基于小波变换的图像处理综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Value Engineering 1小波变换的定义

小波分析是对Fourier 分析的一个重要补充和完善。因此,小波变换的定义应该是尽可能的由少数几个函数生成的;而理想的小波基应该是类似于Fourier 分析的。小波分析主要可以分为两个变换,即连续小波变换和离散小波变换。

2小波分析处理图像的发展

小波分析是一个不断发展的过程,经历“应用-理论-应用”的循环过程。小波分析是多学科交叉理论的结晶,包含泛函数分析、数值分析、分形理论、信息论、调和理论以及逼近论和时频分析等。并提出一种自适应的时-频局部化方法,可在时-频域任意转换,可聚焦任意信号的时段和频段,称为数学中的“望远镜”和“显微镜”。小波变换是Fourier 变换的深层次发展,是近年来工程领域关注的热点,将小波分析用于无损检测、医学CT 、构件探伤等。小波起源就与信号处理密不可分,1984年,法国工程师J.Morlet 和Grossman 对地质信号的分界提出了伸缩、平移的概念,首次提出”Wavelets ”一词。1985年,法国大数学家Meyer 提出光滑正交小波的理念,证明一维小波的存在性,构造出小波函数,是小波数学理论的先驱。随后与他的学生Lemarie 提出多尺度分析的思想。1988年,比利时数学家Ingrid Daubechies 构造出具有紧支撑的有限光滑小波函数,并撰写的《小波十讲(Ten Lectures on Wavelets )》为小波研究和应用领域的专家学者提供了系统的小波理论讲解。1989年,Mallat 在多分辨的基础上,构造mallat 算法进行分解和重构,打开了小波应用的大门。1990年,Latto 和Tenenbaum 将小波分析用于偏微分方程求解,为小波分析的普及、发展及应用提供了动力。

3小波在图像处理中的主要应用:3.1图像变换小波变换具有捕获点奇异性的能力,

而一维信号中的奇异性主要表现为点奇异性,因此,利用小波变换处理一维信号可以取得很好的效果。图像变换相当于是对数字图像阵列的预处理。因为图像阵列维数相对较大,能够直接进行处理复杂度高、计算繁复,就需要一种算法将它变换,减少计算量,小波变换亦能达到良好去除冗余度的效果。

3.2图像压缩

数字图像的压缩目的即减少图像所需的比特数,经小波变换,通过时间域压缩图像的压缩比比传统的压缩方法高,速度快,而压缩后要能够保持信号与图像的特征基本是不变的,这也是一种有损压缩,但是在传递中抗干扰能力相对较强。Shappro 推倒出离散正交小波变换,提出“嵌入”式的“零树”小波编码图像压缩方法,相比于其它图像编码方法压缩比高、无方块效应。目前,基于小波变换的基础发展起来的图像编码方法称为新的静止图像压缩标准。而基于小波变换分析的压缩方法比较成功的是格型矢量量化小波系数编码,小波包最优基方法,多级树集合分裂算法(SPIHT ),小波域多尺度ARMA 模型纹理方法等。

3.3图像增强与恢复

图像去噪方法分空域滤波、频域滤波和最优线性滤波法。Donoho 和Johnstone 在高斯噪声模型下,应用多维独立正态变量决策理论,提出了小波阈值去噪方法和改进的信号去噪的软阈值方法和硬阈值方法,推导出VisuShrink 阈值公式及SureShrink 阈值公式,从理论上证明该阈值是渐进最优的。Weaver 等人通过分析小波变换高频、低频系数的相关特性,提出基于小波变换域内高、低系数相关的去噪方法。图像复原即利用模糊理论、粗糙集理论等去模糊,研究表明,模糊图像是由降质函数与清晰图像卷积得到,通过分析使图像模糊的因素,如高斯噪声、脉冲噪声、白噪声等,建立图像退化模型,根据采集图像提供的资料恢复清晰的图像。

3.4图像分割

——————————————————————

—作者简介:黄奎(1990-),男,重庆人,硕士,研究方向为水工结构工程。

基于小波变换的图像处理综述

Overview of Image Processing Based on Wavelet Transform

黄奎HUANG Kui

(重庆交通大学,

重庆400074)(Chongqing Jiaotong University ,Chongqing 400074,China )

摘要:小波分析主要广泛应用在科学研究和工程技术中。虽然在现阶段的小波理论相对成熟,近些年关于小波理论的应用和研

究也在不断的发展和更新。小波变化在图像处理领域中的应用也囊括图像与处理的所有方面。本文通过介绍小波变换的起源,将小波

应用在图像处理中的压缩、还原图像、边缘检测和图像分割,宏观剖析小波的研究现状历史、发展动向及优势。

Abstract:The wavelet analysis is widely used in scientific research and engineering technology.Although the wavelet theory is relatively mature at this stage,the application and researches on the wavelet theory in recent years is also in constant development and renewal.The application of wavelet transform in image processing covers all aspects of image processing.Through the introduction of the origin of wavelet transform,and by applying wavelet in image compression,image restoration,edge detection and image segmentation,this article analyzes the research situation,development trend and advantage of wavelet.

关键词:小波分析;图像;应用;边缘检测;宏观剖析Key words:wavelet analysis ;image ;application ;edge detection ;macro analysis 中图分类号:TP391文献标识码:A 文章编号:1006-4311(2015)08-0255-02·255·

DOI:10.14018/13-1085/n.2015.08.143

相关文档
最新文档