金属热处理原理与工艺相关习题讲解课件演示(51张)
合集下载
《金属热处理原理及工艺》淬火与回火 ppt课件
12
二、 淬火介质
2 .有物态变化的淬火介质 冷却机理:
辐射、传导和对流将工件的热量带走,使工件冷却 汽化沸腾,使工件强烈散热 冷却能力强
水基,油基
ppt课件
13
二、 淬火介质
2 .有物态变化的淬火介质 介质冷却特性的测试
——试样温度与冷却时间(速度)之间的关系)
ppt课件
14
二、 淬火介质
2 .有物态变化的淬火介质
D0油=8mm,40Cr D0油=20mm。
马氏体 马氏体 索氏体
ppt课件
37
ppt课件
38
5、淬透性的实际意义
1、对于截面承载均匀的重要件,要全部淬透。如螺栓、连杆、 模具等。 ——选用高淬透性钢
2、对于承受弯曲、扭转的零件可不必淬透(淬硬层深度一般为 半径的1/2~1/3),如轴、凸轮。——低淬透性钢
31
(3)临界直径法:
D0 :钢在某种介质中能够完全淬透
临界
的最大直径。
直径
D0
大小取决于成分及淬火条件
Di:理想临界直径,理想条件试样能 够淬透的最大直径。
反映了钢的固有淬透性
ppt课件
H值
理想临 界直径 Di
32
ppt课件
33
ppt课件
34
(4)端淬法:此方法是世界上通用方法。
ppt课件
ppt课件
49
ppt课件
50
(2)组织应力:由于工件表层和心部发生马氏体转变的不 同时性而造成的内应力。
组织应力产生过程:
➢ 冷却初期,表面发生马氏体相变,表面体积膨胀,产生 压应力;心部冷速慢牵制表面膨胀,产生拉应力;
➢ 冷却后期,心部发生马氏体相变,表面体积膨胀,产生 压应力;表面牵制心部膨胀,产生拉应力;
金属热处理原理与工艺相关习题讲解
(B
)在渗碳体内;
7
9、我们的市场行为主要的导向因素,第一个是市场需求的导向,第二个是技术进步的导向,第三大导向是竞争对手的行为导向。21.9.721.9.7Tuesday, September 07, 2021 10、市场销售中最重要的字就是“问”。06:05:3006:05:3006:059/7/2021 6:05:30 AM 11、现今,每个人都在谈论着创意,坦白讲,我害怕我们会假创意之名犯下一切过失。21.9.706:05:3006:05Sep-217-Sep-21 12、在购买时,你可以用任何语言;但在销售时,你必须使用购买者的语言。06:05:3006:05:3006:05Tuesday, September 07, 2021 13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.9.721.9.706:05:3006:05:30September 7, 2021 14、市场营销观念:目标市场,顾客需求,协调市场营销,通过满足消费者需求来创造利润。2021年9月7日星期二上午6时5分30秒06:05:3021.9.7 15、我就像一个厨师,喜欢品尝食物。如果不好吃,我就不要它。2021年9月上午6时5分21.9.706:05September 7, 2021 16、我总是站在顾客的角度看待即将推出的产品或服务,因为我就是顾客。2021年9月7日星期二6时5分30秒06:05:307 September 2021 17、利人为利已的根基,市场营销上老是为自己着想,而不顾及到他人,他人也不会顾及你。上午6时5分30秒上午6时5分06:05:3021.9.7
(二)贝氏体的韧性 可以看出下贝氏体的韧性优于上贝氏体。从整体上看随贝氏体的形
金属热处理知识课件
历史与发展
历史
金属热处理起源于古代,人类在长期实践中逐渐摸索出了金 属材料的加热、冷却和改变性能的方法。随着工业革命的发 展,金属热处理逐渐成为一门独立的学科,并得到了广泛的 应用。
发展
现代金属热处理技术不断发展,新的工艺和方法不断涌现, 如真空热处理、激光热处理、化学热处理等。同时,计算机 技术和自动化技术的应用也推动了金属热处理技术的进步, 提高了生产效率和产品质量。
PART 06
金属热处理安全与环保
安全操作规程
操作人员需经过专业培训 ,熟悉热处理设备及工艺 流程,掌握安全操作技能 。
设备运行前应检查电源、 水源、热源等是否正常, 确保设备处于良好状态。
ABCD
操作过程中应穿戴防护服 、手套、鞋帽等个人防护 用品,防止烫伤、触电等 事故发生。
操作过程中应保持注意力 集中,随时观察设备运行 情况,发现异常及时处理 。
节能减排技术
01
采用新型的热处理技术和设备, 提高能源利用效率和热处理效果 。
02
对现有设备进行技术改造和升级 ,降低能耗和减少污染物排放。
开发和应用新型的环保材料和工 艺,替代传统的高污染材料和工 艺。
03
加强科研和创新能力,推动热处 理技术的进步和创新,为节能减
排提供技术支持和保障。
04
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
测温仪
用于测量金属件的温度,确保热处理工艺的 准确性。
热处理吊具
用于吊装金属件,便于在加热和冷却设备中 移动。
热处理辅助材料
如保护气氛、脱氧剂等,用于改善热处理效 果和保护金属件。
PART 05
金属热处理应用
金属热处理工艺课件.pptx
2021/1/12
材料科学与工程学院多媒体课
14
第九章 金属热处理工艺
§9.1.2 钢的正火
❖ 正火概念:将钢材或钢件加热到Ac3(对于亚共析 钢)和Accm(对于过共析钢)以上30℃50℃,保温 适当时间后,在自由流动的空气中均匀冷却的热 处理工艺。
❖ 正火组织:亚共析钢为F+S,共析钢为S,过共析 钢为 S+Fe3CII
2021/1/12
材料科学与工程学院多媒体课
7
第九章 金属热处理工艺
四、球化退火 ➢球化退火:使钢中碳化物球状化的热处理工艺 ,是不完全退火的一种。 ➢目的:使 Fe3CⅡ 及 P 中的渗碳体球状化(退 火前正火将网状渗碳体破碎),以降低硬度, 改善切削加工性能;并为以后的淬火作组织准 备。 ➢适用性:主要用于共析钢和过共析钢。
2021/1/12
材料科学与工程学院多媒体课
13
第九章 金属热处理工艺
退火工艺总结:
加热、保温后,缓冷(炉冷)→近平衡组织 P(+F 或 Fe3CII)
扩散退火 加热至略低于固相线
目的:使成分、组织均匀 再结晶退火:
加热温度 TR + 30~50℃ 目的:消除加工硬化 去应力退火:
加热温度< Ac1 ,一般为 500~650℃ 目的:消除冷热加工后的内应力
2021/1/12
材料科学与工程学院多媒体课
5
第九章 金属热处理工艺
二、不完全退火
➢ 不完全退火:将钢加热至Ac1Ac3(亚共析钢)或 Ac1Accm (过共析钢)之间,经保温后缓慢冷却以
获得近于平衡组织的热处理工艺。 ➢ 目的:
降低硬度,消除内应力,改善切削加工性能。 ➢ 适用性
金属热处理ppt课件
碳钢分类
按钢中含碳量多少分: 低碳钢 Wc < 0.25% 中碳钢 Wc = 0.25%—0.6% 高碳钢 Wc > 0.6%
低碳钢
特点: 塑性好、韧性好、硬度强度低〔软刚〕、耐 磨性差。
热处置: 通常情况下将其进展渗碳,然后淬火,再低 温回火后运用。
中碳钢
特点: 热加工及切削性能良好,强度硬度比低碳钢 高,韧性塑性低于低碳钢,焊接性能较差。
金属热处理
金属热处置:是将金属工件放在一定的介质中加热到适宜的 温度,并在此温度中坚持一定时间后,又以不同速度冷却的一种工艺。
金属热处置的意义:是经过改动工件内部的显微组织,或改动工 件外表的化学成分,赋予或改善工件的运用性能。其特点是改善工件 的内在质量,而这普通不是肉眼所能看到的。
金属热处置过程:包括加热、保温、冷却三个过程,有时只需加 热和冷却两个过程。
按用途分类 按钢的用途可分为:构造钢、工具钢和特 殊性能钢
构造钢又分为:工程构件用钢和机器零件 用
工具钢分为:刃具钢、量具钢、模具钢
特殊性能钢分为:不锈钢、耐热钢等
按金相组织分类
按退火态的金相组织可分为:亚共析钢、 共析钢、过共析钢三种。
按正火态的金相组织可分为:珠光体钢、 贝氏体钢、马氏体钢、奥氏体钢等四种。
弹簧、钢丝 绳等
连杆、齿轮 及轴类
58~65 35~50 20~30
热处置中的“四把火〞
热处理方式
定义
作用
退火 正火 淬火 回火
将金属构件加热到高于或低于 临界点,保持一定时间,随后
缓慢冷却。
降低硬度,改善切削加工性;消除残余应 力,稳定尺寸,减少变形与裂纹倾向使金
属内部组织达到或接近平衡状态。
材料科学与工程专业《金属热处理原理及工艺》课件第二章金属固态
以写成:母相―→较不稳定过渡相―→较稳定过渡相 ―→稳定相
应特别指出:温度越低时,固态相变的上述特点 越显著。
过渡相的出现有利于减小固态相变的阻力。 如:铁碳合金中γ分解时
γ→M → α+Fe3C Fe3C→Fe+C
M,Fe3C为过渡相
二、金属固态相变主要特点
5.母相晶体缺陷的促进作用 (提供驱动力) 晶态固体中的空位、位错、晶界等缺陷周围
一、相变分类
4.按相变方式分类 (1)有核相变
形核----长大方式进行相变。 (2)无核相变
条件:可以以成分起伏或能量起伏为开始,直接长 大形成新相过程。
如:调幅分解以成分起伏为开始,进行上坡扩散, 形成两个成分不同的新相; 马氏体相变以能量起伏为开始,靠共格切变直接长大 形成新相过程。
一、相变分类
Ⅳ
二、非均匀形核
2.位错形核 位错促进形核。
位错线上形核,位错线消失释放能量,降低形核功。 位错线不消失,成为半共格界面中的位错部分,降低
形核功。 溶质原子在位错上偏聚,满足新相形核的成分起伏。 扩散的短路通道,↘Q,加速形核。
二、非均匀形核
3.空位及空位集团形核 空位及空位集团促进形核。
界面能:非共格>半共格>共格 弹性畸变能:非共格<半共格<共格
二、金属固态相变主要特点
1. 相界面特殊 (不同类型,具有不同界面能和应变能)
2. 新旧相之间存在一定位向关系与惯习面 新、旧相之间存在一定位向关系,并且新相往往在旧
相的一定晶面上开始形成,这个晶面称为惯习面.
惯习面和位向关系的区别: 惯习面指母相的某一主平面; 位向关系指新相的某些晶面、晶向∥旧相的某些晶 面、晶向
3. 按原子迁移情况分类 (1)扩散型相变
应特别指出:温度越低时,固态相变的上述特点 越显著。
过渡相的出现有利于减小固态相变的阻力。 如:铁碳合金中γ分解时
γ→M → α+Fe3C Fe3C→Fe+C
M,Fe3C为过渡相
二、金属固态相变主要特点
5.母相晶体缺陷的促进作用 (提供驱动力) 晶态固体中的空位、位错、晶界等缺陷周围
一、相变分类
4.按相变方式分类 (1)有核相变
形核----长大方式进行相变。 (2)无核相变
条件:可以以成分起伏或能量起伏为开始,直接长 大形成新相过程。
如:调幅分解以成分起伏为开始,进行上坡扩散, 形成两个成分不同的新相; 马氏体相变以能量起伏为开始,靠共格切变直接长大 形成新相过程。
一、相变分类
Ⅳ
二、非均匀形核
2.位错形核 位错促进形核。
位错线上形核,位错线消失释放能量,降低形核功。 位错线不消失,成为半共格界面中的位错部分,降低
形核功。 溶质原子在位错上偏聚,满足新相形核的成分起伏。 扩散的短路通道,↘Q,加速形核。
二、非均匀形核
3.空位及空位集团形核 空位及空位集团促进形核。
界面能:非共格>半共格>共格 弹性畸变能:非共格<半共格<共格
二、金属固态相变主要特点
1. 相界面特殊 (不同类型,具有不同界面能和应变能)
2. 新旧相之间存在一定位向关系与惯习面 新、旧相之间存在一定位向关系,并且新相往往在旧
相的一定晶面上开始形成,这个晶面称为惯习面.
惯习面和位向关系的区别: 惯习面指母相的某一主平面; 位向关系指新相的某些晶面、晶向∥旧相的某些晶 面、晶向
3. 按原子迁移情况分类 (1)扩散型相变
金属热处理知识课件
金属材料与金属热处理
1
热处理是指通过对工件的加热、保温和冷却, 使 金属或合金的组织结构发生变化, 从而获得预期的性 能(如机械性能、加工性能、物理性能和化学性能等) 的操作工艺称为热处理。
工件热处理的目的是通过热处理这一重要手 段, 来改变(或改善)工件内部组织结构, 从而获得所 需要的性能并提高工件的使用寿命。
●去应力退火 将工件加热到 Ac1以下某一温度,保温后随炉冷却的热处理 工艺称为去应力退火。
目的: 消除铸、锻、焊的内应力。
11
●正火是将钢加热到 Ac3或 Accm以上30~50℃, 保温后 空气中冷却的热处理工艺。
●正火具有以下几方面的应用: ① 含碳量≤0.25%经正火后硬度提高,改善了切削加工性能。 ② 消除过共析钢中的二次渗碳体。 ③ 作为普通结构零件的最终热处理。
7
3 钢的热处理基本工艺及应用
四把火: 退火、正火、淬火、回火 1) 钢的退火与正火
● 退火与正火的目的 ① 调整硬度以便进行切削加工 ② 消除残余应力 ③ 细化晶粒, 改善组织 ④ 为最终热处理做好组织上的准备
8
●退火: 将钢加热、保温,然后缓慢冷却的热处理工艺。 退火工艺可分为完全退火、等温退火、球化退火、去应力
① 马氏体分解: 主要发生在 100~200℃, 马氏体中的碳 以ε碳化物(FexC)的形式析 出,析出的碳化物以极小片状 分布在马氏体基体上,这种组 织称为回火马氏体,用Байду номын сангаасM回” 表示。如图所示。
图12 回火马氏体
25
② 残余奥氏体分解 主要发生在200~300℃, 残余奥 氏体分解 为ε碳化物和过饱和α, 但组织仍是回火马 氏体。
获得均匀细小的奥氏体。 如图所示,一般淬火温度 在临界点以上。
1
热处理是指通过对工件的加热、保温和冷却, 使 金属或合金的组织结构发生变化, 从而获得预期的性 能(如机械性能、加工性能、物理性能和化学性能等) 的操作工艺称为热处理。
工件热处理的目的是通过热处理这一重要手 段, 来改变(或改善)工件内部组织结构, 从而获得所 需要的性能并提高工件的使用寿命。
●去应力退火 将工件加热到 Ac1以下某一温度,保温后随炉冷却的热处理 工艺称为去应力退火。
目的: 消除铸、锻、焊的内应力。
11
●正火是将钢加热到 Ac3或 Accm以上30~50℃, 保温后 空气中冷却的热处理工艺。
●正火具有以下几方面的应用: ① 含碳量≤0.25%经正火后硬度提高,改善了切削加工性能。 ② 消除过共析钢中的二次渗碳体。 ③ 作为普通结构零件的最终热处理。
7
3 钢的热处理基本工艺及应用
四把火: 退火、正火、淬火、回火 1) 钢的退火与正火
● 退火与正火的目的 ① 调整硬度以便进行切削加工 ② 消除残余应力 ③ 细化晶粒, 改善组织 ④ 为最终热处理做好组织上的准备
8
●退火: 将钢加热、保温,然后缓慢冷却的热处理工艺。 退火工艺可分为完全退火、等温退火、球化退火、去应力
① 马氏体分解: 主要发生在 100~200℃, 马氏体中的碳 以ε碳化物(FexC)的形式析 出,析出的碳化物以极小片状 分布在马氏体基体上,这种组 织称为回火马氏体,用Байду номын сангаасM回” 表示。如图所示。
图12 回火马氏体
25
② 残余奥氏体分解 主要发生在200~300℃, 残余奥 氏体分解 为ε碳化物和过饱和α, 但组织仍是回火马 氏体。
获得均匀细小的奥氏体。 如图所示,一般淬火温度 在临界点以上。
9材料科学与工程专业《金属热处理原理及工艺》课件-第九章__退火与正火
金属热处理原理及工艺 , SMSE,CUMT 本章首页 上一页 下一页 返 回
正火→球化退火→淬火→低温回火
金属热处理原理及工艺 , SMSE,CUMT 本章首页 上一页 下一页 返 回
金属热处理原理及工艺 , SMSE,CUMT
本章首页 上一页
下一页
返 回
正火与退火的常见缺陷
1、硬度偏高 2、网状组织 3、脱碳 4、退火石墨碳
金属热处理原理及工艺 , SMSE,CUMT
40钢正火组织
下一页 返 回
四、正火与退火的正确选用
改善切削加工性
改善冷变形性能 球化退火和再结晶退火
金属热处理原理及工艺 , SMSE,CUMT 本章首页 上一页 下一页 返 回
改善组织缺陷并为淬火作组织准备
亚共析钢:完全退火或正火 过共析钢:正火+球化退火 去应力、均匀成分等主要用退火 不重要件最终热处理主要用正火 问题:用T10(1%C)钢制造手工锯条,请给出热处理工 艺路线,及各处理工序后的组织。
下一页
返 回
分类:完全退火、球化退火、去应力退火、
扩散退火等。
金属热处理原理及工艺 , SMSE,CUMT
本章首页 上一页
下一页
返 回
1. 扩散退火 目的:改善和消除在冶金过程中形成的成分不均匀性 规范:在较高的加热温度下长时间保温,然后缓慢冷却到室温 Ac3或Accm以上150~300℃,长时间保温(10h以上) 应用:脱氢退火 (在高温下使有害气体脱溶析出) 均匀化退火 (改善铸造偏析、轧制偏析)
特点:加热温度范围广; 慢冷 得到珠光体类组织 目的:降低硬度,便于切削加工 消除内应力或冷作硬化 改善组织(铸、锻、焊时 的缺陷); 细化晶粒为最终热处理做 组织准备
正火→球化退火→淬火→低温回火
金属热处理原理及工艺 , SMSE,CUMT 本章首页 上一页 下一页 返 回
金属热处理原理及工艺 , SMSE,CUMT
本章首页 上一页
下一页
返 回
正火与退火的常见缺陷
1、硬度偏高 2、网状组织 3、脱碳 4、退火石墨碳
金属热处理原理及工艺 , SMSE,CUMT
40钢正火组织
下一页 返 回
四、正火与退火的正确选用
改善切削加工性
改善冷变形性能 球化退火和再结晶退火
金属热处理原理及工艺 , SMSE,CUMT 本章首页 上一页 下一页 返 回
改善组织缺陷并为淬火作组织准备
亚共析钢:完全退火或正火 过共析钢:正火+球化退火 去应力、均匀成分等主要用退火 不重要件最终热处理主要用正火 问题:用T10(1%C)钢制造手工锯条,请给出热处理工 艺路线,及各处理工序后的组织。
下一页
返 回
分类:完全退火、球化退火、去应力退火、
扩散退火等。
金属热处理原理及工艺 , SMSE,CUMT
本章首页 上一页
下一页
返 回
1. 扩散退火 目的:改善和消除在冶金过程中形成的成分不均匀性 规范:在较高的加热温度下长时间保温,然后缓慢冷却到室温 Ac3或Accm以上150~300℃,长时间保温(10h以上) 应用:脱氢退火 (在高温下使有害气体脱溶析出) 均匀化退火 (改善铸造偏析、轧制偏析)
特点:加热温度范围广; 慢冷 得到珠光体类组织 目的:降低硬度,便于切削加工 消除内应力或冷作硬化 改善组织(铸、锻、焊时 的缺陷); 细化晶粒为最终热处理做 组织准备
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
界面两侧晶体结构相差较大,原子排列不规则, 原子的活动能力较强,比较容易满足结构起伏;
界面上原子排列不规则,位错等晶体学缺陷密度 较大,处于能量较高的状态,比较容易满足能量 起伏;
同时新相晶核形成时,可以使部分晶体学缺陷消 失,使系统的能量进一步下降,因此在相界面处 是奥氏体形核的首选位置。
6
12
3-23 说明球化退火的目的,并解释常用的三 种球化退火工艺。
共析钢和过共析钢球化退火得到球状珠光体组织, 具有低的硬度和高的塑性以便进行切削加工。
13
3-27 说明正火的目的和应用范围。为了获得最佳的切削加 工性,为什么对不同碳含量钢要选用不同的热处理工艺?
• 目的: 消除应力;调整硬度;细化晶粒;均匀成 分;为最终热处理作好组织准备。
(a)C原子在马氏体的晶胞中可能存在的位置; (b)C原子在马氏体的晶胞中一组扁八面体间隙位置 可能存在的情况; 2。马氏体正方度与含碳量呈直线关系,含碳量愈高,正方度 愈大。
15
4-2 马氏体传变有哪些特点?
• 马氏体转变的非恒温性 • 马氏体转变的切变共格性和表面浮凸现象 • 马氏体转变的无扩散性 • 马氏体转变具有一定的位向关系和惯习面 • 马氏体转变的可逆性
2-2-1 珠光体奥氏体化时奥氏体晶核优 先形核的部位是( c )
(A)在铁素体内 ;
(B)
在渗碳体内;
(C)在铁素体和渗碳体相界上;(D)
在珠光体团边界
7
2-5 为什么铁素体和渗碳体不能同时消失,而总有部 分渗碳体剩余?
按相平衡理论,从Fe-Fe3C相图可以看出,在高 于AC1温度,刚刚形成的奥氏体,靠近Cem的C浓度 高于共析成分较少,而靠近F处的C浓度低于共析成 分较多(即ES线的斜率较大,GS线的斜率较小)。 所以,在奥氏体刚刚形成时,即F全部消失时,奥氏 体的平均C浓度低于共析成分,这就进一步说明,共 析钢的P刚刚形成的A的平均碳含量降低,低于共析 成分,必然有部分碳化物残留,只有继续加热保温, 残留碳化物才能逐渐溶解。
16
4-4 简述钢中马氏体结构特征、晶体学特点和 力学性能
板条马氏 体
片状 马氏
体
形貌 特 征
晶体 学 特 征
亚结
• 应用范围:
• 1.预备热处理:调整低、中碳钢的硬
ห้องสมุดไป่ตู้
•
度;消除过共析钢中的Fe3CⅡ(除
网)。
• 2.最终热处理:用于力学性能要求不
•
高的普通零件。
14
4-1 试说明钢中马氏体的晶体结构,马氏体的 正方度取决于什么?为何出现反常正方度?
1. 马氏体的晶体结构类型有两种: 体心立方结构(WC<0.2%) 体心正方结构(WC>0.2%)
珠光体型相变为扩散型相变,是受碳、铁原子的扩 散控制的。 当珠光体的形成温度下降时,过冷度ΔT增加,扩 散变得较为困难,从而层片间距必然减小(以缩短 原子的扩散距离),所以片层间距离S与ΔT成反比 关系。 原子所需扩散的距离就要增大,这使转变发生困难; 若S过小,则由于相界面面积增大,而使表面能增 大小,,这而时使Δ相G变V不不变易,进△行G。S增可加见,,必S然与使Δ相T必变然驱存动在力过一 定的定量关系。
金属热处理原理与工艺
习题讲解
1
1-3 固态相变时形成新相的形状与过冷度大小有何 关系?
2
1-3-1 固态相变时形成新相的形状与过冷度大小关系 是(b )
(A)过冷度大时容易出现球状; (B)过冷度大时容易出现薄片状; (C)过冷度大时容易出现针状; (D)过冷度大时容易出现几何形态
1-3-2 固态相变时形成新相的形状与过冷度大小有 很大的关系,一般过冷度大时新相的形态呈现出 ( 盘 )状;而过冷度比较小时,当新旧两相的比 容差小时,新相的形态是( 球状 ) ;当新旧两 相的比容差大时,新相的形态是( 针状 )。
(C)新旧相的体积自由能差;(D)体系自由能差
5
2-2 奥氏体晶核在什么地方优先形核?为什么?
在铁素体和渗碳体相界上优先形核的原因,可做如 下的解释:
界 面 两 侧 两 相 的 碳 含 量 相 差 很 大 ( 0.0218%和 6.69%),因此在界面上碳浓度分布很不均匀, 比较容易满足成分起伏;
1-3-3 改错题 3
1-4 金属固态相变有哪些主要特征?那些因素构成 相变阻力?那些因素构成相变驱动力?
1. 金属固态相变有哪些主要特征 新相和母相间存在不同的界面(相界面特殊) 新相晶核与母相间的晶体学关系(有一定的位
向关系、存在惯习面) 相变阻力大(应变能的产生) 母相晶体缺陷的促进作用 易出现过渡相 原子迁移率低
10
3-4 为什么说珠光体转变是以扩散为 基础并受扩散所控制?
碳含量C% 晶格类型
γ → α+
0.77
0.0218
面心立方 体心立方
Fe3C 6.69
复杂斜方
珠光体的形成过程,包含着两个同时进行的过 程:
一个是碳的扩散,以生成高碳的渗碳体和低碳的 铁素体;
另一个是晶体点阵的重构,由面心立方的奥氏体 转变为体心立方点阵的铁素体和复杂单斜点阵的渗 碳体。
4
2. 那些因素构成相变阻力? • 界面能和应变能均是相变的阻力
应变能(由共格应变能和比容差应变能构成)
3.那些因素构成相变驱动力? 均匀形核:新旧相的体积自由能差ΔGv 非均匀形核:ΔGv和ΔGd(缺陷消失释放能)
1-4-1 固态相变均匀形核的驱动力是( c )
(A)界面能差;
(B)应变能差;
11
3-17 说明先共析铁素相不同形态及形成条件
1. 先共析相为块状组织:长大受扩散控制,新旧相的界面 是非共格界面,含碳量远离共析成分;
2. 先共析相为片状组织(魏氏组织):先共析相与奥氏体 的界面时共格或半共格界面,中低碳钢,冷却速度适中;
3. 先共析相为网状组织:碳含量靠近共析成分,奥氏体晶 粒粗大,冷却速度慢。
8
2-10 为什么对奥氏体晶粒长大及控制的研究 对于热处理生产具有重要的意义?
奥氏体晶粒的大小对钢的力学性能有至关 重要的影响,奥氏体的晶粒越细小,冷却 后奥氏体的转变产物的室温组织也越小, 钢的强度和韧性也越好;
确定热处理的加热方式; 确定热处理的加热温度和保温时间
9
3-2 试对珠光体片层间随转变温度的降低而减 少做出定性的解释。
界面上原子排列不规则,位错等晶体学缺陷密度 较大,处于能量较高的状态,比较容易满足能量 起伏;
同时新相晶核形成时,可以使部分晶体学缺陷消 失,使系统的能量进一步下降,因此在相界面处 是奥氏体形核的首选位置。
6
12
3-23 说明球化退火的目的,并解释常用的三 种球化退火工艺。
共析钢和过共析钢球化退火得到球状珠光体组织, 具有低的硬度和高的塑性以便进行切削加工。
13
3-27 说明正火的目的和应用范围。为了获得最佳的切削加 工性,为什么对不同碳含量钢要选用不同的热处理工艺?
• 目的: 消除应力;调整硬度;细化晶粒;均匀成 分;为最终热处理作好组织准备。
(a)C原子在马氏体的晶胞中可能存在的位置; (b)C原子在马氏体的晶胞中一组扁八面体间隙位置 可能存在的情况; 2。马氏体正方度与含碳量呈直线关系,含碳量愈高,正方度 愈大。
15
4-2 马氏体传变有哪些特点?
• 马氏体转变的非恒温性 • 马氏体转变的切变共格性和表面浮凸现象 • 马氏体转变的无扩散性 • 马氏体转变具有一定的位向关系和惯习面 • 马氏体转变的可逆性
2-2-1 珠光体奥氏体化时奥氏体晶核优 先形核的部位是( c )
(A)在铁素体内 ;
(B)
在渗碳体内;
(C)在铁素体和渗碳体相界上;(D)
在珠光体团边界
7
2-5 为什么铁素体和渗碳体不能同时消失,而总有部 分渗碳体剩余?
按相平衡理论,从Fe-Fe3C相图可以看出,在高 于AC1温度,刚刚形成的奥氏体,靠近Cem的C浓度 高于共析成分较少,而靠近F处的C浓度低于共析成 分较多(即ES线的斜率较大,GS线的斜率较小)。 所以,在奥氏体刚刚形成时,即F全部消失时,奥氏 体的平均C浓度低于共析成分,这就进一步说明,共 析钢的P刚刚形成的A的平均碳含量降低,低于共析 成分,必然有部分碳化物残留,只有继续加热保温, 残留碳化物才能逐渐溶解。
16
4-4 简述钢中马氏体结构特征、晶体学特点和 力学性能
板条马氏 体
片状 马氏
体
形貌 特 征
晶体 学 特 征
亚结
• 应用范围:
• 1.预备热处理:调整低、中碳钢的硬
ห้องสมุดไป่ตู้
•
度;消除过共析钢中的Fe3CⅡ(除
网)。
• 2.最终热处理:用于力学性能要求不
•
高的普通零件。
14
4-1 试说明钢中马氏体的晶体结构,马氏体的 正方度取决于什么?为何出现反常正方度?
1. 马氏体的晶体结构类型有两种: 体心立方结构(WC<0.2%) 体心正方结构(WC>0.2%)
珠光体型相变为扩散型相变,是受碳、铁原子的扩 散控制的。 当珠光体的形成温度下降时,过冷度ΔT增加,扩 散变得较为困难,从而层片间距必然减小(以缩短 原子的扩散距离),所以片层间距离S与ΔT成反比 关系。 原子所需扩散的距离就要增大,这使转变发生困难; 若S过小,则由于相界面面积增大,而使表面能增 大小,,这而时使Δ相G变V不不变易,进△行G。S增可加见,,必S然与使Δ相T必变然驱存动在力过一 定的定量关系。
金属热处理原理与工艺
习题讲解
1
1-3 固态相变时形成新相的形状与过冷度大小有何 关系?
2
1-3-1 固态相变时形成新相的形状与过冷度大小关系 是(b )
(A)过冷度大时容易出现球状; (B)过冷度大时容易出现薄片状; (C)过冷度大时容易出现针状; (D)过冷度大时容易出现几何形态
1-3-2 固态相变时形成新相的形状与过冷度大小有 很大的关系,一般过冷度大时新相的形态呈现出 ( 盘 )状;而过冷度比较小时,当新旧两相的比 容差小时,新相的形态是( 球状 ) ;当新旧两 相的比容差大时,新相的形态是( 针状 )。
(C)新旧相的体积自由能差;(D)体系自由能差
5
2-2 奥氏体晶核在什么地方优先形核?为什么?
在铁素体和渗碳体相界上优先形核的原因,可做如 下的解释:
界 面 两 侧 两 相 的 碳 含 量 相 差 很 大 ( 0.0218%和 6.69%),因此在界面上碳浓度分布很不均匀, 比较容易满足成分起伏;
1-3-3 改错题 3
1-4 金属固态相变有哪些主要特征?那些因素构成 相变阻力?那些因素构成相变驱动力?
1. 金属固态相变有哪些主要特征 新相和母相间存在不同的界面(相界面特殊) 新相晶核与母相间的晶体学关系(有一定的位
向关系、存在惯习面) 相变阻力大(应变能的产生) 母相晶体缺陷的促进作用 易出现过渡相 原子迁移率低
10
3-4 为什么说珠光体转变是以扩散为 基础并受扩散所控制?
碳含量C% 晶格类型
γ → α+
0.77
0.0218
面心立方 体心立方
Fe3C 6.69
复杂斜方
珠光体的形成过程,包含着两个同时进行的过 程:
一个是碳的扩散,以生成高碳的渗碳体和低碳的 铁素体;
另一个是晶体点阵的重构,由面心立方的奥氏体 转变为体心立方点阵的铁素体和复杂单斜点阵的渗 碳体。
4
2. 那些因素构成相变阻力? • 界面能和应变能均是相变的阻力
应变能(由共格应变能和比容差应变能构成)
3.那些因素构成相变驱动力? 均匀形核:新旧相的体积自由能差ΔGv 非均匀形核:ΔGv和ΔGd(缺陷消失释放能)
1-4-1 固态相变均匀形核的驱动力是( c )
(A)界面能差;
(B)应变能差;
11
3-17 说明先共析铁素相不同形态及形成条件
1. 先共析相为块状组织:长大受扩散控制,新旧相的界面 是非共格界面,含碳量远离共析成分;
2. 先共析相为片状组织(魏氏组织):先共析相与奥氏体 的界面时共格或半共格界面,中低碳钢,冷却速度适中;
3. 先共析相为网状组织:碳含量靠近共析成分,奥氏体晶 粒粗大,冷却速度慢。
8
2-10 为什么对奥氏体晶粒长大及控制的研究 对于热处理生产具有重要的意义?
奥氏体晶粒的大小对钢的力学性能有至关 重要的影响,奥氏体的晶粒越细小,冷却 后奥氏体的转变产物的室温组织也越小, 钢的强度和韧性也越好;
确定热处理的加热方式; 确定热处理的加热温度和保温时间
9
3-2 试对珠光体片层间随转变温度的降低而减 少做出定性的解释。