人教版高一数学(必修三)第一章 算法初步

合集下载

人教a版必修3数学教学课件第1章算法初步第1节算法与程序框图

人教a版必修3数学教学课件第1章算法初步第1节算法与程序框图
HISHISHULI
HONGNANJUJIAO
D典例透析
2.算法的特征
特征
有限性
确定性
可行性
有序性
说明
一个算法运行完有限个步骤后必须结束,而不能无限
地运行
算法的每一步计算,都必须有确定的结果,不能模棱
两可,即算法的每一步只有唯一的执行路径,对于相
同的输入只能得到相同的输出结果
算法中的每一步必须能用实现算法的工具精确表达,
并能在有限步内完成
算法从初始步骤开始,分为若干明确的步骤,每一个
步骤只能有一个确定的后续步骤,只有执行完前一步
才能执行后一步
IANLITOUXI
目标导航
特征
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
说明
算法一般要适用于不同形式的输入值,而不是局限于
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
1.算法的概念
12 世纪的算法 用阿拉伯数字进行算术运算的过程
按照一定规则解决某一类问题的明确和有限的步
数学中的算法

通常可以编成计算机程序,让计算机执行并解决
现代算法
问题
名师点拨1.算法没有一个精确化的定义,可以理解为由基本运算
题型四
设计含有重复步骤的算法
【例4】 写出求1×2×3×4×5×6的算法.
分析:思路一:采取逐个相乘的方法;思路二:由于重复作乘法,故可
以设计作重复乘法运算的步骤.
解:算法1:第一步,计算1×2得到2.

人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)

人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)
趣味益智游戏
一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质

高一数学人教A版必修3课件:1.1.1 算法的概念 三

高一数学人教A版必修3课件:1.1.1 算法的概念 三

以视为“算法”.
典 例 剖 析 题型一 算法的概念
例1:下列描述不能看作算法的是(
A.洗衣机的使用说明书 B.解方程x2+2x-1=0
)
C.做米饭需要刷锅、淘米、添水、加热这些步骤 D.利用公式s=πr2计算半径为3的圆的面积,就是计算
π×32
答案:B
解析:A,C,D都描述了解决问题的过程,可以看作算法,而B只描述
5.下列语句表达中是算法的有(
)
①从济南到巴黎可以先乘火车到北京再坐飞机抵达;
1 ②利用公式 S ah 计算底为1、高为2的三角形的面积; 2 1

2 x 2 x 4;
④求M(1,2)与N(-3,-5)两点连线的方程,可先求MN的斜率,再利用 点斜式方程求得.
A.1个
B.2个
C.3个
题型二 含有重要步骤的算法
n( n 1) 例2:写出求1+2+3+4+5+6的一个算法. 2
分析:可以按逐一相加的程序进行,也可以利用公式1+2+„+n 进行,也可以根据加法运算律简化运算过程.
解:算法1:第一步,计算1+2得到3.
第二步,将第一步中的运算结果3与3相加得到6.
第三步,将第二步中的运算结果6与4相加得到10. 第四步,将第三步中的运算结果10与5相加得到15. 第五步,将第四步中的运算结果15与6相加得到21. 第六步,输出运算结果.
这一问题. 解:算法步骤如下: 第一步,取一只空的墨水瓶,设其为白色. 第二步,将黑墨水瓶中的红墨水装入白瓶中. 第三步,将红墨水瓶中的黑墨水装入黑瓶中. 第四步,将白瓶中的红墨水装入红瓶中. 第五步,交换结束.

最新人教版高中数学必修3第一章《第一章 算法初步》本章概览

最新人教版高中数学必修3第一章《第一章 算法初步》本章概览

第一章算法初步
本章概览
内容提要
算法是数学及其应用科学的重要组成部分,是计算机科学的重要基础,现代算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养.在信息时代的高中数学中,培养学生寻求问题的机械化解法是非常重要的,这样便于学生在学习数学和数学的应用中使用计算机技术.本章的主要内容有,算法的意义与框图、基本算法语句.本章的重点是理解算法的概念,掌握算法的三种基本结构,运用基本算法语句编制程序解决实际问题.难点是高斯消去法、循环语句.
算法概念是高中数学课程中的新内容.教材在本章一开始引出的鸡兔同笼问题,是我们熟悉的实际问题.通过算术方法与方程方法的联系,引入了求解二元一次方程组的高斯消去法的算法步骤.明白算法并不神秘,要在已有知识的基础上顺利接受算法的概念.
学法指导
注重实践,体会算法思想.算法是实践性很强的内容,只有通过自身的实践解决几个算法设计问题,才能体会到算法的思想.所以学习中可通过模仿、操作、探索,学习设计程序框图表达解决问题的过程,经历将具体问题的程序框图转化为程序语言的过程.
学习中需注意的几个问题:
①从熟知的问题出发,体会算法是程序化的;
②学会用自然语言描述算法,学会一些基本逻辑结构和语句;
③变量和赋值是算法的一个重点,设置恰当的变量,并给变量赋值,是构造算法的关键;
④不必刻意追求最优的算法,把握算法的结构和程序化思想才是我们的重点.
另外学习中可按照:实例→数学语言算法→程序框图→基本算法语言(计算机程序语言的基础)这一循序渐进的方法.。

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

解:用辗转相除法求最大公约数:612=468×1+144,468=144×3+36,144=36×4,即612
和468的最大公约数是36. 用更相减损术检验:612和468均为偶数,两次用2约简得153和117,153-117=36,11736=81,81-36=45,45-36=9,36-9=27,27-9=18,18-9=9,所以612和468的最大公约数为
转化为求n个一次多项式的值.
预习探究
知识点二 进位制
1.进位制:进位制是为了计数和运算方便而约定的记数系统,约定“满k进一”就 是 k进制 ,k进制的基数(大于1的整数)就是 k . 2.将k进制数化为十进制数的方法:先把k进制数写成各位上的数字与k的幂的乘积之和 的形式,再按照十进制数的运算规则计算出结果. 3.将十进制数化为k进制数的方法是 除k取余法 .即用k连续去除十进制数所得 的 商 ,直到商为零为止,然后把各步得到的余数 倒序 写出.所得到的就是相应的k 进制数. 4.k进制数之间的转化:首先转化为十进制数,再转化为 k进制数.
第一章 算法初步
1.3 算法案例 第2课时 秦九韶算法与进位制
预习探究
知识点一 秦九韶算法
1.秦九韶算法是我国南宋数学家秦九韶在他的著作《数书九章》中提出的一 个用于计算多项式值的方法. 2.秦九韶算法的方法: 把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0 改写成下列的形式: f(x)=(anxn-1+an-1xn-2+…+a1)x+a0= ((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =…=

人教版高中数学必修三课件:1.1.1 算法的概念

人教版高中数学必修三课件:1.1.1 算法的概念
解:b→a→c→d→e
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

《第一章 算法初步》试卷及答案_高中数学必修3_人教B版_2024-2025学年

《第一章 算法初步》试卷及答案_高中数学必修3_人教B版_2024-2025学年

《第一章算法初步》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、一个算法正确的执行是算法执行过程中每一步的操作都满足:A、有穷性B、确定性C、可行性D、输入输出的确定性2、一个算法的正确性可以用以下哪个指标来衡量?A、算法的效率B、算法的易懂性C、算法的简洁性D、算法的正确性3、下列语句表示的是一种算法,那么这个算法的功能是 ( )A、输入一个数据B、输出一个数据C、输入并输出一个数据D、先输入一个数据,进行运算后再输出结果4、下面哪个是算法的特征?A. 计算规律简单B. 只能用标准的计算器步骤C. 需要多个步骤完成D. 步骤随机改变5、在以下选项中,不属于算法四大特点的是()A、有穷性B、确定性C、可扩展性D、可行性6、下列算法执行后的输出结果是()A. 12B. 24C. 36D. 487、若编程实现下列算法:第一步:设定初始值 a = 5, b = 10;第二步:if (a > b) then a = a - 2 else b = b + 3; 第三步:输出 a 和 b 的值;则程序的输出结果是:A. a = 3, b = 13B. a = 3, b = 10C. a = 5, b = 13D. a = 5, b = 108、阅读下面的算法语句,执行后输出的S值为多少?S = 0 I = 1 While I <= 10 S = S + I I = I + 2 Wend Print SA、25B、26C、50D、55二、多选题(本大题有3小题,每小题6分,共18分)1、在算法设计中,以下是哪些算法分类属于算法设计的基本方法?()A、分治法B、动态规划C、贪心法D、回溯法E、分支限界法2、已知算法A的步骤如下:(1)输入一个正整数n;(2)计算n的阶乘;(3)输出结果。

请从以下选项中选择正确的算法描述:A. 递归算法B. 非递归算法C. 算法A是求阶乘的正确方法D. 算法A不是求阶乘的正确方法E. 上述选项均正确3、以下关于算法的功能描述,哪些是正确的?()A、算法可以简化问题解的计算过程B、算法一定能找到解决问题的所有可能解C、算法能够被计算机程序化实现D、算法的步骤必须是明确的,不能含糊其辞三、填空题(本大题有3小题,每小题5分,共15分)1、在算法设计中,一个基本操作序列可以表示为______ ,其中n为基本操作重复执行的次数。

最新人教版高中数学必修三电子课本名师优秀教案

最新人教版高中数学必修三电子课本名师优秀教案

人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。

算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。

在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。

最新人教版高中数学必修3第一章《第一章算法初步》示范教案

最新人教版高中数学必修3第一章《第一章算法初步》示范教案

示范教案整体设计教学分析前面学习了算法、程序框图与几种算法语句,本节课作为本章的小结,旨在和学生一起站在全章的高度,以算法思想为灵魂,以问题解决为主线,以典型例题为操作平台,以巩固知识、发展能力、提高素养为目的对本章作全面的复习总结,帮助学生进一步提高对算法的理解和认识,优化知识结构.三维目标1.对本章知识形成知识网络,提高学生的逻辑思维能力,培养学生的归纳能力.2.熟练应用算法、程序框图与基本算法语句来解决问题,培养学生的分析问题和解决问题的能力,逐步学会用数学方法去认识世界、改造世界.重点难点教学重点:应用算法、程序框图与基本算法语句解决问题.教学难点:形成知识网络.课时安排1课时教学过程导入新课思路1(情境导入).大家都熟悉围棋高手“石佛”李昌镐吧,他曾经打遍天下无敌手,你知道他最令人可怕的地方吗?他的技术很全面,但他最厉害的技术是“官子”,他的“官子”层次分明,可以说滴水不漏,堪称世界第一.我们的这次复习也要像围棋中的“官子”,也要做到层次分明、滴水不漏.思路2(直接导入).前面我们学习了算法、程序框图与基本算法语句等内容,今天我们对本章知识、方法、数学思想进行全面、系统的总结与复习.推进新课新知探究提出问题(1)请同学们自己梳理本章知识结构.(2)回顾算法的定义及特征.(3)回忆程序框图的三种逻辑结构.(4)总结算法语句.讨论结果:(1)本章知识结构如下图.(2)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.算法的特征:①确定性:算法的每一步都应当做到“准确无误、不重不漏”“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣、分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(3)顺序结构、条件分支结构、循环结构.(4)赋值语句:变量=表达式.输入语句:变量=input.输出语句:print(%io(2),变量).条件语句:格式1:if表达式语句序列1;else语句序列2;end格式2:if表达式语句序列1;end循环语句:for语句:for循环变量=初值:步长:终值循环体;endwhile语句:while表达式循环体;end应用示例例1如下图所示,该程序框图输出的结果为________.解:该程序框图的运行过程是:A=1;S=1;S=1+9=10;A=1+1=2;A≤2,成立;S=10+9=19;A=2+1=3;A=3≤2,不成立;输出S=19.答案:19点评:解决同一个问题,可以有多种算法,那么就有多种程序框图和语句,再就是不同版本的教材算法语句的语言形式也不相同,因此高考试题中通常不会考查画程序框图或编写程序.由于学习本章的目的是体会算法的思想,所以已知程序框图或程序,判断其结果是高考考查本章知识的主要形式,这也是课程标准和考试说明对本章的要求.其判断方法是具体∴y =π2×2-5=π-5. 例2到银行办理个人异地汇款(不超过100万元),银行收取一定的手续费.假设汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取;超过5 000元,一律收取50元手续费.试用程序框图描述汇款额为x 元时,银行收取手续费y 元的过程.分析:这是一个实际问题,故应先建立数学模型,y =⎩⎪⎨⎪⎧ 1(0<x ≤100),0.01x (100<x ≤5 000),50(5 000<x ≤1 000 000).由此看出,要求手续费,需先判断x 的范围.解:程序框图如下图:点评:条件分支结构经常与分段函数有密切的关联;判断框里要写明分支的条件,从而决定下一步该作出怎样的选择.例3已知函数y =⎩⎪⎨⎪⎧ 2x -1,x ≤-1,log 3(x +1),-1<x<2,x 4,x ≥2,试设计一个算法,输入x 的值,求对应的函数值.分析:对输入x 的值与-1和2比较大小,即分类讨论.解:算法如下:S1 输入x 的值;S2 当x ≤-1时,计算y =2x -1,否则执行下一步;S3 当x ≥2时,计算y =x 4,否则执行下一步;S4 计算y =log 3(x +1);S5 输出y.点评:分段函数是高考考查的重点,在考虑算法步骤时,要用到分类讨论思想,这为复习程序框图和算法语句打好了基础.知能训练1.下面程序框图输出的结果是( )A .11B .12C .132D .1 320分析:该程序框图的运行过程是:i =12;s =1;i =12≥10,成立;s =1×12=12;i =12-1=11;i =11≥10,成立;s =12×11=132;i =11-1=10;i =10≥10,成立;s =132×10=1 320;i =10-1=9;i =9≥10,不成立;输出s =1 320.答案:D2.下图是表示求解方程x 2-(a +1)x +a =0(a ∈R ,a 是常数)过程的程序框图.请在标有序号(1)(2)(3)(4)处填上你认为合适的内容将框图补充完整.(1)____________;(2)____________;(3)____________;(4)____________.解析:所解方程是一元二次方程,先计算判别式Δ=(a +1)2-4a =(a -1)2,所以(1)处填(a -1)2;计算判别式Δ的大小后,再判断其符号,由于Δ=(a -1)2,则只需判断a 是否等于1即可,则(2)有两种填法a =1或a ≠1,当(2)处填a =1时,(3)处填x 1=x 2=1,(4)处填x 1=a ,x 2=1;当(2)处填a ≠1时,(3)处填x 1=a ,x 2=1,(4)处填x 1=x 2=1.答案:(1)(a -1)2 (2)a =1 (3)x 1=x 2=1 (4)x 1=a ,x 2=1或(1)(a -1)2 (2)a ≠1(3)x 1=a ,x 2=1 (4)x 1=x 2=13.下列程序的功能是________.s =0;for i =1:1:100s =s +1/i ;endprint(%io(2),s);解析:该程序的执行过程是:s =0;i =1,s =0+11=1; i =2,s =1+12;i =3,s =1+12+13; ……i =100,s =1+12+13+…+1100. 答案:计算1+12+13+…+1100的值 拓展提升数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1 000的所有“水仙花数”.(1)写出算法步骤;(2)画出程序框图.分析:由于需要判断大于100,小于1 000的整数是否满足等于它各位上的数字的立方的和,所以需要用循环结构.解:(1)算法步骤如下:S1 i =101;S2 如果i 不大于999,则执行第3步,否则算法结束;S3 若这个数i 等于它各位上的数字的立方的和,则输出这个数;S4 i =i +1,返回第2步.(2)程序框图如下图所示.课堂小结(1)复习了本章知识,形成了知识网络.(2)判断算法的功能或输出结果.作业本章小结Ⅲ.巩固与提高 4、5.设计感想本节通过大量生动活泼的例题对本章进行系统的总结,通过精彩的点评渗透算法的基本思想,使学生的知识得到进一步巩固,使学生的思想方法不断升华.备课资料人机大战的启示人类的许多进步之所以产生,多半是发明了一个更好、更有力的工具.物质工具使工作速度加快并使人们从重体力劳动中解脱出来,而信息工具则扩大人们的智力.物质工具如犁、起重机、推土机、内燃机、电动机等等,是人的四肢的延伸,而计算机是人的大脑的延伸.它最初只能进行数值计算,但随着其发展,应用范围不断扩大.它不仅能够进行计算,还能进行记忆、判断、推理、设计、控制、自动化处理等等.一句话,只要是能输入计算机里的信息,它都能按照人的要求对信息进行迅速而圆满的处理.因此,计算机也被称为电脑.在短短十几年的时间里,我们经历了计算机深入生活每一个角落的过程,深深感受到了计算机多方面的强大的功能.其中,国际象棋大师卡斯帕罗夫与IBM“深蓝”的人机大战的结果曾引起世人瞩目和激烈讨论,留下了有关计算机与人的关系的种种思考.1989年,美国IBM公司成立了“深蓝”(Deep Blue)项目小组,开始着手研究有关计算机下棋方面的技术,其实就是设计下棋的算法.其目的是证明它具有能够处理复杂博弈模式的能力,而真正的意图是,以此作为一个模型,将并行技术深入到其他各种复杂应用领域.1988年,“深蓝”的前身“深思”(Deep Thought)在华裔科学家许峰雄等人的开发下,已经具备与人进行国际象棋比赛的能力.“深蓝”在开始设计时就以超越“深思”为目的,特别在运算速度与处理能力部分.经过不断的努力,1996年2月,当今最优秀的国际象棋棋手、世界冠军卡斯帕罗夫与“深蓝”计算机展开了第一次真正的角逐.比赛为六局对抗赛.虽然卡斯帕罗夫最终以4∶2的比分取胜,但今天计算机所达到的能力,也着实让全世界吃了一惊.尤其是第一局,“深蓝”以获胜来了个“开门红”.卡斯帕罗夫在赛后承认,“深蓝”是必须认真对待的劲敌,他说:“我没有料到它如此难以对付,我输掉第一局非常幸运,因为那是给我发出的最严重警告.”由于卡斯帕罗夫战胜“深蓝”,他预言“在严肃、经典的比赛中,计算机在本世纪没有赢棋的机会.”然而,卡斯帕罗夫对计算机技术的飞速发展估计错了.仅仅一年后,“深蓝”就战胜了这位大师.1997年5月人机大战重开.前五局战平,5月11日第六局决胜局的比赛,卡斯帕罗夫仅走了19步便向“深蓝”认输.“深蓝”的重量达1.4吨,拥有32个节点,每一节点有8块专门为进行国际象棋对弈设计的处理器,从而拥有每秒运算超过2亿步的惊人速度.为了使“深蓝”能拥有更多的资源规划棋步,开发小组汇集了一个开放棋局的数据库,输入了100年来世界顶级棋手的棋局,此外还有残局数据库,即最后五步时的走法,形成了汇集10亿个棋局的数据库.自1996年在输给卡斯帕罗夫之后,美国特级大师本杰明加盟“深蓝”,将他对象棋的理解编成语句输入“深蓝”,且在1997年的比赛中,每场对局结束后,小组都会根据卡斯帕罗夫的情况相应地修改特定的参数.“深蓝”在比赛中,不会疲倦、不会有心理和情绪上的起伏,只是不动声色地进行高速准确的运算.因此,卡斯帕罗夫的对手并不是“深蓝”主机,而是一群人如何运用电脑的硬、软件来向一个人的智慧和反应挑战.电脑的胜利说到底是人脑的胜利.但是“深蓝”的这次胜利,毕竟标志着计算机技术又上了一个新台阶,更准确地说,这次“深蓝”胜利,是人脑经过电脑胜过人脑.它也反过来让人们思考,什么是思维的本质?它第一次让人类如此真切地感受到了电脑与人的相异却又能够与人对抗的能力,这种力量还会从人们今后的努力中得到滋养从而不断壮大.有人曾将人机大战称为捍卫人类尊严的比赛,此次“深蓝”获胜,绝不意味人类的尊严丧失殆尽.许峰雄博士说得好:“棋王卡斯帕罗夫的胜利是为人类的过去赢了一盘棋;今年,‘深蓝’胜卡斯帕罗夫,是为人类的未来赢了一盘棋.”另外,深具意义的是,“深蓝”证明了人类的极限.超越人类的极限是一件很大的事情,人类就是在不断超越自己的极限中而进步的.。

人教版高一数学(必修三)第一章 算法初步精品PPT课件

人教版高一数学(必修三)第一章 算法初步精品PPT课件

请试写出一个算法?
写出求一个数绝对值的一个算法
①请输入要求绝对值的数a;
②若a=0,则b=0(b为a的绝对值);
若a>0,则b=a; 若a<0,则b=-a. ③输出a 的绝对值b。
大家要注意写算法的要求
答案
开始 输入a
绝对值问题
N
a ≥0
Y
输出 |a|=a
输出 |a|=-a
结束
算法是解决问题的精确的描述,但是并不是所 有问题都有算法,有些问题使用形式化、程序 化的刻画是最恰当的,这就要求我们在写算法 时应精练、简练、清晰地表达清楚,更要善于 分析任何可能出现的问题。
一个算法是否有效,还取决于为算法的执行所提 供的情报是否足够。例如,对于指令“如果小明 是学生,则输出字母Y,否则输出N”。当算法执行 过程中提供了小明一定不是学生的某种信息时, 执行的结果将输出字母N;当提供的只是部分学生 的名单,且小明恰在此名单之中,则执行的结果 将输出字母Y。但如果在提供的部分学生的名单中 找不到小明的名字.则在执行该指令时无法确定 小明是否是学生。
本运算及规定的运算顺
序构成的完整的解题步 骤,或看成按要求设计 好的有限的、确切的计 算序列,并且这样的步
算 法 是
骤或序列能解决一类问 什
题。

简单的说,算法就是解
决问题的步骤和方法。
判断一个正整数是否是质数的算法
1、自然语言描述
第一步:判断n是否等于2?若n=2,则n是质数,否则, 执行第二步;
开始 输入x
x≤7 y
y=1.2x
输入y 结束
答案
N y=1.9x-4.9
(1)可行性(effectiveness)
算法的可行性包括两个方面:一是算法中的每一 个步骤必须是能实现的。例如,在算法中,不允 许出现分母为零的情况;在实数范围内不能求一 个负数的平方根等。二是算法执行的结果要能达 到预期的目的。通常,针对实际问题设计的算法, 人们总是希望能够得到满意的结果。

高一数学(人教A版)必修3课件:第一章 算法初步

高一数学(人教A版)必修3课件:第一章 算法初步

成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
Байду номын сангаас
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 必修3 第一章 章末总结

高一数学人教A版必修三同步课件:第一章 算法初步1.1.2.1

高一数学人教A版必修三同步课件:第一章 算法初步1.1.2.1

A.30
B.25
C.5
D.0
解析: 因为 30≥5.
所以 y= 30-5=5.
所以输出的 y 值是 5.故选 C.
答案: C
数学 必修3
第一章 算法初步
学案·新知自 解
教案·课堂探 究
练案·学业达 标
条件结构的应用 多维探究型 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种 快捷方式,某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算: f=500.5×3ω0., 53+ω (≤ω50-,50)×0.85,ω >50. 其中 f(单位:元)为托运费,ω 为托运物品的重量(单位:千克).试设计计算 费用 f 的算法,并画出程序框图.
解析: 应填上点到直线的距离公式.
答案: d=|x0+2y0-3| 5
数学 必修3
第一章 算法初步
学案·新知自 解
教案·课堂探 究
练案·学业达 标
教案·课堂探究顺序结构表示算法 自主练透型
教案·课堂探 究
练案·学业达 标
已知点 P0(x0,y0)和直线 l:Ax+By+C=0,写出求点 P0 到直线 l 的 距离 d 的算法及程序框图.
②步骤 A 和步骤 B 可以有一个是空的(如图乙),即不执行任何操作.
数学 必修3
第一章 算法初步
学案·新知自 解
教案·课堂探 究
练案·学业达 标
数学 必修3
第一章 算法初步
学案·新知自 解
教案·课堂探 究
练案·学业达 标
1.程序框“▱”表示的功能是( ) A.一个算法的起始和结束 B.一个算法输入和输出的信息 C.赋值、计算 D.判断某一条件是否成立 解析: 程序框“▱”是输入、输出框,表示程序的输入、输出. 答案: B

最新人教版高中数学必修三电子课本名师优秀教案

最新人教版高中数学必修三电子课本名师优秀教案

人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。

算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。

在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。

高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3

高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3

1.1 算法与程序框图1.1.1算法的概念内容标准学科素养1。

通过回顾解二元一次方程组的方法,了解算法的思想。

2。

了解算法的含义和特征。

3.会用自然语言表述简单的算法。

提升数学运算发展逻辑推理应用数学抽象授课提示:对应学生用书第1页[基础认识]知识点一算法的概念预习教材P2-3,思考并完成以下问题一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.(1)试问他们怎样渡过河去?提示:第一步,两个小孩同船过河去;第二步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.(2)设计的过河方法有什么特点?提示:由于船小,不能同时坐三个人,这样就需要遵循这一规则,然后按照一定的步骤一步一步的把三人运到河对岸.知识梳理在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.知识点二算法与计算机知识梳理计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.思考:与一般的解决问题的过程相比,算法最重要的特征是什么?提示:最重要的特征是步骤的有序性、明确性和有限性.[自我检测]下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:A、B两选项给出了解决问题的方法和步骤,是算法.C项,利用公式计算也属于算法.D项,只提出问题没有给出解决的方法,不是算法.答案:D授课提示:对应学生用书第2页探究一算法的概念[例1]下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1B.2C.3 D.4[解析]由于算法具有有限性、确定性、输出性等特点,因而②③④正确,而解决某类问题的算法不一定唯一,从而①错.[答案] C方法技巧1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的结果,但在异常情况下(输入的x在10与100之 间),这一指令执行的结果就不确定了.
算法的四个特征
(3)有穷性(finiteness) 算法的有穷性是指算法必须能在有限的时间内执 行完,即算法必须能在执行有限个步骤之后终止。
数学中的无穷级数,在实际计算时只能取有限项,
即计算无穷级数的过程只能是有穷的。因此,一
城区一中学生数学模块学分认定由模块成绩 决定,模块成绩由模块考试成绩和平时成绩 构成,各占50%,若模块成绩大于或等于 60分,获得2学分,否则不能获得学分(为 0分),设计一算法,通过考试成绩和平时 成绩计算学分,并画出程序框图。
答案
开始
输入a,b
S=(a+b)*0.5 否 S>=60? 是
credit=2
束。因此.弈棋程序可以考虑计算机每一次可能
的移动,它的对手每一次可能的应答,以及计算
机对这些移动的可能应答等等,直到每个可能的 移动停止下来为止。
算法的四个特征
此外,由于计算机可以知道每次移动的结果,因 此总可以选择一种最好的移动方式。但即使如此, 这种弈棋程序还是不可能执行,因为所有这些可
能移动的次数太多,所要花费的时间不能容忍。
我们为什么要学习算法?

问题:为什么要在数学课上教语句和算法? 学习算法有什么用,跟生活又什么关系?
1、体会算法基本思想;
2、提高逻辑思维能力; 3、提高思辨能力和实践能力;
思考以下问题的算法:
一位商人有9枚银元,其中有1枚略轻的是假银 元。你能用天平(不用砝码)将假银元找出来吗? 解: 1.把银元分成3组,每组3枚; 2.先将两组分别放在天平的两边。如果天平 不平衡,那边假银元就放在轻的那一组;如果天平 左右平衡,则假银元就在未称的第3组里; 3.取出含假银元的那一组,从中任取两枚放 在天平的两边。如果左右不平衡,则轻的那一边就 是假银元;如果天平两边平衡,则末称的那一枚就 是假银元。
时,该计算过程就不能适应了。
算法的四个特征
例如,某计算工具规定:大于100的数认为是比1 大很多,而小于10的数不能认为是比1大很多;且 在正常情况下出现的数或是大于100,或是小于10.
但指令“输入一个X,若x比1大很多,则输出数字
1,否则输出数字0”是不确定的。这是因为,在正
常的输入情况下,这一指令的执行可以得到正确
输出credit 结束
credit=0
练习题二
为了加强居民的节水意识,某市制定了以下 生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费 1.0元,并加收0.2元 的城市污水处理费,超过7m3的部分,每立方 米收费1.5元,并加收0.4元的城市污水处理 费。
开始
答案
N
输入x
x≤7 y y=1.2x
小结
1、循环结构的特点: 重复同一个处理过程 2、循环结构的框图表示: 当型(条件满足)和直到型(条件不满足) 3、循环结构注意的问题: 避免死循环的出现,设置好进入(结束) 循环体的条件。
程序框图又称流程图,是一种用规定的图形,指 向线及文字说明来准确、直观地表示算法的图形。
名称 功能 终端框(起止框) 一个算法的起始和结束 输入、输出框 算法的输入和输出的信息 处理框(执行框) 赋值、计算 判断框 判断一个条件是否成立, 用“是”、“否”或 “Y”、“N”标明
算法初步
程序框图
程序框图是描述算法的适度形式
自然语言:模糊性和二义性; 程序框图:表述算法基本逻辑结构的图形 组成,它使复杂的内容与关系表现的非常 明了,具有很好的可读性,但是计算机不 能读解; 程序设计:将算法用计算机能够识别的语 言表述出来,但由于程序设计非常形式化, 过于复杂,数学课上没必要讲述。
பைடு நூலகம்由上述两个例子可以看出,虽然许多计算过程是
有限的.但仍有可能无实用价值。
算法的四个特征
(4)算法必须拥有足够的情报
一个算法是否有效,还取决于为算法的执行所提
供的情报是否足够。例如,对于指令“如果小明
是学生,则输出字母Y,否则输出N”。当算法执行
过程中提供了小明一定不是学生的某种信息时, 执行的结果将输出字母N;当提供的只是部分学生 的名单,且小明恰在此名单之中,则执行的结果 将输出字母Y。但如果在提供的部分学生的名单中
y=1.9x-4.9
输入y
结束
思考:整个程序框图有什么特点?
算法如下: 第一步:输入住房面积S;
第二步:根据面积选择计费方式: 如果S小于或等于80,则租金为 M=s×3,否则为M=240+(S-80)×5;
第三步:输出房租M的值。
开始
输入面积S 否 S<=80 是 M=3*S M=240+5*(S-8)
输出租金M
结束
练习题一
算法的四个特征
(2)确定性(definiteness)
算法的确定性,是指算法中的每一个步骤都必须是有明确 定义的,不允许有模棱两可的解释,也不允许有多义性。
这一特征也反映了算法与数学公式的明显差异。在解决实
际问题时,可能会出现这样的情况:针对某种特特殊问题, 数学公式是正确的,但按此数学公式设计的计算过程可能 会使计算机系统无所适从,这是因为,根据数学公式设计 的计算过程只考虑了正常使用的情况,而当出现异常情况
虽然总可以根据克莱姆规则设计出一个计算过程
用于计算所有可能出现的行列式,但这样的计算 过程所需的时间实际上是不能容忍的。
算法的四个特征
从理论上讲,总可以写出一个正确的弈棋程序, 而且这也并不是一件很困难的工作。由于在一个 棋盘上安排棋子的方式总是有限的,而且,根据
一定的规则.在有限次移动棋子之后比赛一定结
例1 设计一算法:输入圆的半径,输出圆的面积, 并画出流程图
开始
第一步:输入圆的半径;
定义Pi=3.14
第二步:利用公式“圆的面积=圆周 率×(半径的平方)”计算圆的面 积; 第三步:输出圆的面积。
输入半径R
计算S=Pi*R*R
输出面积S
思考:整个程序框图有什么特点?
结束
例:设计房租收费的算法,其要求是:住房 面积80平方米以内,每平方米收费3元,住房 面积超过80平方米时,超过部分,每平方米 收费5元.输入住房面积数,输出应付的房租。
算 法 是 什 么
判断一个正整数是否是质数的算法
1、自然语言描述 第一步:判断n是否等于2?若n=2,则n是质数,否则, 执行第二步; 第二步:依次从2~(n-1)检验是不是n的因数,即能 整除n的数,若有这样的数,则n不是质数;若没有,则 n是质数。
开始 输入n n=2? 否 是
d=2
否 d整除n? 是 flag=0 是 否 d<=n-1且 flag=1? d=d+1
程序框图部分的教学目标
只要掌握三种基本结构和五个基本算法语 句就可以了。 flag=1 输入n 顺序结构:

flag=1?

n是质数
n不是质数
条件结构:
结束
循环结构
循环结构示意图 否
d整除n?

flag=0
d=d+1

d<=n-1且flag=1?

五种语句
1、输入语句; 2、输出语句; 3、赋值语句; 4、条件语句; 5、循环语句;
【例】写出你在家中烧开水的过程的一个算法 1、往壶内注水;
2、点火加热;
3、观察:如果水开,则停止烧火,否 则继续烧火; 4、如果水未开,重复“3”直至水开。
总 结
一、其实大部分事情都是按照一定的程序执行, 因此要理清事情的每一步,才能更好地认清事 物的本质,进而提出解决问题的方法; 二、判断水是否烧开与是否继续烧火的过程是 一个判断与反馈的过程,因此有必要不断重复 过程“3”
个数的无穷级数的表示只是一种计算公式,而根
据精度要求确定的计算过程才是有穷的算法。
算法的四个特征
算法的有穷性还应包括合理的执行时间的含义。 如果一个算法的执行时间是有穷的,但却需要执 行千万年.显然这就失去了算法的实用价值。例
如,克莱姆(Cramer)规则是求解线性代数方程组
的一种数学方法,但不能以此为算法,这是因为,
找不到小明的名字.则在执行该指令时无法确定
小明是否是学生。
请试写出一个算法?
写出求一个数绝对值的一个算法
①请输入要求绝对值的数a;
②若a=0,则b=0(b为a的绝对值);
若a>0,则b=a; 若a<0,则b=-a. ③输出a 的绝对值b。
大家要注意写算法的要求
答案
开始
绝对值问题
输入a
a ≥0
Y N
△随着计算科学和信息技术 的飞速发展,算法的思想已经 渗透到社会的方方面。在以前 的学习中,虽然没有出现算法 这个名词,但实际上在数学教 学中已经渗透了大量的算法思 想,如四则运算的过程、求解 方程的步骤等等。完成这些工 作都需要一系列程序化的步骤, 这就是算法的思想。
算 法 的 基 本 思 想
△算法可以理解为由基 本运算及规定的运算顺 序构成的完整的解题步 骤,或看成按要求设计 好的有限的、确切的计 算序列,并且这样的步 骤或序列能解决一类问 题。 简单的说,算法就是解 决问题的步骤和方法。
flag=1?
是 n是质数 结束

n不是质数
算法的四个特征
算法不同于求解一个具体问题的方法,是这种方 法的高度概括。算法具有如下特征: (1)可行性(effectiveness)
算法的可行性包括两个方面:一是算法中的每一 个步骤必须是能实现的。例如,在算法中,不允 许出现分母为零的情况;在实数范围内不能求一 个负数的平方根等。二是算法执行的结果要能达 到预期的目的。通常,针对实际问题设计的算法, 人们总是希望能够得到满意的结果。
相关文档
最新文档