新苏科版数学九年级上册:一元二次方程的解法归纳

合集下载

一元二次方程的解法(第3课时配方法)(课件)九年级数学上册精品课件(苏科版)

一元二次方程的解法(第3课时配方法)(课件)九年级数学上册精品课件(苏科版)
将常数项移到等号右边,含未 知数的项移到等号左边.
左、右两边同时加上一次项系 数一半的平方.
利用平方根的意义直接开平方.
移项,合并.
例题讲解
例1.用配方法解下列方程:
(2)2x2-2x+1=0
∴原方程无解.
<0?
新知巩固
用配方法解下列方程:
(1)3x2-1=6x;
(2) -5x2+2x-1=0.
当堂检测
2.用配方法解下列方程,正确的是( D ) A. x2+4x-1=0化为(x+2)2 = -1+4
B. t2-2t-4 = 0化为(t-1)2 = 4
当堂检测
3.用配方法解下列方程,配方错误的是( C )
当堂检测
4.若方程4x2-(m+2)x+1=0的左边可以写成一个完全平方
式,则m的值为( C ) A. 2或-2 B. 6或-6
变式:试判断代数式-x2+2x+3是存在最大值还是最小值?
课堂小结
二次项系数为1 (x+h)2=k(k≥0) 配方法解一 元二次方程
二次项系数不为1 ax2+bx+c=0 (a≠0)
特别提醒: 在使用配方法解方程之前先把方程的二次项系数化为1.
当堂检测
1. 将方程2x2+8x+3=0变形为(x+h)2=k的形式,正确的是 ( D ) A. (x+2)2=1
∴原方程无解.
例题讲解
例2. 求证:不论x取何值,代数式2x2-4x+3的值总大于零.
证明:2x2-4x+3=2(x2-2x+1)+1 =2(x-1)2+1
∵不论x取何值时,总有2(x-1)2≥0 ∴2(x-1)2+1>0 ∴不论x取何值,代数式2x2-4x+3的值总大于零.

数学苏科版九年级上册1.2一元二次方程的解法

数学苏科版九年级上册1.2一元二次方程的解法

1.2一元二次方程的解法(1)教学目标【知识与能力】了解形如(x +m )²=n (n ≥0)的一元二次方程的解法——直接开平方法.【过程与方法】会用直接开平方法解形如b ax =2(a ≠0,a b ≥0)的方程.【情感态度价值观】会用直接开平方法解形如b k x a =-2)((a ≠0,a b ≥0)的方程.教学重难点【教学重点】一元二次方程的概念和一般形式.【教学难点】正确理解和掌握一般形式中的a ≠0 ,“项”和“系数”.课前准备无教学过程一、知识回顾:1、把下列方程化为一般形式,并说出各项及其系数。

(1)245x x -=(2)235x =(3)()()()22122-+=+-y y y y 2.我们曾学习过平方根的意义及其性质,现在来回忆一下:什么叫做平方根?平方根有哪些性质?平方根有下列性质:(1)一个正数有两个平方根,这两个平方根是互为相反数的;(2)零的平方根是零;(3)负数没有平方根。

3、填空:4 的平方根是 ,81的平方根是,100的算术平方根是 。

二、自学自悟思考:如何解方程2x =2呢?根据平方根的意义, 是 的平方根,所以, x=即此一元二次方程的两个根为结论:1、根据平方根的意义,x 就是2的平方根,∴x=2±这种解一元二次方程的方法叫做直接开平方法。

2、形如方程02=-k x )0(≥k 可变形为)0(2≥=k k x 的形式,用直接开平方法求解。

三、例题学习例1:解下列方程(1)042=-x ;(2)0142=-x ;例2:解下列方程(1)(x +1)2-2=0;(2)12(2-x )2-9=0.(这两题和上面两题有什么异同点?解法上有什么联系?小结:如果一个一元二次方程具有(x+h )2=k (k ≥0)的形式,那么就可以用直接开平方法求解例3.解方程(2x -1)2=(x -2)2分析:如果把2x-1看成是(x-2)2的平方根,同样可以用直接开平方法求解练习:(2x-1)2 =(3-x)2四、知识梳理与小结1、1.用直接开平方法解一元二次方程的一般步骤2、任意一个一元二次方程都可以用直接开平方法解吗?形如())0(2≥=+k k h x 的方程。

苏教版初中数学九年级上册一元二次方程知识点总结

苏教版初中数学九年级上册一元二次方程知识点总结

苏教版初中数学九年级上册一元二次方程知识点总结
定义
方程是只含有一个未知数的整式方程,并且可以化成
ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。

2用配方法求解一元二次方程
思路:将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边同时开平方,转化为一元一次方程,便可求出它的根。

我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。

3。

用公式法求解一元二次方程
对于一元二次方程,当b2-4ac≥0时,它的根是:
上面这个公式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法。

对于ax2+bx+c=0(a,b,c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根。

当b2-4ac=0时,方程有两个相等的实数根。

当b2-4ac<0时,方程没有实数根。

4、用因式分解法求解一元二次方程
当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就可以将方程分解成两个一元一次方程,这两个一元一次方程的解就是一元二次方程的根,这种解一元二次方程的方法,叫做因式分解法。

5、一元二次方程的根与系数的关系(韦达定理)
如果方程ax2+bx+c=0(a,b,c为常数,a≠0)有两个实数根x1,x2,那么
x1+x2=-b/a,x1x2=c/a
思维导图:。

苏教版九年级数学(上册)一元二次方程的解法公式法

苏教版九年级数学(上册)一元二次方程的解法公式法
解: a=1,b=-4,c=-7. 1.确定系数;
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0. 2.计算Δ ;
方程有两个不等的实数根
提示:方程必须
b b2 4ac x
2a
要转化成一般形 式才能确定系数
(4) 44 2 11, 3.代入 ; 21
即 x1 2 11, x2 2 11. 4.定根 ;
新课讲解
(2)方程化为5x2-4x-1=0.
a=5,b=-4,c=-1.
Δ = b2 - 4ac = ( - 4)2 - 4×5×( - 1) =
36>0.
方程b有两b个2 不4a等c 的实(数4根) 36 4 6
x
.
2a
25
10
1 即 x1 1, x2 5 .
新课讲解
(3)方程化为x2-8x+17=0. a=1,b=-8,c=17. Δ=b2-4ac=(-8)2-4×1×17=-4<0. 方程无实数根.
所以x1 b
b2 2a
4ac
,
x2
b
b2 4ac . 2a
新课讲解
知识点1 公式法
由上可知,一元二次方程ax2 bx c 0 (a 0)
的根由方程的系数a,b, c 确定.因此,解一元二次方程时,
可以先将方程化为一般形式 ax2 bx c 0 ,b当2 4ac 0
时,将a,b,c代入x 式 子b b2 4ac
的根是( C )
当堂小练
2. 已知4个数据:- 2 ,2 2 ,a,b,其中a, b是方程x2-2x-1=0的两个根,则这4个数 据的中位数是( A )
A.1 C.2
B. 1
2
D. 1 2

苏教版九年级上册数学第一章【2】 一元二次方程的解法

苏教版九年级上册数学第一章【2】 一元二次方程的解法
【反思】
当 b2 4ac 0 时,方程有实数根吗?
1.2 一元二次方程的解法(1)
1.2 一元二次方程的解法(1)
【问题情境】
如何解方程 x2=2 呢?
根据平方根的意义,x是2的平方根,即 x= 2 .
此一元二次方程有两个根,它们分别为
x1= 2 , x2= 2 .
1.2 一元二次方程的解法(1)
【概念】
解方程 x2=2. 解:
x1 = 2 ,x2= 2 .
把一个一元二次方程变形为(x+h)2 =k (h、k 为常数)的形式,当k ≥0时,运用直接开平方法求出 方程的解,这种解一元二次方程的方法叫配方法.
1.2 一元二次方程的解法(2)
【例题精讲】
解下列方程: (1)x2-4x+3=0;
(2)x2+3x-1=0.
1.2 一元二次方程的解法(2)
【数学实验室】
【问题情境】
用配方法解下列一元二次方程:
x2+2x -3=0.
你会解关于x的方程ax2+bx+c=0 (a、b、c是 常数,a≠0)吗?
1.2 一元二次方程的解法(4)
【思考与探索】
ax2 bx c 0(a 0).
解: 因为a≠0,所以方程两边都除以a,得
x2 b x c 0. aa
2

x
2 3
2
7 9

开方,得 x 2 7 .
33

x1
2 3
7 3
,x2
2 3
7 3

1.2 一元二次方程的解法(3)
【总结反思】
用配方法解二次项系数不为1的一元二次方程的 一般步骤:
(1)系数化为1. (2)移项. (3)配方. (4)开方. (5)求解. (6)定根.

一元二次方程的解法课件苏科版数学九年级上册

一元二次方程的解法课件苏科版数学九年级上册

(2)确定公式中a,b,c 的值.
(3)求出b2-4ac 的值.
(4)若b2-4ac ≥ 0, 则把a,b 及b2-4ac 的值代入求根公式求
解;若b2-4ac < 0,则方程没有实数根.
感悟新知
特别提醒
1. 公式法是解一元二次方程的通用解法
(也称万能解法),它适用于所有的一元二次
方程,但不一定是最高效的解法.
方程的两个根.
感悟新知
知识储备
第一将方程化成左边是含有未知数的平方式,
右边是非负数的情势;其次化平方式的系数为1;
最后根据平方根的意义开平方求解.
感悟新知
例 1 用直接开平方法解下列方程:
(1)4x2-13=12; (2)4(2x-1)2-36=0.
解题秘方:紧扣用直接开平方法解一元二次方程的步骤
的情势,再用直接开平方法求出方程的解.
感悟新知
(1)x2-2x-5=0;
解:移项,得x2-2x=5.
配方,得x2-2x+12=5+12,即(x-1)2=6.
解这个方程,得x-1=± .
所以x1=1+ ,x2=1- .
感悟新知
(2)2x2-4x+1=0.

2
解:两边都除以2,得x -2x+ =0.
得5x2+4x-1=0.
∵a=5,b=4,c=-1,
∴ b2-4ac=42-4×5×(-1)=36>0,
∴ x=
-±
×

-± -±



. ∴ x1= ,x2=-1.



2
移项,得x -2x=- .


2
即(x-1) = .

所以x1=1+

苏科版九年级上册 1.2 一元二次方程的解法 讲义

苏科版九年级上册 1.2 一元二次方程的解法 讲义

一元二次方程的解法1、直接开方法:对于形如x ²=k(k ≥0)的方程,我们可以根据平方根的意义,其中x 表示k 的平方根,即x=±k ,所以对于一元二次方程x ²=k 有两个根,它们分别记为k x =1,k x -2=注意:这里有时候要将等号两边看作整体,常见形式:①ax ²=k ②(ax+h)²=k ③(ax+b)²=(cx+d)²例题解析:4x ²-1=0 (x+1)²=2解:412=x 解;将(x+1)看作一个整体21±=x ()21±=+x121-=x 1-2-2=x(3x+2)²=(x-2)²解:将(3x+2)和(x-2)分别看作一个整体 ()()223-±=+x x21-=x 02=x2、配方法:首先要将一个一元二次方程变形为(x+h)²=k,当k ≥0时,然后就可以直接用开平方法求出方程的解。

步骤:①移项:把常数项移到等号的右边;②二次项系数化为1:方程两边同时除以二次项的系数; ③配方:在方程的两边同时加上一次项系数一半的平方; ④用直接开平方法求出变形后的方程;注意:配方法用到一个公式:完全平方公式逆运算:a ²±2ab+b ²=(a ±b )² 配方法最关键的就是第二个步骤,一定要加上一次项系数一半的平方。

(这里可以不用考虑一次系数前面的正负号)例题分析:x ²+8x+ 4² =(x+ 4 )² x ²-62x+ ()223 =(x- ²加上一次项系数的一半的平方,不需要考虑正负号。

02522=+-x x 解:移项: 2522-=-x x二次项系数化为1:1252-=-x x加上一次项系数一半的平方:2224514525⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛+-x x配方:169)45(2=-x解得:4345±=⎪⎭⎫ ⎝⎛-x21=x 212=x3、公式法:一元二次方程ax ²+bx+c=0(a ≠0)的根是由方程的各项系数决定的,它的实数根是:240)x b ac =-≥ 步骤:① 要将已知方程化为一般表达式,且注意二次项系数不为0;② 计算出△=b ²-4ac 的值,注意各项系数包括符号; ③ 若△=b ²-4ac ≥0,直接带入公式求解;注意:看清楚是指一元二次方程还是指一元一次方程,或只是说方程(两种情况都要考虑)。

一元二次方程的解法(第5课时一元二次方程根的判别式)(课件)九年级数学上册课件(苏科版)

一元二次方程的解法(第5课时一元二次方程根的判别式)(课件)九年级数学上册课件(苏科版)

是( C )
A. k≤-1
B. k≥-1
C. k<-1
D. k>-1
4. 若关于x的一元二次方程mx2-2x+1=0有实数根,则m的取值范围是
(D ) A. m<1
B. m<1且m≠0 C. m≤1
D. m≤1且m≠0
当堂检测
5.在一元二次方程ax2+bx+c=0(a≠0)中,若a与c异号,则方程( A )
第1章 · 一元二次方程
1.2 一元二次方程的解法
第5课时 一元二次方程根的判别式
学习目标
1.熟练运用公式法求解一元二次方程; 2.理解一元二次方程根的判别式的意义,能运用根的判别式 直接判断一元二次方程的根的情况.
复习回顾
一元二次方程的一般形式:
一元二次方程的求根公式:
复习回顾
用公式法解方程的一般步骤是什么?
(2)(x+2)2=2x+4;
当堂检测
11.关于x的一元二次方程mx2-(3m-1)x+2m-1=0, 其根的判别式
的值为1,求m的值及该方程的根. 解:b2-4ac=[-(3m-1)]2-4m(2m-1)
=9m2-6m+1-8m2+4m =m2-2m+1 =(m-1)2 ∴ (m-1)2=1,即 m1=2, m2=0(舍去).
=-4<0, 方程没有实数根.
新知巩固
不解方程,判断下列方程的根的情况.
(1)9x2+12x+4=0;
(2) 5y2+1=8y.
解:b2-4ac
解:化简得 5y2-8y+1=0.
=122-4×9×4
b2-4ac
=0,
=52-4×(-8)×1

苏科版九年级数学上册一元二次方程的解法——配方法课件

苏科版九年级数学上册一元二次方程的解法——配方法课件
知识要点
用配方法解二次项系数不为1的 一元二次方程
一、知识回顾
1、我们已经学习了哪几种解一元二次方程的方法?
(1)直接开平方法 (X+h)2=k(k≥0)
(2)配方法
x2 bx c 0
配方 转化
(X+h)2=k
新知导入
试一试:用配方法解一元二次方程的步骤有哪些?
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
2、解下面的一元二次方程
x2 5 x 1 0 2
解:移项,得 x2 5 x 1, 2
二次项系数不是“1 ”,怎么办?
配方,得
x2
多项式k2-4k+5 的值必定大于零.
课程讲授 2 配方法的应用
2、用配方法证明:不论x为何值,-2x2+8x-11的值总小于0.
解 -2x2+8x-11
=-2(x2-4x)-11 =-2(x2-4x+4)-11+8 =-2(x-2)2-3. ∵(x-2)2≥0, ∴-2(x-2)2≤0, ∴-2(x-2)2-3<0.
x2
5 2
x
5 4
2
1
5 4
2
x
5 4
2
9 16
开方,得 x 5 3 44
解得,x1 2,
x2
1 2
小结:
1.怎样用配方法解二次项系数不为1的一元二次方程?
基本思想:
二次项系数不为1
二次项系数化为1
2.用配方法解二次项系数不为1的一元二次方程

苏科版数学九年级上册《一元二次方程的解法4---公式法》课件

苏科版数学九年级上册《一元二次方程的解法4---公式法》课件

x1 1, x2 3
P16练习2:用公式法解下列方程:
(4)20x2 8x 1
1
1
x1 2 , x2 10
(5)x(x 6) 6
x1 3 15, x2 3 15
(6)4x(x 1) 1
12 12
x1
2 , x2
2
你有哪些方法解下列方程?
(1)x2 -2x=3
①直接开平方法 --特殊法 ②配方法 --通用法 ③公式法 --通用法
解一般形式的一元二次方程:
ax2 bx c 0(a 0)
解一般形式的一元二次方程:
ax2 bx c 0(a 0)
∵a≠0
∴两边同除以a,得:
x2 b x c 0 aa
x2 b x c
a
a
x2
b a
x
b 2a
2
c a
b2 4a2
∵a≠0 ∴4a2>0.
当b2-4ac≥0时,
b2 4ac 4a 2
0
x b 2a
b2 4ac 4a2
b2 4ac 2|a|
x b b2 4ac
2a
2a
x b b2 4ac
2a
2a
b2 4ac 2a
x
b 2a
2
b2 4ac 4a2
即x b b2 4ac 2a
一般地,对于一元二次方程ax2 bx c 0(a 0) 当b2 4ac 0时,它的根是
解:x2 6x 16
x2 6x 9 16 9 (x 3)2 25 ∴x 3 5
∴x1 2,x2 -8
用配方法解下列方程:
(2)4x2 x 3 0
解:可化为:x2 1 x- 3 0 44

121 一元二次方程的解法-2021-2022学年九年级数学上(苏科版)(解析版)

121 一元二次方程的解法-2021-2022学年九年级数学上(苏科版)(解析版)

1.2.1 一元二次方程的解法-配方法与直接开平方法【基础知识】一、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x 的一元二次方程,可直接开平方求解. 若,则;表示为,有两个不等实数根; 若,则x=O ;表示为,有两个相等的实数根; 若,则方程无实数根.②形如关于x 的一元二次方程,可直接开平方求解,两根是 .要点:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.【典例剖析】考点一:直接开平方法及其条件【典例1】.一元二次方程()229x -=的解为( )A .121x x ==-B .125x x ==C .121,5x x ==-D .121,5x x =-= 【答案】D【解析】 23x -=±,∴121,5x x =-=.【典例2】.关于x 的方程()2x a b +=能直接开平方求解的条件是( )A .0,0a b ≥≥B .0,0a ≥≤C .a b ,为任意数D .a 为任意数且0b ≥【答案】D【分析】根据一个数的平方是非负数,可得0b ≥.【解析】∵()20x a +≥,∴0b ≥,a 为任意数,故选:D .【点睛】本题考查了用直接开方法求一元二次方程的解,基本形式有:2x a =(a≥0).【典例3】.若(a 2+b 2﹣3)2=25,则a 2+b 2=( )A .8或﹣2B .﹣2C .8D .2或﹣8【答案】C【分析】 先直接开平方求得a 2+b 2﹣3=±5,然后再整体求出a 2+b 2即可. 【解析】解:∵(a 2+b 2﹣3)2=25,∴a 2+b 2﹣3=±5,∴a 2+b 2=3±5,∴ a 2+b 2=8或a 2+b 2=﹣2∵a 2+b 2≥0∴a 2+b 2=8.故选:C .【点睛】本题主要考查了一元二次方程的解法和代数式求值,掌握运用直接开平方法解一元二次方程和整体思想是解答本题的关键.【典例4】.对于方程()2ax b c +=,下列叙述正确的是( )A .不论c 为何值,方程均有实数根B .方程的根是c b x a-=C .当0c ≥时,方程可化为ax b +=ax b +=D .当0c 时,b x a= 【答案】C【解析】当0c <时,方程没有实数根;当0c ≥时,方程有实数根,则ax b +=,解得12x x ==;当0c 时,解得12b x x a==-. 【典例5】.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C【分析】 一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【解析】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.考点二:配方法【典例6】.用配方法解一元二次方程224x x -=,则下列配方正确的是( )A .2(2)2x -=B .2(22)x +=C .2(26)x -=D .2(2)6x +=【答案】C【解析】 2224,42x x x x -=∴-=.224424,(2)6x x x ∴-+=+∴-=.【典例7】.对于方程210a +-=,下列各配方式中,正确的是( )A .(23a =B .(23a =C .(23a -=D .(23a += 【答案】B【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方得出即可.【解析】 解:22210a +-=2=1a ∴+22+=1+2a ∴+∴(23a =故选:B .【点睛】本题考查了配方法解一元二次方程,解题时要注意解题步骤的正确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【典例8】.用配方法解方程23620x x -+=,则方程可变形为( )A .()2133x -=B .()2113x -=C .()2311x -=D .()2213x -= 【答案】B【解析】原方程为23620x x -+=,二次项系数化为1,得2223x x -=-.配方,得222113x x -+=-+,∴()2113x -=. 考点三:配方法的应用 【典例9】.已知a 、b 、c 为ABC 的三边长,且a 、b 满足2264130a a b b -+-+=,c 为奇数,则ABC 的周长为______.【答案】8利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可.【解析】22a b 4a 6b 130+--+=,()()22a 4a 4b 6b 90∴-++-+=, 22(a 2)(b 3)0∴-+-=,a 2∴=,b 3=,∴边长c 的范围为1c 5<<.边长c 的值为奇数,c 3∴=,ABC ∴的周长为2338++=.故答案为:8.【点睛】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.【典例10】0.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.【答案】4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【解析】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.【典例11】.对于有理数,a b ,定义min{,}a b 的含义为:当a b ≥时,}{min ,a b b =;当a b ≤时,}{min ,a b a =.若}{22min 13,6413m n m n ---=,则n m 的值等于____. 【答案】19【分析】根据6m-4n-m 2-n 2与13的大小,确定m ,n 的值.【解析】解:∵min{13,6m-4n-m 2-n 2}=13,∴13≤6m -4n-m 2-n 2.整理,得(m-3)2+(n+2)2≤0,∴m-3=0,n+2=0.解得m=3,n=-2.∴m n =3-2=19. 故答案是:19. 【点睛】考查了配方法的应用和非负数的性质.根据题意理解新定义的计算公式是解题的关键.【典例12】.设实数x ,y ,z 满足1x y z ++=,则23M xy yz zx =++的最大值为__________. 【答案】34【分析】 先将已知等式变形可得1=--z x y ,然后代入M 中,利用配方法将右侧配方,最后利用平方的非负性即可求出结论.【解析】解:∵1x y z ++=∴1=--z x y∴23M xy yz zx =++=()()1312---+-+x y x y x x y y=22222333+--+--xy y xy y x x xy=2234223---++x xy y y x=()22224223----++x xy y x y x=()22222-++-x+y x y x +x=()()22111124444⎡⎤⎛⎫--++---+- ⎪⎢⎥⎣⎦⎝⎭x+y x y x x =22111122224⎛⎫⎛⎫----++ ⎪ ⎪⎝⎭⎝⎭x+y x =221132224⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭x+y x ∵22112022⎛⎫⎛⎫----≤ ⎪ ⎪⎝⎭⎝⎭x+y x ∴221132224⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭x+y x ≤34 ∴23M xy yz zx =++的最大值为34故答案为:34. 【点睛】 此题考查的是配方法的应用和非负性的应用,掌握完全平方公式和平方的非负性是解决此题的关键.【过关检测】一、单选题1.方程x 2﹣5=0的实数解为( )A .x 1x 2B .x 1=5,x 2=﹣5C .xD .x 【答案】A【分析】先移项,再利用直接开平方法解一元二次方程.【解析】移项得,x 2=5,两边开方得,x =所以方程的解为x 1x 2故选:A .【点睛】本题考查直接开平方法解一元二次方程,是基础考点,难度较易,掌握相关知识是解题关键.22x = )A .120,x x ==B .120,x x ==C .12x x ==D .12x x ==【答案】A【分析】利用直接开方法解一元二次方程即可得.【解析】 2x =(23x =,利用直接开方法得:x解得120,x x ==故选:A .【点睛】本题考查了利用直接开方法解一元二次方程,熟练掌握直接开方法是解题关键.3.方程224(21)25(1)0x x --+=的解为( )A .127x x ==-B .1217,3x x =-=- C .121,73x x == D .1217,3x x =-= 【答案】B【分析】移项后利用直接开平方法解答即可.【解析】解:移项,得224(21)25(1)x x -=+,两边直接开平方,得2(21)5(1)x x -=±+,即2(21)5(1)x x -=+或2(21)5(1)x x -=-+,解得:17x =-,213x =-. 故选:B .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握直接开平方法是解题的关键. 4.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是( ). A .0m > B .7mC .7m >D .任意实数【答案】B【分析】根据70-≥m 时方程有实数解,可求出m 的取值范围.【解析】由题意可知70-≥m 时方程有实数解,解不等式得7m ,故选B .【点睛】形如()2+m =a x 的一元二次方程当a≥0时方程有实数解.5.用配方法解下列方程时,配方有错误的是( ).A .x 2-2x-99=0化为(x-1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2t 2-7t-4=0化为2781416t ⎛⎫-= ⎪⎝⎭ D .3y 2-4y-2=0化为221039y ⎛⎫-= ⎪⎝⎭ 【答案】B【分析】根据配方法,对各个选项分别计算,即可得到答案.【解析】()2222992110011000x x x x x --=-+-=--=即()21100x -=∴选项A 正确;()222898167470x x x x x ++=++-=+-=即()247x +=∴选项B 不正确; 222277498178127422=220221616416t t t t t t t ⎡⎤⎛⎫⎛⎫⎛⎫--=---+-=--=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 即2781416t ⎛⎫-= ⎪⎝⎭ ∴选项C 正确;22224244102103423=3+=303339939y y y y y y y ⎡⎤⎛⎫⎛⎫⎛⎫--=------=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 即221039y ⎛⎫-= ⎪⎝⎭ ∴选项D 正确;故选:B .【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程配方法的性质,从而完成求解. 6.将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21B .4-,11C .4,21D .8-,69【答案】A【分析】根据配方法步骤解题即可.【解析】解:2850x x --=移项得285x x -=,配方得2284516x x -+=+,即()2421x -=,∴a =-4,b =21.故选:A【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.7.形如2()(0)ax b p a +=≠的方程,下列说法错误的是( )A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =【答案】D【分析】 根据应用直接开平方法求解的条件逐项判断即得答案.【解析】解:A 、当0p >时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B 、当0p =时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C 、当0p <时,原方程无实数根,故本选项说法正确,不符合题意;D 、当0p ≥时,原方程的根为x =,故本选项说法错误,符合题意; 故选:D .【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键. 8.不论,a b 为任何实数,2261035a b a b +-++的值都是( )A .非负数B .正数C .负数D .非正数 【答案】B【分析】利用完全平方公式配方,进而利用偶次方的性质得出答案.【解析】 2261035a b a b +-++22(3)(5)10a b =-+++>,∴a 2+b 2−6a +10b +35的值恒为正数.故选:B .【点睛】此题主要考查了完全平方公式的应用以及偶次方的性质,正确配方得出是解题关键.9.《代数学》中记载,形如21039x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x 的方程260x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为( )A .6B .353C .352D .3352【答案】B【分析】 根据已知的数学模型,同理可得空白小正方形的边长为32,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,可得大正方形的边长,从而得结论.【解析】x 2+6x+m=0,x 2+6x=-m ,∵阴影部分的面积为36,∴x 2+6x=36,4x=6,x=32, 同理:先构造一个面积为x 2的正方形,再以正方形的边长为一边向外构造四个面积为32x 的矩形,得到大正方形的面积为36+(32)2×4=36+9=4533=. 故选:B .【点睛】 此题考查了解一元二次方程的几何解法,用到的知识点是长方形、正方形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.10.新定义,若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与2(2)(4)80a x b x ++-+=是“同族二次方程”.那么代数式22018ax bx ++能取的最小值是( ) A .2011B .2013C .2018D .2023【答案】B【分析】 根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x ∴++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a ∴++-+=+-+++,∴42(2)83b a a -=-+⎧⎨=+⎩, 解得:510a b =⎧⎨=-⎩. 222201*********(1)2013ax bx x x x ∴++=-+=-+,∴当1x =时,22018ax bx ++取最小值为2013.故选:B.【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.已知方程20x m -=__________.【答案】【分析】把x =,m 再把m 的值代入原方程解方程即可得到答案.【解析】解:把x30,m -=3.m ∴=230,x ∴-=23,x ∴=x ∴=所以:方程的另一根为:故答案为:【点睛】本题考查的是一元二次方程的解的含义,一元二次方程的解法,掌握以上知识是解题的关键.12.方程(x-1)2=20202的根是________.【答案】1220212019x x ==-, 【分析】利用直接开平方法求解可得.【解析】∵(1x -)2=20202,∴12020x -=或12020x -=-,解得1220212019x x ==-,, 故答案为:1220212019x x ==-,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.13.方程20(1)x x =-的解为______.【答案】1x =-【分析】根据0指数幂的意义并利用直接开平方法解答即可.【解析】解:由原方程得21x =且10x -≠,解得1x =-.故答案为:1x =-.【点睛】本题考查了0指数幂的意义以及利用直接开平方法求解一元二次方程,属于基本题型,熟练掌握上述基本知识是解题的关键.14.一元二次方程24430x x --=的解为____________. 【答案】132x =,212x =- 【分析】先把-3移到方程的右边,然后方程两边都加1,最后把左边根据完全平方公式写成完全平方的形式,然后两边同时开平方即可.【解析】移项,得2443x x -=,配方,得244131x x -+=+,即2(21)4x -=,两边开平方,得212x -=±, 解得132x =,212x =-. 故答案为132x =,212x =-. 【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.15.如果关于x 的方程(x ﹣2)2=m ﹣1没有实数根,那么m 的取值范围是____.【答案】m <1【分析】根据直接开平方法定义即可求得m 的取值范围.【解析】解:∵关于x 的方程(x ﹣2)2=m ﹣1没有实数根,∴m ﹣1<0,解得m <1,所以m 的取值范围是m <1.故答案为:m <1.【点睛】考查了解一元二次方程-直接开平方法,解决本题的关键是掌握直接开平方法.16.已知()(2)10a b a b ++-+=,则+a b 的值为__________.【答案】1.【分析】先把()(2)1a b a b ++-+化成完全平方式,然后直接开平方,即可求解.【解析】∵()(2)10a b a b ++-+=,∴2()2()10a b a b +-++=,∴2(1)0a b +-=,∴10a b +-=,∴1a b +=.故答案为1.【点睛】本题考查用直接开平方法解一元二次方程和完全平方公式,本题中对已知等式进行变形时,应把+a b 看成一个整体进行计算.17.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是____________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________.【答案】2110333x ⎛⎫-= ⎪⎝⎭; 2或6. 【分析】把一元二次方程3x 2-2x-3=0提出3,然后再配方即可;多项式x 2-ax+2a-3是一个完全平方式,则2a-3是2a 的平方,然后解方程即可值a 的值.【解析】 根据题意,一元二次方程3x 2-2x-3=0化成3(x 2-23x-1)=0, 括号里面配方得,3(x-13)2-109×3=0,即3(x-13)2=103; ∵多项式x 2-ax+2a-3是一个完全平方式,∴2a-3=(2a )2, ∴解得a=2或6.【点睛】本题考查了配方法解一元二次方程,是基础题.18.已知223720336n m m n -+-+=,则56n m -的值为_______. 【答案】0【解析】【分析】已知等式左边配方变形后,利用非负数的性质求出m 与n 的值,即可确定出6n-m 5的值.【解析】 ∵223720336n m m n -+-+= =(m 2-2m+1)+(n 2-3n +136) =(m-1)2+(n-16)2=0, ∴m=1,n=16, 则6n-m 5=1-1=0.故答案为:0【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.19.已知x =y =则225x xy y -+的值为__________.【答案】5【分析】由于x +y =xy =1方便运算,故可考虑将代数式化为含(x +y )和xy 的项,再整体代入(x +y )和xy 的值,进行代数式的求值运算.【解析】解: ∵x =y =∴x +y =xy =1,∵225x xy y -+22(2)7x xy y xy =++-=2()7x y xy +-,∴原式=271-⨯=5,故答案为5.【点睛】本题考查了代数式求值和二次根式的运算.由于直接代入计算复杂容易出错,因此可考虑整体代入, 20.已知22143134m n m n =--+,则11m n +的值等于______. 【答案】13【分析】 利用配方法将已知等式转化为()()2212604m n -++=的形式,由非负数的性质求得,m n 的值,然后代入求值即可.【解析】 解:22143134m n m n =--+ 221(2)(6)04m n -++=, 则20m -=,60n +=,所以2m =,6n =-, 所以11111263m n +=-=. 故答案是:13.【点睛】考查了配方法的应用,非负数的性质以及分式的加减法,配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.21.关于x 的方程2()10(0)bx b -=≥的根是_________________. 【答案】无解或者x=±1b .【分析】先移项,然后利用直接开平方法解方程即可.【解析】解:∵(bx )2-1=0∴(bx )2=1∴bx=±1①当b=0时,该方程无解.②当b >0时,x=±1b综上所述,当b=0时原方程无解;当b >0时方程的解是x=±1b .故答案是:无解或者x=±1b.【点睛】考查了解一元二次方程的解法-直接开平方法.形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解.22.设实数x ,y ,z 满足1x y z ++=,则23M xy yz zx =++的最大值为__________. 【答案】34【分析】 先将已知等式变形可得1=--z x y ,然后代入M 中,利用配方法将右侧配方,最后利用平方的非负性即可求出结论.【解析】解:∵1x y z ++=∴1=--z x y∴23M xy yz zx =++=()()1312---+-+x y x y x x y y=22222333+--+--xy y xy y x x xy=2234223---++x xy y y x=()22224223----++x xy y x y x=()22222-++-x+y x y x +x=()()22111124444⎡⎤⎛⎫--++---+- ⎪⎢⎥⎣⎦⎝⎭x+y x y x x =22111122224⎛⎫⎛⎫----++ ⎪ ⎪⎝⎭⎝⎭x+y x =221132224⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭x+y x ∵22112022⎛⎫⎛⎫----≤ ⎪ ⎪⎝⎭⎝⎭x+y x ∴221132224⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭x+y x ≤34 ∴23M xy yz zx =++的最大值为34故答案为:34. 【点睛】 此题考查的是配方法的应用和非负性的应用,掌握完全平方公式和平方的非负性是解决此题的关键.三、解答题23.用直接开平方法解下列方程:(1)222322x x +=-+;(2)(3)(3)7x x +-=.【答案】(1)无实数根;(2)14x =,24x =-.【解析】【分析】(1)先移项、合并同类项,可知该方程无解;(2)先去括号、移项、合并同类项,然后开平方即可.【解析】(1)移项、合并同类项,得241x =-,两边同除以4,得2104x =-<. 所以原方程没有实数根.(2)原方程可化为297x -=,移项、合并同类项,得216x =, 两边开平方,得4x =±.所以14x =,24x =-.【点睛】本题考查了直接开平方法解一元二次方程,主要考查学生的理解能力和计算能力,难度不是很大.其解法是先将一元二次方程整理成2(0)ax c ac =>,然后系数化为1,再两边开平方即可.24.用直接开平方法解下列方程: (1); (2); (3); (4)【答案】(1),;(2),;(3),;(4),.【解析】【分析】根据直接开平方法解一元二次方程的步骤求解即可.【解析】解:(1),,,,;(2),,,;(3),,,;(4),,,,.【点睛】本题考查直接开平方法解一元二次方程,形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法求解.25.用直接开平方法解下列方程:(1)(x﹣2)2=3;(2)2(x﹣3)2=72;(3)9(y+4)2﹣49=0;(4)4(2y﹣5)2=9(3y﹣1)2.【答案】(1)x13x2=232)x1=9,x2=﹣3;(3)y1=﹣53,y2=﹣193;(4)y1=﹣75,y2=1.【分析】(1)直接开方,再移项、合并同类项即可;(2)先方程两边都除以2,再直接开方;(3)先把-49移项到方程右边,再直接开方;(4)直接开方,再按解一元一次方程的方法求解.【解析】(1)x ﹣∴x 1x 2=2(2)(x ﹣3)2=36,x ﹣3=±6,∴x 1=9,x 2=﹣3;(3)9(y+4)2=49,∴(y+4)2=499, ∴y+4=±73, ∴y 1=﹣53,y 2=﹣193; (4)∵2(2y ﹣5)=±3(3y ﹣1), ∴y 1=﹣75,y 2=1.【点睛】考查用直接开方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解. 26.用配方法解下列方程:(1)225x x -=;(2)22103x x -+=; (3)22360x x --=;(4)2212033x x +-=;(5))3x x =;(6)(23)(6)16x x +-=.【答案】(1)1211x x ==2)原方程无实数根;(3)12x x ==4)123,22x x ==-;(5)12x x ==6)12==x x . 【分析】(1)方程两边加上1,再进行配方即可求解;(2)移项后,方程两边都加上23一半的平方,再进行配方即可求解; (3)先将方程的二次项系数化为1,再进行配方即可求解;(4)先将方程的二次项系数化为1,再进行配方即可求解;(5)先将方程整理后,再进行配方即可求解;(6)先将方程整理后,再进行配方即可求解.【解析】(1)225x x -=22+15+1x x -=配方,得2(1)6x -=,1211x x ∴==(2)22103x x -+= 移项,得2213x x -=-. 配方,得21839x ⎛⎫-=- ⎪⎝⎭. 809-<, ∴原方程无实数根.(3)22360x x --=移项,得2236x x -=.配方,得2357416x ⎛⎫-= ⎪⎝⎭,12x x ∴==. (4)2212033x x +-= 移项,得221233x x +=. 配方,得2149416x ⎛⎫+= ⎪⎝⎭, 123,22x x ∴==-.(5))3x x =原方程化为一般形式为230x -+=.移项,得23x -=-.配方,得2(0x =,12x x ∴==(6)(23)(6)16x x +-=原方程化为一般形式为229340x x --=.二次项系数化为1得29172x x -=. 配方,得29353416x ⎛⎫-= ⎪⎝⎭,12x x ∴== 【点睛】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即加上一次项系数一半的平方.27.解关于y 的方程:by 2﹣1=y 2+2.【答案】当b>1时,原方程的解为y=;当b≤1时,原方程无实数解.【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案.【解析】解:移项得:by2﹣y2=2+1,合并同类项得:(b﹣1)y2=3,当b=1时,原方程无解;当b>1时,原方程的解为y=±1b-;当b<1时,原方程无实数解.【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论.28.用直接开平方法解一元二次方程4(2x﹣1)2﹣25(x+1)2=0.解:移项得4(2x﹣1)2=25(x+1)2,①直接开平方得2(2x﹣1)=5(x+1),②∴x=﹣7.③上述解题过程,有无错误如有,错在第_____步,原因是_____,请写出正确的解答过程.【答案】②漏掉了2(2x-1)=-5(x+1) 见解析.【分析】先将方程化成ax2=b的形式,再根据一个正数的平方根有两个,它们互为相反数,从而得出两个关于x的一元一次方程.【解析】第②步错了,直接开方应等于2(2x-1)=±5(x+1),漏掉了2(2x-1)=-5(x+1)正确的解答过程如下:移项得4(2x-1)2=25(x+1)2,直接开平方得2(2x-1)=±5(x+1),即2(2x-1)=5(x+1)或2(2x-1)=-5(x+1).∴x1=-7,x2=-1 3 .【点睛】考查了用直接开平方法解一元二次方程,特别注意:一个正数的平方根有两个,它们互为相反数. 29.试证:不论当x 为何值时,多项式42241x x --的值总大于4224x x --的值.【答案】证明见解析【分析】比较大小常用的方式:利用完全平方公式证明两个多项式的差恒大于零即可解答.【解析】因为()()()242424322412423120x x x x x x x -----=-+=-+>,所以原题得证.【点睛】本题考查利用完全平方公式比较多项式的大小,熟练掌握完全平方公式是解题关键.30.李老师在课上布置了一个如下的练习题:若()222316x y +-=,求22x y +的值.看到此题后,晓梅立马写出了如图所示的解题过程: (22x y +223y +-=227,y x +=晓梅上述的解题步骤哪一步出错了?请写出正确的解题步骤.【答案】晓梅的解题步骤在第③步出错了,正确解题步骤详见解析.【分析】根据22x y +的值非负即可判断出错的解题步骤,根据直接开平方法和22x y +的非负性解答即可.【解析】解:晓梅的解题步骤在第③步出错了.正确解题步骤如下:()222316x y +-=, 2234x y ∴+-=±,22227,1x y x y ∴+=+=-.不论,x y 为何值22x y +都不等于1-,227x y ∴+=.【点睛】本题考查了一元二次方程的解法和代数式求值,解决此类问题时,我们需要注意所求代数式的范围,本题容易忽略22x y +的值是非负的,所以要找出题干所隐含的条件再解题.31.有n 个方程:x 2+2x ﹣8=0;x 2+2×2x ﹣8×22=0;…x 2+2nx ﹣8n 2=0.小静同学解第一个方程x 2+2x ﹣8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=﹣2.”(1)小静的解法是从步骤 开始出现错误的.(2)用配方法解第n 个方程x 2+2nx ﹣8n 2=0.(用含有n 的式子表示方程的根)【答案】(1)⑤;(2)x 1=2n ,x 2=﹣4n .【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【解析】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x 2+2nx ﹣8n 2=0,x 2+2nx=8n 2,x 2+2nx+n 2=8n 2+n 2,(x+n )2=9n 2,x+n=±3n ,x 1=2n ,x 2=﹣4n .32.选取二次三项式2(0)ax bx c a ++≠中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(2)(224)x x x x -+=+或2242(2)(422)x x x x -+=-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.【答案】(1)详见解析;(2)1;(3)不能围成三角形,理由详见解析.【分析】(1)根据配方的概念,分别对一次项和常数项进行配方;(2)根据22330x y xy y ++-+=求出x 、y 的值,代入求解即可;(3)将原式进行转换,得出a 、b 、c 之间的等量关系,从而进行判断.【解析】(1)22284816164(4)12x x x x x -+=-+-+=--或2284(2)4x x x x -+=--.(2)22330x y xy y ++-+=,223(2)024y x y ⎛⎫∴++-= ⎪⎝⎭. 1x ∴=-,2y =.2(1)1y x ∴=-=.(3)不能,理由如下:原式变形:(222222141414494612)0a b c a b c ab ac bc ++-+++++=. ()()()222222449691240a ab b a ac c b bc c ∴-++-++-+=.即222(2)(3)(32)0a b a c b c -+-+-=.2b a ∴=,3c a =,32b c =.3a b a c ∴+==.∴a 、b 、c 三条线段不能围成三角形.【点睛】本题考查了整式的运算,根据题意理解新概念并掌握整式的运算,求解出未知数或者他们之间的等量关系是解题的关键.33.我们把形如x 2=a (其中a 是常数且a≥0)这样的方程叫做x 的完全平方方程.如x 2=9,(3x ﹣2)2=25,21()43x x +-=…都是完全平方方程. 那么如何求解完全平方方程呢?探究思路:我们可以利用“乘方运算”把二次方程转化为一次方程进行求解.如:解完全平方方程x 2=9的思路是:由(+3)2=9,(﹣3)2=9可得x 1=3,x 2=﹣3.解决问题:(1)解方程:(3x ﹣2)2=25.解题思路:我们只要把 3x ﹣2 看成一个整体就可以利用乘方运算进一步求解方程了.解:根据乘方运算,得3x ﹣2=5 或 3x ﹣2= .分别解这两个一元一次方程,得x 1=73,x 2=﹣1. (2)解方程21()43x x +-=. 【答案】(1)﹣5;(2)x 1=52-,x 2=72. 【分析】(1)根据乘方运算求解;(2)根据题意给出的思路即可求出答案.【解析】(1)3x ﹣2=﹣5,(2)根据乘方运算, 得123x x +-=± ∴x 1=52-,x 2=72. 【点睛】考查一元二次方程的解法,解题的关键是正理解题意.34.阅读材料:把形如ax 2+bx +c 的二次三项式或(其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即a 2+2ab +b 2=(a +b )2配方法在代数式求值,解方程,最值问题等都有着广泛应用.例如:①我们可以将代数式a 2+6a +10进行变形,其过程如下 a 2+6a +10=(a 2+6a )+10=(a 2+6a +9)+10-9=(a +3)2+1 ∵(a +3)2≥0∴(a +3)+1≥1,因此,该式有最小值1②已知:a 2+b 2+c 2+2ab +2bc +2ac =0将其变形, a 22ab +2ac +b 2++2bc +c 2=0 a 2+2a (b +c )+(b +c )2= 可得(a +b +c )2=0(1)按照上述方法,将代数式x 2+8x +20变形为a (x +h )2+k 的形式;(2)若p =-x 2+2x +5,求p 的最大值;(3)已知a 、b 、c 是△ABC 的三边,且满足a 2+2b 2+c 2-2b (a +c )=0,试判断此三角形的形状并说明理由;(4)已知:a =2020x +2019, b =2020x +2020,c =2020x +2021,直接写出a 2+b 2+c 2-ab -bc -ac 的值.【答案】(1)()244x ++; (2)6;(3)等边三角形;(4)3【分析】(1)根据材料步骤配方即可;(2)配方后即可求最大值;(3)先配方成几个平方的和为0的形式即可解题;(4)扩大两倍后平方即可.【解析】(1) x 2+8x +2=( x 2+8x )+20=( x 2+8x+16)+20-16=()244x ++(2)p =-x 2+2x +5=()222(2)5(211)615x x x x x --+=-+=---+-+∵(x -1)2≥0∴()2661x --+≤因此,该式有最大值6(3) 2222220a b c ab bc ++--= 2222220a ab b b c bc -+++-=22()()0a b b c -+-=∴0,0a b b c -=-=∴a b c ==∴三角形是等边三角形(4) 原式22212()2a b c ab bc ac =⨯⨯++--- 2221(222222)2a b c ab bc ac =⨯++--- 2222221(222)2a ab bc c ab bc ac =⨯+++++--- 2222221(222)2a ab b a ac c b bc c =⨯-++-++-+ 2221[()()()]2a b a c b c =-+-+- ∵a =2020x +2019, b =2020x +2020,c =2020x +2021∴a-b=-1,a-c=-2,b-c=-1∴原式2221[(1)(2)(1)]2=-+-+-=3 【点睛】本题考查完全平方公式的运用,熟读阅读材料并理解运用是解题的关键.。

苏版上学期初三数学解一元二次方程知识点

苏版上学期初三数学解一元二次方程知识点

苏版上学期初三数学解一元二次方程知识点数学学习是一个循序渐进的过程,需要同学们不断的学习和努力。

查字典数学网提供了解一元二次方程知识点,期望能关心大伙儿更好的复习所学的知识。

解法一:因式分解法第一步:将已知方程化为一样形式,使方程右端为0;第二步:将左端的二次三项式分解为两个一次因式的积;第三步:方程左边两个因式分别为0,得到两个一次方程,它们的解确实是原方程的解.解法二:配方法x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0即(x-2)^2=1因此x=3或x=1一样来说,一元二次方程往往能够用如此2种方法解答,专门是对配方来说,它可能更有用,普遍。

比如x^2+x-1=0我们可能分解不出它的因式来,只是我们能够采纳配方法x^2+x-1=(x+1/2)^2-5/4=0因此得到x=(根号5-1)/2或x=(-根号5-1)/2小练习1.分解因式:(1)x2-4x=_________; (2)x-2-x(x-2)=________ (3)m2-9=_______ _;(4)(x+1)2-16=________2.方程(2x+1)(x-5)=0的解是_________那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?3.方程2x(x-2)=3(x-2)的解是___________4.方程(x-1)(x-2)=0的两根为x1·x2,且x1>x2,则x1-2x2的值等于__ _____“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

苏科版九年级上册一元二次方程的解法(综合)(课件)

苏科版九年级上册一元二次方程的解法(综合)(课件)

【练一练】
选择适当的方法解下列方程:
①.x2-3x+1=0 ②.4x2-1=0
③.-3t2+t=0
④.x2-4x=96 ⑤.2x2-x=0
⑥.5(m+2)2=20
⑦.3y2-y-1=0 ⑧.2x2+4x-16=0 ⑨.(x-2)2=2(x-2)
合适运用直接开平方法

合适运用因式分解法

合适运用公式法
因式分解法
【知识梳理】
直接开方法 -- 特殊法
对于形如 ( x h)2 k k 0
的关于x的方程,应选用直接开平方法;
配方法 -- 通用解法
1.化:把方程化为x2+mx=n的情势;
2.配方:方程两边同加一次项系数一半的平方;
3.变形:化成(x+h)2=k(k≥0)的情势;
4.开平方:求解.
【思维提升】
用适当的方法解下列方程
(4)(4x2 9) 2(2x 3) 0
【思维提升】
用适当的方法解下列方程
(5)(x 8)2 5(x+8) 6 0
【方法总结】
一元二次方程解法顺序选择:先特殊, 后一般,即先考虑能否用直接开平方法和分 解因式法、十字相乘,不能用这些特殊方法 时,再用公式法,配方法.
分析:二次项系数为1,可用配方
法来解较快
解:配方,得
x2 -12x 36 4 36
即:( x-6)2 40
开方,得
x-6 2 10
x1 6 2 10,x2 6 2 10
(4) 3x2 4x 1
分析:二开次平项方系,数也不不为能直1,接且因不式能分直解接,
故合适公式法
解:原方程可化为 3x2 -4x-1 0

苏教版九年级数学(上册)一元二次方程的解法-因式分解法

苏教版九年级数学(上册)一元二次方程的解法-因式分解法

新课讲解
练一练
1 因式分解法解下列方程:
(1) x2+x=0;
(2) 3x2-6x=-3;
解:(1)因式分解,得x(x+1)=0,
于是得x=0,或x+1=0,x1=0,x2=-1. (2) 移项,化简,得x2-2x+1=0,
因式分解,得(x-1)2=0,
于是得x-1=0,x1=x2=1.
新课讲解
方法
理论依据
适用方程
关键步骤
主要特点
直接开 平方法
平方根的定义
(ax+b)2=n(a≠0,n≥0) 型方程
开平方
求解迅速、准确,但 只适用于一些特殊结
构的方程
因式分
若ab=0,则 a=0 能化为一边为0,另一 边为两个因式乘积的形
分解因式
求解迅速、准确,但
解法
或b=0
式的方程
适用范围小
配方法 完全平方公式
公式法
配方
所有一元二次方程 所有一元二次方程
配方
代入求根 公式
解法烦琐,当二次项 系数为1时用此法比
较简单
计算量大,易出现符 号错误
谢谢 大家
新课导入
知识回顾
解一元二次方程的基本思路是什么? 降次
我们已经学过哪些解一元二次方程的方法? 直接开平方法,配方法,求根公式法.
新课导入
情景导入
根据物理学规律,如果把一个物体从 地面以10 m/s的速度竖直上抛,那么物体 经过x s离地面的高度(单位:m)为
10x-4.9x2. 根据上述规律,物体经过多少秒落回地面( 结果保留小数点后两位)?
A.3,-5 B.-3,-5 C.-3,5 D.3,5
2.一元二次方程x(x-2)=2-x的根是( D )

122 一元二次方程的解法-2021-2022学年九年级数学上(苏科版)(解析版)

122 一元二次方程的解法-2021-2022学年九年级数学上(苏科版)(解析版)

1.2.2 一元二次方程的解法-公式法与因式分解法【基础知识】一、公式法解一元二次方程 1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,24b b acx -±-=.② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22bx a =-.③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根.二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典例剖析】考点一:公式法【典例1】.小丽同学想用公式法解方程231x x -+=,你认为a ,b ,c 的值应分别为( ) A .1-,3,1- B .1-,3,1 C .1-,1-,1 D .1,3-,1-【答案】A 【解析】∵231x x -+=,∴2310x x -+-=.∴1,3,1a b c =-==-.【典例2】.用公式法解方程23412x x +=,下列代入公式正确的是( )A .x =B .x =C .x =D .x =【答案】D 【解析】231240,3,12,4x x a b c -+===-=,代入求根公式得x =.【典例3】.当20,40a b ac ≠-≥的是( )A .20ax bx c ++=B .20ax bx c -+=C .2ax bx c +=D .2ax bx c =+【答案】A 【分析】根据公式法,判断选项中的一元二次方程的实数根是否是题目中给出的那个. 【解析】一元二次方程20ax bx c ++=,当0a ≠,240b ac -≥的时候,它有两个实数根242b b c aa -±-.故选:A . 【点睛】本题考查一元二次方程的解法——公式法,解题的关键是掌握求根公式.【典例4】.方程2x 2-6x+3=0较小的根为p ,方程2x 2-2x-1=0较大的根为q ,则p+q 等于( ) A .3 B .2C .1D .23【答案】B 【解析】试题分析:2x 2-6x +3=0, 这里a =2,b =-6,c =3, ∵△=36-24=12, ∴x 623±33±,即p 33- x 2-2x -1=0,这里a =2,b =-2,c =-1, ∵△=4+8=12, ∴x 223±13±, 即q =132+则p +q 2. 故选B .点睛:此题考查了解一元二次方程-公式法,利用此方法解方程时,首先找出a ,b ,c ,计算出根的判别式的值,当根的判别式的值大于等于0时,代入求根公式求出解.考点二:因式分解法【典例5】.方程23x x =的根是( ) A .3x = B .0x =C .123,0x x =-=D .123,0x x ==【答案】D 【分析】先把方程化为一般式,再把方程左边因式分解得x (x ﹣3)=0,方程就可转化为两个一元一次方程x =0或x ﹣3=0,然后解一元一次方程即可. 【解析】 解:∵x 2=3x , ∴x 2﹣3x =0, ∴x (x ﹣3)=0, ∴x =0或x =3, 故选:D . 【点睛】本题考查了利用因式分解法解一元二次方程ax 2+bx +c =0的方法:先把方程化为一般式,再把方程左边因式分解,然后把方程转化为两个一元一次方程,最后解一元一次方程即可. 【典例6】.方程2(3)5(3)x x x +=+的根是( ) A .52x =B .3x =-或52x =C .3x =-D .3x =或52x =-【答案】B 【分析】利用因式分解法解一元二次方程即可. 【解析】解:2(3)5(3)x x x +=+ 移项,得2(3)5(3)0x x x +-+=()(3)250x x +-=解得:3x =-或52x = 故选B . 【点睛】此题考查的是解一元二次方程,掌握利用因式分解法解一元二次方程是解决此题的关键. 【典例7】.下列方程中适合用因式分解法解的是( )A .210x x -+=B .2(10x x +=C .22350x x ++=D .2650x x --=【答案】B 【分析】根据因式分解法即可得. 【解析】观察四个选项可知,只有选项B 适合用因式分解法解,即2(10x x +=可因式分解为(1)(0x x +=, 故选:B . 【点睛】本题考查了利用因式分解法解方程,掌握因式分解法是解题关键. 【典例8】.用因式分解法解方程,下列方法正确的是( ) A .∵()()22340x x --=,∴220x -=或340x -= B .∵()()311x x +-=,∴30x +=或11x -= C .∵()()2323x x --=⨯,∴22x -=或33x -= D .∵()20x x +=,∴20x += 【答案】A 【解析】∵()()22340x x --=,∴220x -=或340x -=,A 选项正确,符合题意;由于使用因式分解法解方程时方程右边须为0,故B ,C 选项错误;∵()20x x +=,∴20x +=或0x =,故D 选项错误.考点三:综合题(换元法、含绝对值问题、设值(参)与代换问题)【典例9】.解方程① 9(x -3)2 = 25,② 6x2 -x = 1,③ x2 +4x -3596 = 0,④ x(x -1) = 1.较简便的方法依次是();A.开平方法、因式分解法、公式法、配方法B.因式分解法、公式法、公式法、配方法C.配方法、因式分解法、配方法、公式法D.开平方法、因式分解法、配方法、公式法【答案】D对于第①个方程,由于左右两边是某个数或式子的平方,据此选择开平方法解方程;对于方程②可结合因式分解中的基本方法分析即可得解; 对于方程③二次项系数为1可考虑配方法; 对于方程④利用公式法求解比较简便.【解析】解:方程①符合直接开方法的形式,因此选择开平方法比较简便;方程②等号左边含有公因式x,则可利用因式分解法比较简便;方程③等号左边二次项系数为1,则可利用配方法比较简便;方程④等号左边展开,移项,然后利用公式法求解比较简便.故选D.【点睛】本题是解一元二次方程的题目,关键是知道如何合理的选择解一元二次方程的方法.【典例10】0.已知(x+y)(x+y +2) = 15, 则x+y的值为().A.3或5 B.3或-5 C.-3或5 D.-3或-5【答案】B【分析】首先把x+y看做一个整体,然后利用因式分解法解此方程即可.【解析】解:方程整理,得:(x+y) ²+2(x+y)−15=0,因式分解,得: [(x+y)+5][(x+y)−3]=0,得:x+y=-5或x+y=3.故答案为B.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握此解法是解本题的关键.【典例11】.方程x|x|-3|x|+2=0的实数根的个数是().A.1;B.2;C.3;D.4.【答案】C【分析】利用绝对值的几何意义,假设x>0或x<0,分别分析得出即可.【解析】解:当x>0时,原式=x2-3x+2=0,解得:x1=1;x2=2;当x<0时,原式=-x2+3x+2=0,解得:x1(不合题意舍去),x2∴方程的实数解的个数有3个解.故选C.【点睛】此题主要考查的是含有绝对值符号的一元二次方程的一般计算题,充分考查的是绝对值的意义.【典例12】.在解方程(x+2)(x﹣2)=5时,甲同学说:由于5=1×5,可令x+2=1,x﹣2=5,得方程的根x1=﹣1,x2=7;乙同学说:应把方程右边化为0,得x2﹣9=0,再分解因式,即(x+3)(x﹣3)=0,得方程的根x1=﹣3,x2=3.对于甲、乙两名同学的说法,下列判断正确的是..()A.甲错误,乙正确B.甲正确,乙错误C.甲、乙都正确D.甲、乙都错误【答案】A【解析】(x+2)(x﹣2)=5,x2-4=5,x2-9=0,(x+3)(x-3)=0,x+3=0或x-3=0,x1=-3,x2=3,所以甲错误,乙正确,故选A.【典例13】.已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax﹣a2+a+2=0的一个根互为相反数,那么(a+1)x2+ax﹣a2+a+2=0的根是()A.0,﹣23B.0,23C.﹣1,2 D.1,﹣2【答案】A【解析】【分析】将x0、﹣x0分别代入已知的两个方程,求出a的值,再将a的值代入要求解的方程,解方程即可. 【解析】设x0为方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根,则﹣x0为方程(a+1)x2+ax﹣a2+a+2=0的一个根,∴(a+1)x02﹣a x0+a2﹣a﹣2=0①,(a+1)x02﹣a x0﹣a2+a+2=0②,∴①﹣②得:2a2﹣2a﹣4=0,即a2﹣a﹣2=0,解得a=2或﹣1,当a=2时,3x2+2x=0,解得x=0或﹣23;②当a=﹣1时,﹣x﹣1﹣1+2=0,解得x=0.∴方程的解是0或﹣2 3 .故选A.【点睛】本题主要考查一元二次方程的解的定义.【过关检测】一、单选题1.方程210x x+-=的根是()A.1B C.1-D 【答案】D【分析】观察原方程,可用公式法求解. 【解析】解:∵1a =,1b =,1c =-, ∴241450b ac -=+=>,∴x =; 故选:D . 【点睛】本题考查了一元二次方程的解法,正确理解运用一元二次方程的求根公式是解题的关键.2.一元二次方程260x +-=的根是( )A .12x x ==B .120x x ==-,C .12x x ==-D .12x x ==-【答案】C找出方程中二次项系数a ,一次项系数b 及常数项c ,再根据x=2b a-± ,将a ,b 及c 的值代入计算,即可求出原方程的解. 【解析】解:∵a=1,c=-6∴ =2- =,∴x 1,x 2 故选:C . 【点睛】本题考查利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式≥0时,将a ,b 及c 的值代入求根公式即可求出原方程的解.3.一元二次方程x 2﹣px+q=0的两个根是(4q <p 2)( )A .x =B .x =C .x =D .x =【答案】A 【解析】 【分析】根据一元二次方程的求根公式x=(240b ac -≥)可直接得到答案.【解析】∵a=1,b=-p ,c=q , ∴b 2-4ac=p 2-4q , ∵4q <p 2, ∴b 2-4ac=p 2-4q >0,∴x= 2b a -故选A . 【点睛】此题主要考查了公式法解一元二次方程,关键是掌握求根公式.4.若在实数范围内定义一种运算“*”,使a*b =(a +1)2-ab ,则方程(x +2)*5=0的解为( )A .-2B .-2,3C D【答案】D 【分析】根据题目所给的运算方法,列出一元二次方程,解方程求解即可. 【解析】∵a*b =(a +1)2-ab ,,∴(x +2)*5=(x +2+1)2-5(x +2)= x 2+x -1, ∵(x +2)*5=0, ∴x 2+x -1=0,解得x 1,x 2故选D. 【点睛】本题是阅读理解题,根据新运算的规则列出方程是解答此题的关键. 5.方程()()451x x +-=的根为( ) A .x=-4B .x=5C .14x =-,25x =D .以上结论都不对【答案】D 【分析】把原方程化为一元二次方程的一般形式,利用公式法解方程即可. 【解析】原方程化为2210x x --=,利用求根公式有x =A 、B 、C 中都没有方程的根,故选D. 【点睛】本题考查了一元二次方程的解法,利用公式法解方程时,一定把方程化为一般形式.6.用公式法求一元二次方程的根时,首先要确定a 、b 、c 的值.对于方程-4x 2+3=5x ,下列叙述正确的是( ) A .a 4=-,b 5=,c 3= B .a 4=-,b 5=-,c 3= C .a 4=,b 5=,c 3= D .a 4=,b 5=-,c 3=- 【答案】B 【分析】用公式法求一元二次方程时,首先要把方程化为一般形式. 【解析】 ∵-4x 2+3=5x∴-4x 2-5x+3=0,或4x 2+5x-3=0∴a=-4,b=-5,c=3或a=4,b=5,c=-3.故选B . 【点睛】此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式. 7.一元二次方程2234x x x -+=-+ 的根是( )A .11x =-2x 1=-B .1x =, 212x =C .112x+=,212x -=D .1211x x =-+=--【答案】D 【解析】试题解析:方程整理得:2220.x x +-=()224242120.b ac ∆=-=-⨯-=>1x ===-±故选D.点睛:一元二次方程:()200.ax bx c a ++=≠公式法的求根公式为:x =8.方程ax 2+bx+c=0(a <0)有两个实根,则这两个实根的大小关系是( )ABC .2b a -≤2b a-D 【答案】A 【解析】因为b b -≤-且 a <0,,故选A.9.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或3【答案】A 【分析】将x 2-x 看作一个整体,然后利用因式分解法解方程求出x 2-x 的值,再整体代入进行求解即可. 【解析】∵(x 2﹣x)2﹣4(x 2﹣x)﹣12=0, ∴(x 2﹣x+2)(x 2﹣x ﹣6)=0, ∴x 2﹣x+2=0或x 2﹣x ﹣6=0, ∴x 2﹣x =﹣2或x 2﹣x =6; 当x 2﹣x =﹣2时,x 2﹣x+2=0, ∵b 2﹣4ac =1﹣4×1×2=﹣7<0, ∴此方程无实数解;当x 2﹣x =6时,x 2﹣x+1=7, 故选A . 【点睛】本题考查了用因式分解法解一元二次方程,解本题的关键是把x 2-x 看成一个整体. 10.若方程()()x 23x 10-+=,则3x 1+的值为( )? A .7 B .2C .0D .7或0【答案】D 【分析】根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到x 的值,将x 的值代入31x +中,即可求出值.方程2310x x -+=()(),可得20x -=或310x +=,解得:12123x x ==-,,当2x =时,313217x +=⨯+=;当13x =-时,1313103x +=⨯-+=(). 故选D . 【点睛】本题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 11.方程2430x x -+=的解是( ) A .1x =±或3x =± B .1x =或3x = C .1x =-或3x =- D .无实数根【答案】A 【解析】 【解析】(1)当x >0时,原方程可变形为2430x x -+=, 即()()310x x --=, 解得1x =或3x =;(2)当x <0时,原方程可变形为2430x x ++=, 即()()310x x ++=, 解得1x =-或3x =-,则方程2430x x -+=的解是1x =±或3x =±. 故选A. 【点睛】解本题的关键在于对方程去绝对值,再通过因式分解法来解方程即可. 12.若1x ,2x ,3x ,4x ,5x 为互不相等的正奇数,满足()()()()()2123452005200520052005200524x x x x x -----=,则2222212345x x x x x ++++的末位数字是( ) A .1B .3C .5D .7【分析】因为1x ,2x ,3x ,4x ,5x 为互不相等的正奇数,所以()12005x -,()22005x -,()32005x -,()42005x -,()52005x -为互不相等的非零偶数(有偶数个负数),又因为26224=23 ,所以这5个偶数只能是2,-2,4,6,-6(否则就会有相同的偶数),所以1x ,2x ,3x ,4x ,5x 分别等于2007,2003,2001,1999,2011,所以2222212345x x x x x ++++的末位数字是1 【解析】解:∵1x ,2x ,3x ,4x ,5x 为互不相等的正奇数∴()12005x -,()22005x -,()32005x -,()42005x -,()52005x -为互不相等的偶数,且负数个数为偶数个而将224分解为5个互不相等的偶数之积,只有唯一的形式:2242(2)46(6)=⋅-⋅⋅-∴()12005x -,()22005x -,()32005x -,()42005x -,()52005x -分别等于2、()2-、4、6、()6- ∴1x ,2x ,3x ,4x ,5x 分别等于2007,2003,2001,1999,2011又∵20072尾数是9,20032尾数是9,20012尾数是1,19992尾数是1,20112尾数是1∴2222212345x x x x x ++++的末位数字是1.故选A . 【点睛】本题主要考查了数字变化类的一些简单的问题,能够掌握七内在规律并熟练求解是解题关键.二、填空题13.方程()()1312x x -+=的解为________. 【答案】3或5- 【分析】首先把方程转化为一般形式,再利用公式法求解. 【解析】(x-1)(x+3)=12 x 2+3x-x-3-12=0 x 2+2x-15=0282-±==, ∴x 1=3,x 2=-5 故答案是:3或-5. 【点睛】考查了学生解一元二次方程的能力,解决本题的关键是正确理解运用求根公式. 14.把方程2511333x x +=-化为一般形式是______,其中a =______,b =______,c =______,24b ac -=______,方程的根是1x =______,2x =______.【答案】23520x x --= 3 -5 -2 49 13- 2 【分析】方程整理为一般形式,找出一般形式中a ,b ,c 的值,计算出根的判别式的值大于0,代入求根公式即可求出解. 【解析】 解:方程2511333x x +=-化为一般形式是:23520x x --=, ∴a =3,b =−5,c =−2, ∵b 2−4ac =25+24=49, ∴x =54957236, 则方程的解为x 1=13-,x 2=2. 故答案为23520x x --=;3,−5,−2,49;13-,2. 【点睛】此题考查了公式法解一元二次方程,熟练掌握求根公式是解题关键.15.方程20.250x x +-=中,24b ac -的值为__________,根是___________.【答案】5 12x x ==【分析】根据公式法解一元二次方程即可. 【解析】解:20.250x x +-= a=0.2,b=1,c=-5∴24b ac -=()2140.2550-⨯⨯-=<∴x=120.2-±⨯=52-±∴125522x x -+--==故答案为:5;12x x ==【点睛】此题考查的是解一元二次方程,掌握利用公式法解一元二次方程是解决此题的关键. 16.方程()()2232x x -=-用________法求解较宜,解得方程的根是____________ 【答案】因式分解 122 5.x x ==, 【分析】先移项,然后利用因式分解法进行解方程,即可求出方程的根. 【解析】解:∵()()2232x x -=-, ∴()()22320x x ---=, 利用因式分解法,得()()2230x x ---=,∴()()250x x --=, ∴20x -=或50x -=,∴122, 5.x x ==∴原方程的根是122, 5.x x == 故答案为:因式分解;122, 5.x x == 【点睛】本题考查了解一元二次方程,解题的关键是熟练掌握因式分解法解方程. 17.一元二次方程x(x ﹣5)=x ﹣5的解为___________. 【答案】x 1=5,x 2=1 【分析】先移项得到x (x ﹣5)﹣(x ﹣5)=0,然后利用因式分解法解方程. 【解析】解:x (x ﹣5)﹣(x ﹣5)=0, (x ﹣5)(x ﹣1)=0, x ﹣5=0或x ﹣1=0, 所以x 1=5,x 2=1. 故填x 1=5,x 2=1. 【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.已知2-4c>0),则x 2+bx +c 的值为_______________________.【答案】0 【分析】把x 的值代入代数式,再进行计算即可. 【解析】∵2(40)2b x bc -=->,∴2,x bx c ++2,22b b b c ⎛⎫--=+⋅+ ⎪ ⎪⎝⎭,c =,c =2222422,4b bc b c ---+=+,c c =-+ 0.=故答案为0. 【点睛】考查解一元二次方程-公式法,把x 的值代入是解题的关键.19.设A 是方程x 2的所有根的绝对值之和,则A 2=________. 【答案】4083 【分析】根据公式法得到,再根据题意得到,计算即可得到答案.【解析】由公式法得x=2,则=A 2=4083.【点睛】本题考查公式法求一元二次方程,解题的关键是掌握公式法求一元二次方程.20.定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“友好方程”.已知关于x 的一元二次方程2455x x m mx -+=+和2210x x m ++-=互为“友好方程”,则m 的值为_______.【答案】34-或1或2- 【分析】先利用因式分解法解方程2455x x m mx -+=+,得到x 1=5,x 2=m-1.再分别将x=5,x=m-1代入x 2+2x+m-1=0,求出m 的值即可. 【解析】2455x x m mx -+=+,整理得2(4)5(1)0x m x m -++-=,分解因式,得(5)[(1)]=0x x m ---, 解得1251x x m ==-,.当5x =时,221x x m ++-=251010m ++-=, 解得34m =-;当1x m =-时,221x x m ++-=21)11)0(2(m m m -+-+=-, 解得1m =或2m =-. 所以m 的值为34-或1或2-. 故答案为:34-或1或2-. 【点睛】本题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了利用因式分解法解方程,求出方程2455x x m mx -+=+的两个解是解题的关键. 21.已知c 为实数,并且方程x 2﹣3x +c =0的一个根的相反数是方程x 2+3x ﹣c =0的一个根,则方程x 2+3x ﹣c =0的解是______. 【答案】x 1=0,x 2=﹣3. 【解析】解:设方程x 2﹣3x +c =0一个根为t ,则t 2﹣3t +c =0①,因为﹣t 为方程x 2+3x ﹣c =0的一个根,所以t 2﹣3t ﹣c =0②,由①②得:c =0,解方程x 2+3x =0得:x 1=0,x 2=﹣3.故答案为x 1=0,x 2=﹣3.22.对于实数a ,b ,定义运算“*”,a *b =22()()a ab a b ab b a b ⎧->⎨-≤⎩例如4*2.因为4>2,所以4*2=42-4×2=8,若x 1、x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2=__. 【答案】4【解析】试题分析:先求出方程的两个根,再利用新定义的运算法则计算,计算时需要分类讨论.试题解析:x 2-7x +12=0,(x -4)(x -3)=0,x -4=0或x -3=0,∴x 1=4,x 2=3或x 1=3,x 2=4.当x 1=4,x 2=3时,x 1*x 2=42-4×3=4, 当x 1=3,x 2=4时,x 1*x 2=3×4-42=-4,∴x 1*x 2的值为4或-4. 点睛:定义新运算是一种人为的、临时性的运算形式,是可以深刻理解数学本源的题型,它使用的是一些特殊的运算符号,如:*、△、⊙,#等,解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算.三、解答题23.公式法解方程:(1)2220x x +-=;(2)2(2)3x x x +=-;(3)228817x x x -+=.【答案】(1)1211x x =-=-2)121,32x x ==-;(3)1211,2x x =-=. 【分析】(1)直接利用公式法求解即可;(2)方程整理成一般式后,直接利用公式法求解即可;(3)方程整理成一般式后,直接利用公式法求解即可.【解析】(1)122a b c ===-,,,224241(2)120b ac ∴∆=-=-⨯⨯-=>,1x ∴===-即1211x x =-=-(2)2(2)3x x x +=-,22530x x ∴+-=,253a b c ∴===-,,,224542(3)49b ac ∴∆=-=-⨯⨯-=,557244b x a ---±∴===,12132x x ∴==-,;(3)228817x x x -+=,整理,得2210x x +-=,211a b c ∴===-,,,224142(1)9b ac ∴∆=-=-⨯⨯-=,134x -±∴===,12112x x ∴=-=,.【点睛】本题考查了解一元二次方程-公式法,熟练掌握求根公式是解本题的关键.24.用因式分解法解下列关于x 的方程(1)()()2234410x x --+= (2)23(5)2(5)x x -=-(3)(1)(2)24x x x ++=+ (4)2(2)3(2)40x x +++-= 【答案】(1)137x =,25x =-;(2)15=x ,2133x =;(3)12x =-,21x =;(4)16x =-,21x =-【分析】(1)利用因式分解法解一元二次方程即可;(2)移项,然后利用因式分解法解一元二次方程即可;(3)移项,然后利用因式分解法解一元二次方程即可;(4)利用因式分解法解一元二次方程即可.【解析】解:(1)()()22344+1=0x x --()()()()344+1344+1=0x x x x ⎡⎤⎡⎤⎣⎦⎣⎦-+-- ()()735=0x x --- 解得:137x =,25x =- (2)23(5)2(5)x x -=-23(5)2(5)0x x -+-=[](5)3(5)20x x --+=()(5)3130x x --=解得:15=x ,2133x = (3)(1)(2)24x x x ++=+()(1)(2)220x x x ++-+=()2(1)0x x +-=解得:12x =-,21x =(4)2(2)3(2)40x x +++-=(24)(21)0x x +++-=(6)(1)0x x ++=解得:16x =-,21x =-【点睛】此题考查的是解一元二次方程,掌握利用因式分解法解一元二次方程是解决此题的关键.25.按指定的方法解方程:(1)9(x ﹣1)2﹣5=0(直接开平方法)(2)2x 2﹣4x ﹣8=0(配方法)(3)6x 2﹣5x ﹣2=0(公式法)(4)(x+1)2=2x+2(因式分解法)【答案】(1)x 1,x 22)x 1x 2=13)x 1,x 2(4)x 1=﹣1,x 2=1.【分析】(1)移项后,利用直接开平方法解方程;(2)利用配方法,先把二次项的系数化为1,再确定一次项的系数,然后配方即可;(3)先确定a 、b 、c 的值,然后求出△=b 2-4ac ,判断后利用公式法解方程即可;(4)把方程右边提公因式2,再移项,提公因式x+1即可解方程.【解析】(1)移项得:9(x ﹣1)2=5,(x ﹣1)2=59,开方得:x ﹣x 1,x 2; (2)2x 2﹣4x ﹣8=0,2x 2﹣4x=8,x 2﹣2x=4,配方得:x 2﹣2x+1=4+1,(x ﹣1)2=5,开方得:x ﹣x 1x 2=1(3)6x 2﹣5x ﹣2=0,b 2﹣4ac=(﹣5)2﹣4×6×(﹣2)=73,x 1=12,x 2=512; (4)(x+1)2=2x+2,(x+1)2﹣2(x+1)=0,(x+1)(x+1﹣2)=0,x+1=0,x+1﹣2=0,x 1=﹣1,x 2=1.【点睛】此题主要考查了一元一次方程的解法,关键是熟练掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法.26.用因式分解法解下列关于x 的方程:(1)2152x x -=;(2)224(3)(2)0+--=x x ;(3)222(3)9x x -=-;(4)22204a x ax b -+-=.【答案】(1)10x =,210x =-;(2)18x =-,243x =-;(3)13x =,29x =;(4)112x a b =-,212x a b =+.【分析】(1)移项后提取公因式;(2)使用平方差公式;(3)等式右边用平方差公式分解,然后移项提取公因式;(4)前面三项可以用完全平方公式分解,然后用平方差公式.【解析】解:(1)2152x x -=,21502x x +=,1502x x ⎛⎫+= ⎪⎝⎭,则有0x =或1502x +=, 解得:10x =,210x =-;(2)224(3)(2)0+--=x x ,[][]2(3)(2)2(3)(2)0x x x x +--++-=,(8)(34)0x x ++=,则有80+=x 或340+=x ,解得:18x =-,243x =-; (3)222(3)9x x -=-,22(3)(3)(3)x x x -=+-,[](3)2(3)(3)0x x x ---+=,(3)(9)0x x --=,则有30x -=或90x -=,解得:13x =,29x =;(4)22204a x ax b -+-=, 2202⎛⎫--= ⎪⎝⎭a x b , 022a a x b x b ⎛⎫⎛⎫-+--= ⎪⎪⎝⎭⎝⎭, 则有02a x b -+=或02--=a x b , 解得:112x a b =-,212x a b =+. 【点睛】本题考查用因式分解法解一元二次方程,需要先将等式右边变成0,然后观察等式左边,采用适当的方法进行因式分解,最后由每个因式等于0求出方程的根.27.选用适当的方法解下列方程:(1)(3﹣x )2+x 2=9;(2)(2x ﹣1)2+(1﹣2x )﹣6=0;(3)(3x ﹣1)2=4(1﹣x )2;(4x ﹣1)2=(1﹣x )【答案】(1)x 1=0,x 2=3;(2)x 1=2,x 2=﹣12;(3)x 1=﹣1,x 2=35;(4)x 1=1,x 2=22 . 【分析】(1)用完全平方式变形后,提出公因式求解即可;(2)整理后分解因式得出两个一元一次方程,求解即可;(3)先开平方,可得出两个一元一次方程,求解即可;(4)移项后整理分解因式即可求解.【解析】解:(1)(3﹣x )2+x 2=9,2x 2﹣6x =0,x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3;(2)(2x ﹣1)2+(1﹣2x )﹣6=0,(2x ﹣1)2﹣(2x ﹣1)﹣6=0,(2x ﹣1﹣3)(2x ﹣1+2)=0,x 1=2,x 2=﹣12; (3)(3x ﹣1)2=4(1﹣x )2;3x ﹣1=±2(x ﹣1),3x ﹣1=2x ﹣2或3x ﹣1=﹣2x +2,x 1=﹣1,x 2=35;(4x ﹣1)2=(1﹣x ),x ﹣1)2+(x ﹣1)=0,(x ﹣1)=0,x 1=1,x 2=22-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.28.选择合适的方法解方程:(1)(1)x x x -=;(2)(1)(1)2(3)8x x x +-++=;(326x =(4)2210x x --=.【答案】(1)120,2x x ==;(2)123,1x x =-=;(3)1x 2x =(4)11x =21x =【分析】(1)移项后利用分解因式法求解;(2)先化为一般形式,再利用分解因式法求解;(3)二次项系数化为1后利用配方法求解;(4)利用公式法解答即可.【解析】解:(1)移项,得(1)0x x x --=,提取公因式,得(11)0x x --=.∴0x =或110x --=,解得:120,2x x ==;(2)整理,得212680x x -++-=,即2230x x +-=,因式分解,得(3)(1)0x x +-=.即30x +=或10x -=,解得:123,1x x =-=;(326x -=二次项系数化为1,得21x -=-.配方,得2221x -+=-+,即2(2x =,∴x -=解得:1x =2x =(4)方程中,1,2,1a b c ==-=-,2(2)41(1)80∴∆=--⨯⨯-=>.∴212x ==即11x =21x =【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握解一元二次方程的方法是解题关键. 29.解方程:(x -2 013)(x -2 014)=2 015×2 016.【答案】原方程的解为x 1=4 029,x 2=-2.【分析】根据题意结合等式的性质可分情况讨论,将方程转化为两个方程组,方程组2013201620142015x x -=⎧⎨-=⎩或2013201520142016x x -=-⎧⎨-=-⎩,然后分别解方程组即可求解. 【解析】解:由题意得:方程组2013201620142015x x -=⎧⎨-=⎩的解一定是原方程的解,解得x =4 029, 方程组2013201520142016x x -=-⎧⎨-=-⎩的解也一定是原方程的解,解得x =-2, ∵原方程最多有两个实数解,∴原方程的解为x 1=4 029,x 2=-2.30.小明在解方程x 2﹣5x =1时出现了错误,解答过程如下:∵a =1,b =﹣5,c =1,(第一步)∴b 2﹣4ac =(﹣5)2﹣4×1×1=21(第二步)∴x =∴152x =,252x =(第四步) (1)小明解答过程是从第 步开始出错的,其错误原因是 .(2)写出此题正确的解答过程.【答案】(1)一,原方程没有化简为一般形式;(2)见解析【分析】(1)根据一元二次方程的解法步骤即可求出答案.(2)根据一元二次方程的解法即可求出答案.【解析】解:(1)确定一元二次方程的系数时,应该先化简为一般形式,所以小明解答过程是从第一步开始出错的,其错误原因是原方程没有化简为一般形式.故答案为:一,原方程没有化简为一般形式.(2)∵a =1,b =﹣5,c =﹣1,∴b 2﹣4ac =(﹣5)2﹣4×1×(﹣1)=29.∴x =∴1x ,2x = 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.31.阅读理解:方程()200++=≠ax bx c a 的根是x =.方程20y by ac ++=的根是y =因此,要求()200++=≠ax bx c a 的根,只要求出方程20y by ac ++=的根,再除以a 就可以了. 举例:解方程2172806x x ++=. 解:先解方程:2187206y y ++⨯=,得12y =-,26y =-. 所以方程2172806x x ++=的两根是1272x -=,2672x -=. 即1136x =-,2112x =-. 请按上述阅读理解中所提供的方法解方程2149607x x +-=. 【答案】1149x =,217x =- 【分析】 根据材料中方法先求出方程2164907y y +-⨯=的根,然后再除以49即可. 【解析】 先解方程2164907y y +-⨯=,即2670y y +-=, 分解因式得()()170y y -+=,解得11y =,27y =-,∴方程2149607x x +-=的解为1149x =,217x =-. 【点睛】此题考查了解一元二次方程−公式法与因式分解法,理解题中的方法是解本题的关键.32.阅读下面的材料:解方程2||20x x --=.解:当0x >时,原方程化为220x x --=,解得122,1x x ==-(不合题意,舍去);当0x =时,20-=,矛盾,舍去;当0x <时,原方程化为220x x +-=解得122,1x x =-=(不合题意,舍去).综上所述,原方程的根是122,2x x ==-.请参照上面材料解方程.(1)2|1|10x x ---=;(2)2|21|4x x =-+.【答案】(1)121,2x x ==-;(2)123,1x x ==-【分析】(1)分三种情况去掉绝对值,化成一元二次方程,解一元二次方程即可.(2)分三种情况去掉绝对值,化成一元二次方程,解一元二次方程即可.【解析】(1)2|1|10x x ---=,当1x >时,原方程化为20x x -=,解得1210x x ==(舍去),(不合题意,舍去); 当1x =时,原方程化为1010--=,∴1x =是原方程的解;当1x <时,原方程化为220x x +-=,解得1221x x =-=,(不合题意,舍去).综上所述,原方程的根是1212x x ==-,; (2)2|21|4x x =-+, 当12x >时,原方程化为2230x x --=, 解得1231x x ==-,(不合题意,舍去); 当12x =时,144=,矛盾,舍去; 当12x <时,原方程化为2250x x +-=,解得11x =-21x =-(不合题意,舍去).综上所述,原方程的根是1231x x ==-,【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把含绝对值的一元二次方程转化成一元一次方程. 33.已知a 是一元二次方程2410x x -+=的两个实数根中较小的根.(1)求242012a a -+的值;(2)化简求值21211a a a a-+-.【答案】(1)2011;(2)a-1,1【分析】(1)因为a 是一元二次方程的根,可得到2410a a -+=,进而可得到结果;(2)先解出方程,方程两个解中较小的为a ,然后利用二次根式与分式的化简法则对代数式进行化简,最后代入a 即可.【解析】(1)a 是一元二次方程2410x x -+=的两个实数根中最小的根,2410a a ∴-+=.2420122011a a ∴-+=.(2)解方程可得12x =22x =a 是一元二次方程2410x x -+=的两个实数根中最小的根,2a ∴=110a ∴-=<.21211a a a a-+--()2111a a a -=- ()21(1)(1)=(1)a a a a a a ------ ()21(1)a a a a -=- 1a =-∴原式1=【点睛】本题考查一元二次方程的解以及二次根式的混合运算,解题关键在于能够得到a 的值.34.观察下列方程:①2227910x x -+=;②2223660x x -+=;③2219450x x -+=;④2215280x x -+=;⑤2211150x x -+=;…上面每一个方程的二次项系数都是2,各个方程的解都不同,但每个方程24b ac -的值均为1.(1)请你写出两个方程,使每个方程的二次项系数都是2,且每个方程的24b ac -的值也都是1,但每个方程的解与已知的5个方程的解都不相同.(2)对于一般形式的一元二次方程20ax bx c ++=(a≠0,24b ac -≥0),能否作出一个新方程20ax b x c '+'+=,使24b ac -与24b ac '-'相等?若能,请写出所作的新的方程(b ',c '需用a ,b ,c 表示),并说明理由;若不能,也请说明理由.【答案】(1)答案不惟一,如2227602310x x x x -+=-+=,;(2)能,见解析.【解析】【分析】(1)先根据已知条件每个方程的二次项系数都是2,且每个方程的24b ac -的值也都是1,但每个方程的解与已知的5个方程的解都不相同这个条件,再根据根的判别式即可求出答案.(2)根据(1)可得出一个新方程20ax b x c '+'+=,使24b ac -与24b ac '-'相等.【解析】(1)答案不惟一,如2227602310x x x x -+=-+=,;(2)能,所作的新方程为2(2)()0ax b a x a b c +++++=.通过观察可以发现2b b a c a b c ''=+=++,.【点睛】本题主要考查了根的判别式,解题时要找出规律,得出新的方程是此题的关键.35.阅读下列材料:解方程:x 4﹣6x 2+5=0.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣6y +5=0…①,解这个方程得:y 1=1,y 2=5.当y =1时,x 2=1,∴x =±1;当y =5时,x 2=5,∴x =所以原方程有四个根:x 1=1,x 2=﹣1,x 3x 4在这个过程中,我们利用换元法达到降次的目的,体现了转化的数学思想.(1)解方程(x 2﹣x )2﹣4(x 2﹣x )﹣12=0时,若设y =x 2﹣x ,则原方程可转化为 ;求出x(2)利用换元法解方程:224224x x x x -+-=2.【答案】(1)y 2﹣4y ﹣12=0,x 1=-2,x 2=3;(2)x 1=x 2=1【分析】(1)直接代入得关于y 的方程,然后进行计算,即可得到结果;(2)设y=224x x -把分式方程变形后求解,把解代入设中求出x 的值. 【解析】解:(1)设y =x 2﹣x ,原方程可变形为:y 2﹣4y ﹣12=0故答案为:y 2﹣4y ﹣12=0 ,∴(6)(2)0y y -+=,∴6y =或2y =-,∴26x x -=或22x x -=-解得:x 1=-2,x 2=3. (2)设y =224x x -,则2412x x y-=, 原方程变形为:120y y+-=, 去分母,得y 2﹣2y +1=0,即(y ﹣1)2=0解得,y 1=y 2=1经检验,y =1是分式方程的根. ∴224x x -=1, 即x 2﹣2x ﹣4=0解得:x 1=x 2=1经检验,∴原分式方程的解为:x 1=x 2=1【点睛】本题考查了一元二次方程、分式方程的解法.看懂题例理解换元法是关键.换元法的一般步骤有:设元、换元、解元、还原几步.注意应用换元法解分式方程,注意验根.36.阅读下面材料:材料一:分解因式是将一个多项式化为若干个整式积的形式的变形,“十字相乘法”可把某些二次三项式分解为两个一次式的乘积,具体做法如下:对关于x ,y 的二次三项式22ax bxy cy ++,如图1,将2x 项系数12a a a =⋅,作为第一列,2y 项系数12c c c =⋅,作为第二列,若1221a c a c +恰好等于xy 项的系数b ,那么22ax bxy cy ++可直接分解因式为:()()221122ax bxy cy a x c y a x c y ++=++示例1:分解因式:2256x xy y ++解:如图2,其中111=⨯,623=⨯,而51312=⨯+⨯;∴2256(2)(3)x xy y x y x y ++=++;示例2:分解因式:22412x xy y --.解:如图3,其中111=⨯,1262-=-⨯,而4121(6)-=⨯+⨯-;∴22412(6)(2)x xy y x y x y --=-+;材料二:关于x ,y 的二次多项式22ax bxy cy dx ey f +++++也可以用“十字相乘法”分解为两个一次式的乘积.如图4,将12a a a =作为一列,12c c c =作为第二列,12f f f =作为第三列,若1221a c a c b +=,1221a f a f d +=,1221c f c f e +=,即第1、2列,第1、3列和第2、3列都满足十字相乘规则,则原式分解因式的结果为:()()22111222ax bxy cy dx ey f a x c y f a x c y f +++++=++++;示例3:分解因式:2243283x xy y x y -+-+-.解:如图5,其中111=⨯,3(1)(3)=-⨯-,3(3)1-=-⨯;满足41(3)1(1)-=⨯-+⨯-,21(3)11,8(3)(3)(1)1-=⨯-+⨯=-⨯-+-⨯;∴2243283(3)(31)x xy y x y x y x y -+-+-=---+请根据上述材料,完成下列问题:(1)分解因式:232x x ++= ;2256220x xy y x y -+++-= ;(2)若x ,y ,m 均为整数,且关于x ,y 的二次多项式2262120x xy y x my +--+-可用“十字相乘法”分解为两个一次式的乘积,求出m 的值,并求出关于x ,y 的方程22621201x xy y x my +--+-=-的整数解.【答案】(1)(1)(2)x x ++,(35)(24)x y x y -+--;(2)5456m m ==-,14x y =-⎧⎨=⎩和24x y =⎧⎨=-⎩【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;。

数学苏科版九年级数学上42一元二次方程的解法(“方法”相关文档)共9张

数学苏科版九年级数学上42一元二次方程的解法(“方法”相关文档)共9张
快捷地求解.
根据“至少有一个因式为零”,转化为两个一元一次方程.
(x+h)2=k (k≥0)
方程? 你能用多少种不同的方法解方程:
用因式分解法解方程: 解:设这个数为x,根据题意,得 用因式分解法的条件是:方程左边易于分解,而右边等于零; 理论是“如果两个因式的积等于零,那么至少有一个因式等于零. 这种解一元二次方程的方法称为因式分解法. (1)5x2=4x;(2)(x+2)2=x(x+2);(3)x2-6x+9=0
3. 分别解两个一元一次方程,它们
的根就是原方程的根.
想一想
先胜为快
• 一个数平方的2倍等于这个数的7倍,求这个数.
解:设这个数为x,根据题意,得
2x2=7x.
2x2-7x=0,
x(2x-7) =0,
∴x=0,或2x-7=0.
即x1
0,
x2
7. 2
现在你有哪些方法解一元二次 x(2x-7) =0,
(x+h)2=k (k≥0) 你能用多少种不同的方法解方程:
(x+h)2=k (k≥0) 当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用因式分解的方法求解. 分别解两个一元一次方程,它们的根就是原方程的根. 我思 我进步
下课了!
结束寄语
• 配方法和公式法是解一元二 次方程重要方法,要作为一 种基本技能来掌握.而某些 方程可以用因式分解法简便
至少有一个因式等于零.”
例题欣赏 ☞
用因式分解法解方程:
(1)5x2=4x;(2)(x+2)2=x(x+2);(3)x2-6x+9=0
解 : 1.5x2 4x 0,

苏教版初三数学九年级上册知识点总结归纳

苏教版初三数学九年级上册知识点总结归纳

苏教版初三数学九年级上册知识点总结归纳第一章一元二次方程思维导图:知识点归类知识点一一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。

一元二次方程的解法用一元二次方程解决问题列一元二次方程解应用题时,我们一般将解题过程归结为“审、设、列、解、检验、答”六步。

(1) “审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系.(2) “设”是指设未知数,在一道应用题中,往往含有几个未知量,应恰当地选择其中的一个未知量用字母x表示,然后根据各量之间的数量关系,将其他几个未知量用含x的代数式表示出来.(3) “列”就是指列方程,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.(4) “解”是指解方程,即求出未知数的值。

(5) “检验”是指检验方程的解能否保证实际问题有意义.在解实际应用题时,一定要注意检验求得的一元二次方程的根是否与题意相符,不相符的一定要舍去。

(6) “答”是指完成以上步骤后,回归到原始问题,写出答案。

第2章对称图形-圆圆是轴对称图形,每一条直径都是它的对称轴,因此圆有无数条对称轴。

精品学习网初中频道为大家编辑了对称图形圆知识点,希望对大家有帮助。

2.1 圆1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

2.2 圆的对称性(1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置;(3)圆是满足y = x or y = -x轴对称的,这样只需要计算原来的1/2点的位置;2.3 确定圆的条件1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.2.4 圆周角圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。

九年级数学上册1.2一元二次方程的解法怎样利用因式分解法解一元二次方程?素材苏科版

九年级数学上册1.2一元二次方程的解法怎样利用因式分解法解一元二次方程?素材苏科版

怎样利用因式分解法解一元二次方程?难易度:★★★关键词:一元二次方程的解法答案:当把一元二次方程的一边化为0,而另一边可以分解成两个一次因式的积时,就可以用因式分解法来解这个方程。

要清楚使乘积ab=0的条件是a=0或b=0。

【举一反三】典例:解方程1。

x2-25=02。

(x+1)2=(2x-1)23。

x2-2x+1=44。

x2=4x思路导引:一般来说,此类问题应先转化为一般式,再进行因式分解。

1。

解:(x+5)(x-5)=0∴x+5=0或x-5=0∴x1=5,x2=-52。

解:(x+1)2-(2x-1)2=0(x+1+2x-1)(x+1-2x+1)=0∴3x=0或-x+2=0,∴x1=0,x2=23.解:x2-2x-3=0(x-3)(x+1)=0∴x-3=0或x+1=0,∴x1=3,x2=-14.解:x2-4x=0x(x-4)=0∴x=0或x-4=0,∴x1=0,x2=4标准答案:(1)x1=5,x2=-5(2)x1=0,x2=2(3)x1=3,x2=-1(4)x1=0,x2=4尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Partof the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 一元二次方程
专题训练(一) 一元二次方程的解法归纳
一元二次方程的基本解法有直接开平方法、配方法、公式法和因式分解法四种,在解方程时,要依据方程的特点进行合理选择.
► 解法一 缺少一次项或形如(ax +b )2=c (c≥0)的一元二次方程选直接开平方法求解
1.用直接开平方法解下列一元二次方程,其中无解的方程为( )
A .x 2-5=5
B .-3x 2=0
C .x 2+4=0
D .(x +1)2=0
2.解下列方程:
(1)t 2-45=0; (2)(x -3)2-49=0;
(3)(6x -1)2=25; (4)12
(3y -1)2-8=0;
(5)(x -3)2=(5-2x )2.
► 解法二 方程一边化为0后,另一边能分解因式的一元二次方程用因式分解法求解
3.一元二次方程x (x -2)=2-x 的解是( )
A .x =-1
B .x =0
C .x 1=1,x 2=2
D .x 1=-1,x 2=2
4.一元二次方程x 2-9=3-x 的解是( )
A .x =3
B .x =-4
C .x 1=3,x 2=-4
D .x 1=3,x 2=4
5.解下列方程:
(1)x 2=x ; (2)(x -1)(x +2)=2(x +2);
(3)4(x-3)2-25(x-2)2=0;
(4)(2x+1)2+4(2x+1)+4=0;
(5)(x-2)(x-3)=6.
►解法三当二次项系数为1,且一次项系数为偶数或遇到较大系数时选配方法求解6.解下列方程:
(1)x2-24x=9856;(2)x2-6x-9991=0.
7.有n个方程:x2+2x-8=0,x2+2×2x-8×22=0,…,x2+2nx-8n2=0.
小静同学解第一个方程x2+2x-8=0的步骤如下:①x2+2x=8;②x2+2x+1=8+1;
③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=-2.
(1)小静的解法是从步骤________开始出现错误的.
(2)用配方法解第n个方程x2+2nx-8n2=0.(用含有n的式子表示方程的根)
►解法四方程的系数没有特殊性,化为一般形式后用公式法求解
8.用公式法解方程2x2+4 3x=2 2时,其中求得的b2-4ac的值是________.
9.解下列方程:
(1)2x2-3x+1=0;(2)x(x+2 2)+1=0;
(3)3(x2+1)-7x=0;(4)4x2-3x-5=x-2.
►解法五运用换元法等数学思想方法解一元二次方程
10.解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,x-1=1,解得x=2;当y =4时,x-1=4,解得x=5.所以原方程的解为x1=2,x2=5.利用这种方法求得方程(2x+5)2-4(2x+5)+3=0的解为( )
A.x1=1,x2=3 B.x1=-2,x2=3
C.x1=-3,x2=-1 D.x1=-2,x2=-1
11.若(a2+b2)(a2+b2-2)=8,则a2+b2的值为( ) A.4或-2 B.4 C.-2 D.-4
12.请阅读下面解方程(x2+1)2-2(x2+1)-3=0的过程.解:设x2+1=y,则原方程可变形为y2-2y-3=0.
解得y1=3,y2=-1.
当y=3时,x2+1=3,∴x=± 2.
当y=-1时,x2+1=-1,x2=-2.此方程无实数解.
∴原方程的解为x1=2,x2=- 2.
我们将上述解方程的方法叫做换元法.
请用换元法解方程:
(
x
x-1
)2-2(
x
x-1
)-15=0.
详解详析
1.C
2.解:(1)t 1=3 5,t 2=-3 5.
(2)x 1=10,x 2=-4.
(3)x 1=1,x 2=-23
. (4)移项,得12
(3y -1)2=8,(3y -1)2=16, 所以3y -1=±4.
所以3y -1=4或3y -1=-4.
所以y 1=53
,y 2=-1. (5)方程两边开平方,得x -3=±(5-2x ),
即x -3=5-2x 或x -3=-(5-2x ),
所以x 1=83
,x 2=2. 3.D 4.C
5.解:(1)x 1=0,x 2=1.(2)x 1=3,x 2=-2.
(3)原方程可变形为[2(x -3)]2-[5(x -2)]2=0,
即(2x -6)2-(5x -10)2=0,
∴(2x -6+5x -10)(2x -6-5x +10)=0,
即(7x -16)(-3x +4)=0,
∴7x -16=0或-3x +4=0,
∴x 1=167,x 2=43
. (4)原方程可变形为(2x +1+2)2
=0,
即(2x +3)2=0,∴2x +3=0,
∴x 1=x 2=-32
. (5)整理,得x 2-5x =0,∴x (x -5)=0,
∴x =0或x -5=0,∴x 1=0,x 2=5.
6.(1)x 1=112,x 2=-88 (2)x 1=103,x 2=-97
7.解:(1)⑤
(2)x 2+2nx -8n 2=0,
x 2+2nx =8n 2,
x 2+2nx +n 2=8n 2+n 2,
(x +n )2=9n 2,
x +n =±3n ,
x 1=2n ,x 2=-4n .
8.64 [解析] 要求b 2-4ac 的值,需将原方程先转化为ax 2+bx +c =0(a ≠0)的形式.原方程可化为2x 2+4 3x -2 2=0,b 2-4ac =(4 3)2-4×2×(-2 2)=64.故填64.
9.解:(1)∵b 2-4ac =(-3)2-4×2×1=1>0,
∴x =3±12×2=3±14,
即x 1=1,x 2=12
. (2)原方程可化为x 2+2 2x +1=0.
∵a =1,b =2 2,c =1,
∴b 2-4ac =(2 2)2-4×1×1=4,
∴x =-2 2±42
=-2±1, ∴x 1=-2+1,x 2=-2-1. (3)化简,得3x 2-7x +3=0,
∴b 2-4ac =(-7)2-4×3×3=13,
∴x =7±132×3=7±136
, ∴x 1=7+136,x 2=7-136. (4)化简,得4x 2-4x -3=0,
∴b 2-4ac =(-4)2-4×4×(-3)=64,
∴x =4±642×4=1±22
, ∴x 1=32,x 2=-12
. 10.D [解析] 设y =2x +5,则原方程可化为y 2-4y +3=0,解得y 1=1,y 2=3.当y =1时,2x +5=1时,解得x =-2;当y =3时,2x +5=3时,解得x =-1.所以原方程的解为x 1=-2,x 2=-1.故选D.
11.B [解析] 设a 2+b 2=x ,则原方程可化为x (x -2)=8,解得x 1=4,x 2=-2.
因为a 2+b 2的值为非负数,所以a 2+b 2的值为4,故选B.
12.解:设x x -1
=a ,则a 2-2a -15=0, 解得a 1=3,a 2=5. 当a =-3时,x
x -1=-3,解得x =34. 经检验,x =34
是该分式方程的解. 当a =5时,x
x -1=5,解得x =54. 经检验,x =54
是该分式方程的解. ∴原方程的解是x 1=34,x 2=54
.。

相关文档
最新文档