真
CFOA的应用
• 一般情况下,CFOA主要用于大信号处理能力的 低闭环增益方面,在电子行业使用CFOA的最大 群体是媒体、图形和多媒体制造商 • 对于他们而言,传统的VFOA不能提供足够的 转换速率,较宽的带宽,快速的处理时间和良 好的差分增益和相位性能,以满足他们的要求。 他们也可以使用高性能的VFOA,但价格比便 宜和相对简单的CFOA要高
电流反馈运算放大器理论及应用
周娟娟 吴耀东 常静 李思宇 硕电力122
集成电路运算放大器是一种高增益直接耦合放大 器,当外接反馈回路时,可以构成如倒相器、加 法器、减法器、积分器、微分器、对数放大器等 各种功能的运算放大器。根据电路结构不同,运 算放大器可以分为电压反馈型和电流反馈型运算 放大器。近几年来,个人数据处理和通信的迅猛 发展,加上器件尺寸不断小型化,推动着超大规 模集成电路朝着低压低功耗技术方向发展。由于 电压反馈型运算放大器(Voltage Feedback Operational Amplifier,VFOA)受其信号传递方式 的限制,在工作速度和频率等方面不能满足目前 迅猛发展的高速系统的要求。
• 具体而言,CFOA被广泛用于高品质的视频 前端应用,其差分增益和相位优势对于提 高图像质量尤为重要。此外,CFOA广泛用 于低闭环增益的电缆驱动中,比如视频线 驱动和视频开关。
• 不推荐CFOA用于要求直流精度,高增益和 高准确性场合,比如精密仪器。虽然CFOA 速度快,目前应用于通用8位模数转换器, 但其固有的增益不精确限制它只能用于12 位以下。最近研发的带宽很高的CFOA意味 着它可以应用在通信领域,以简化RF / IF放 大器的设计
跨阻放大级
• 跨阻放大级将进出反相输入端的电流信号In 传送到内部增益节点,将它转换为一个电 压信号Vz。上图中Z代表开环跨阻增益,Z值 通常很大,跨阻放大级的输出电压表达式 为:
输出缓冲级
• 输出缓冲级具有单位电压增益,将Vz 传送 到输出端提供输出电压Vo,并实现低输出阻 抗。其结构上的最大特点是:两个输入端 不对称,同相输入端为高阻抗基极输入, 而反相输入端为低阻抗的发射极输入;单 级放大结构,两个输入端之间的差动信号 被转换成非平衡电流In,被极高的跨阻Z放 大,形成输出电压Vo。单极放大的好处在 于无需进行频率补偿,缺点是开环增益略 低于普通运放
相关文档
最新文档