山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第三次四校联考数学(理)
【原创·精品解析系列】数学理卷·2014届山西省忻州一中 康杰中学 临汾一中 长治二中四校高三第四次联考
山西省忻州一中 长治二中 临汾一中 康杰中学2013-2014学年高三第四次四校联考数学试题(理科)A 卷命题: 康杰中学 临汾一中 长治二中 忻州一中【满分150分,考试时间120分】【试卷综析】本试题是一份质优量大的高三测试的好题,涉及范围广,包括集合、复数、圆、数列、命题、频率分布直方图、概率、程序框图、分段函数、三角函数变换、三视图、解三角形、双曲线、离心率、导数极值、二项式定理、平面向量、直线与圆、线性规划、球、几何证明、不等式选讲、参数方程与极坐标等高考核心考点,又涉及了概率统计、数列、立体几何、解析几何、导数应用等必考解答题型。
本题难易程度涉及合理,梯度分明;既有考查基础知识的经典题目,又有考查能力的创新题目;从12,14,15,16等题能看到命题者在创新方面的努力,从17,18,19三题看出考基础,考规范;从20题可以看出考融合,考传统;从16,21两题可以看出,考拓展,考创新。
一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.集合{}{}220,2,0xA x x xB y y x =->==>,R 是实数集,则()RB AC ⋃等于( )A .RB .(-∞,0)∪1,+∞)C .(]0,1D .(](),12,-∞⋃+∞ 【知识点】不等式的解集,函数值域,补集,交集 【答案解析】D()()()(],02,,1,,,1R A B B C =-∞⋃+∞=+∞=-∞,则()(]()()(](),1,02,,12,RB AC ⋃=-∞⋃-∞⋃+∞=-∞⋃+∞【思路点拨】把每一个集合解对就好说了2. 已知z 是复数z 的共轭复数, 0g z z z z ++=,则复数z 在复平面内对应的点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 【知识点】复数与共轭复数,复数轨迹 【答案解析】A设(,)z x yi x y R =+∈则222,g z z x z z x y +==+所以0g z z z z ++=变为()22222011x y x x y ++=⇒++=故选A【思路点拨】设复数是关键,再化简。
【解析版】山西省长治二中 康杰中学 临汾一中 忻州一中2013届高三第四次四校联考数学(理)试题
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合},1|{2R x x y y M ∈-==,}2|{2x y x N -==,则=N M ( )A .),1[+∞-B .]2,1[-C .),2[+∞D .φ2.下列说法错误..的是( ) A .“1sin 2θ=”是“30θ= ”的充分不必要条件 B .命题“若0a =,则0ab =”的否命题是:“若0a ≠,则0ab ≠” C .若命题2:,10p x R x x ∃∈-+=,则 2:,10p x R x x ⌝∀∈-+≠ D .若命题“p ⌝”与命题“p 或q ”都是真命题,那么命题q 一定是真命题3.函数sin(2)(0)2y x πϕϕ=+<<图象的一条对称轴在(,)63ππ内,则满足此条件的一个ϕ值为( )A .12πB .6πC .3πD .65π4.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为1的圆,且这个几何体是球体的一部分,则这个几何体的表面积为()5.若实数x ,y 满足约束条件142x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则目标函数 24z x y =+的最大值为( )A .10B .12C .13D .14【答案】C 【解析】6.运行下图所示框图的相应程序,若输入,a b 的值分别为2log 3和3log 2,则输出M 的值是( )A .0B .1C .2D .-17.已知数列{}n a 满足3311log log ()n n a a n N +++=∈,且4269a a a ++=,则()15793log a a a ++的值是( )A .15 B . 15- C . 5 D .5- 【答案】D8.已知一个三棱柱,其底面是正三角形,且侧棱与底面垂直,一个体积为43π的球体与棱柱的所有面均相切,那么这个三棱柱的表面积是( )A .36B .312C . 318D . 3249.在ABC ∆中,角A 、B 、C 所对的边分别为a ,b ,c 且a=1,B=45°,ABC S ∆=2,则b 等于( )A .5B .25C .41D .2510.已知函数1)(+-=mx e x f x的图像为曲线C ,若曲线C 存在与直线x y 21=垂直的切线,则实数m 的取值范围是( )A .2≤mB .2>mC .21-≤m D .21->m11.若定义在R 上的偶函数()x f 满足()()x f x f =+2且[]1,0∈x 时,(),x x f =则方程()x x f 3log =的零点个数是( )A .2个B .3个C . 4个D .多于4个12.已知A B P 、、是双曲线22221x y a b-=上的不同三点,且A B 、连线经过坐标原点,若直线PA PB 、的斜率乘积23PA PB k k ⋅=,则该双曲线的离心率e =( )A D第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.若函数)1,0(log ≠>=a a x y a 的图象过点(2,-1),且函数)(x f y =的图像与函数)1,0(log ≠>=a a x y a 的图像关于直线xy =对称,则)(x f = .14.i 为虚数单位,则复数i i43105-+的虚部是 .15.某铁路货运站对6列货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组,如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有.【答案】216【解析】16.已知函数M,最小值为m,则mM= .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.已知点A (4,0)、B (0,4)、C (ααsin 3,cos 3)(1)若),0(πα∈α的大小;(2)⊥,求αααtan 12sin sin 22++的值.试题解析:(1)由题意可得(3cos 4,3sin ),(3cos ,3sin 4)AC BC αααα=-=-,又AC BC = ,18.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:( (2)当产品中的微量元素x ,y 满足x ≥175且y ≥75,该产品为优等品,①用上述样本数据估计乙厂生产的优等品的数量;②从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其期望.19.如图,已知长方形ABCD 中,1,2==AD AB ,M 为DC 的中点. 将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM . (I )求证:BM AD ⊥ ;(II )若点E 是线段DB 的中点,求二面角D AM E --的余弦值.20.已知21,F F 为椭圆)0(1:2222>>=+b a by a x C 的左,右焦点,M 为椭圆上的动点,且21MF MF ⋅的最大值为1,最小值为-2.(I )求椭圆C 的方程;(II )过点),(056-作不与y 轴垂直的直线l 交该椭圆于N M ,两点,A 为椭圆的左顶点。
新课标全国统考区2013届最新高三名校理科数学试题精选分类汇编6:不等式
新课标全国统考区(吉林、河南、黑龙江、内蒙古、山西、云南)2013届最新高三名校理科数学试题精选分类汇编6:不等式一、选择题1 .(河南省六市2013届高三第二次联考数学(理)试题)当实数,x y 满足不等式⎪⎩⎪⎨⎧≤+≥≥2200y x y x 时,恒有3ax y +≤成立,则实数a 的取值范围是( )A .0a ≤B .0a ≥C .02a ≤≤D .3a ≤【答案】D2 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若*1(),()(),2f n n g n n n n N nϕ==-=∈,则(),(),()f n g n n ϕ的大小关系 ( ) A .()()()f n g n n ϕ<< B .()()()f n n g n ϕ<< C .()()()g n n f n ϕ<<D .()()()g n f n n ϕ<<【答案】B3 .(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z =3x +y 的最大值为( )( )A .12B .11C .3D .-1【答案】B4 .(河南省豫东、豫北十所名校2013届高三阶段性测试(四) 数学(理)试题(word 版))已知实数⎪⎩⎪⎨⎧≤+-≤≥.,13,1,m y x x y y y x 满足如果目标函数y x z 45-=的最小值为—3,则实数m=( )A .3B .2C .4D .311 【答案】A5 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x +y=a 扫过A 中的那部分区域面积为 ( )A .2B .1C .34D .74【答案】D6 .(河南省商丘市2013届高三第三次模拟考试数学(理)试题)若0.5222,log 3,log sin5a b c ππ===,则,,a b c 之间的大小关系是( )A .c a b >>B .a b c >>C .b a c >>D .b c a >>【答案】B7 .(云南省2013年第二次高中毕业生复习统一检测数学理试题(word 版) )已知()f x 是定义域为实数集R的偶函数,10x ∀≥,20x ∀≥,若12x x ≠,则1212()()0f x f x x x -<-.如果13()34f =,184(log )3f x >,那么x 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .1,22⎛⎫⎪⎝⎭C .()1,12,2⎛⎤+∞⎥⎝⎦D .110,,282⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B8 .(河南省开封市2013届高三第四次模拟数学(理)试题)若a>1,设函数4)(-+=x a x f x 的零点为m,g(x)4log -+=x x a 的零点为n,则nm 11+的取值范围是 ( )A .(3.5,+∞)B .(1,+∞)C .(4,+∞)D .(4.5,+∞)【答案】B9 .(吉林省吉林市2013届高三三模(期末)试题 数学理 )已知点(),P x y 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则z x y =-的取值范围是 ( )A .[]2,1--B .[]2,1-C .[]1,2-D .[]1,2【答案】C10.(黑龙江省哈师大附中2013届第三次高考模拟考试 理科数学 Word 版含答案)设x 、y 满足约束条件2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩,则目标函数z = 2x + y 的最大值为 A .-4B .5C .6D .不存在【答案】C11.(山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第四次四校联考数学(理)试题)若实数x ,y 满足约束条件142x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则目标函数 24z x y =+的最大值为( )A .10B .12C .13D .14【答案】C12.(河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模)考试数学(理)试题)设实数,x y 满足约束条件:360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则2294a b +的最小值为( )A .12 B .1325C .1D .2【答案】A 13.(河北省石家庄市2013届高中毕业班第二次模拟考试数学理试题(word 版) )设y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥,1434,,0y x x y x 则21++x y 的取值范围是 ( )A .]617,21[ B .]43,21[C .]617,43[ D .),21[+∞【答案】A 二、填空题14.(河南省郑州市2013届高三第三次测验预测数学(理)试题)已知⎪⎩⎪⎨⎧≥≤-+≤++101553,034x y x y x ,则z =______.【答案】812[,]15515.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知点P (x ,y )的坐标满足条件0,0,20,≥≥≤x y x y ⎧⎪⎨⎪+-⎩则z =2x -y 的最大值是_________. 【答案】416.(2013年红河州高中毕业生复习统一检测理科数学)设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-0,0048022y x y x y x ,若目标函数)0,0(>>+=b a y abx z 的最大值为8,则b a +的最小值为_______. 【答案】417.(山西省山大附中2013届高三4月月考数学(理)试题)设二次函数c x ax x f +-=4)(2的值域为[)+∞,0,_______18.(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)若正实数a,b 满足:(a-1)(b-1)=4,则ab 的最小值是_____.【答案】919.(内蒙古包头市2013届高三第二次模拟考试数学(理)试题)设x,y 满足条件20360,(0,0)0,0x y x y z ax by a b x y -+≥⎧⎪--≤=+>>⎨⎪≥≥⎩若目标函数的最大值为12,则32a b +的最小值为________【答案】 420.(河北省衡水中学2013届高三第八次模拟考试数学(理)试题 )已知点P (x ,y )在不等式组1003x y x y x ⎧⎪⎨⎪⎩+-≥,-≥,≤表示的平面区域内运动,则34z x y =-的最小值为________ 【答案】解析:可行域是以11(,),(3,3),(3,2)22A B C -三点为顶点的三角形,当过点B 时,z 取最小值是3-.21.(河南省开封市2013届高三第四次模拟数学(理)试题)实数x,y 满足条件yx z y x y x y x -=⎪⎩⎪⎨⎧≥≥≥+-≤-+2,0,002204则的最小值为_________. 【答案】1-22.(山西省山大附中2013届高三4月月考数学(理)试题)在平面直角坐标系中,不等式⎪⎩⎪⎨⎧≤≥-≥+a x y x y x 00a (为常数)表示的平面区域的面积为8,则32+++x y x 的最小值为_________23.(2013年长春市高中毕业班第四次调研测试理科数学)设,x y 满足约束条件00+2y y xx y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a =______.【答案】【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且可以使一条斜率为3-的直线经过该点时取最大值,因此点 (2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0), 因此2a =.24.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知P 是面积为1的△ABC 内的一点(不含边界),若△PBC ,△PCA 和△PAB 的面积分别为,,x y z ,则1x yx y z +++的最小值是_________. 【答案】325.(山西省太原市第五中学2013届高三4月月考数学(理)试题)设实数x ,y 满足约束条件2220,20,220,x y x y x y x y ⎧-≤⎪-≥⎨⎪+--≤⎩,则目标函数z x y =+的最大值为_________. 【答案】4。
山西省忻州一中、康杰中学、长治二中、临汾一中2015届高三第三次四校联考理科综合试卷.pdf
C.丹麦物理学家奥斯特发现了电流的磁效应,并总结了右手螺旋定则
D.法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量K的值
15. 如图所示,挡板垂直于斜面固定在斜面上,一滑块m放在斜面上,其上表面呈弧形且左端最薄,一球M搁在挡板
与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止.现将滑块平行于斜面向上
置cd开始,在拉力作用下以初速度v0向右沿轨道做匀速圆周运动至ab处,则该过程中
A.通过R的电流方向为由外向内 B.通过R的电流方向为由内向外
C.R上产生的热量为
D.流过R的电量为
第Ⅱ卷(非选择题174分)
三、非选择题。包括必考题和选考题两部分。第22题~第32题为必考题,每个试题考生都必须做答。第33题~第
(3)利用补接完整的实验装置测量出不同温度下的电阻值,画出该热敏电阻的Rt-t图象如右图中的实测曲线,与图
中理论曲线相比二者有一定的差异.除了偶然误差外,下列关于产生系统误差的原因或减小系统误差的方法叙述正确的
是___.(填选项前的字母,不定项选择)
A.电流表的分压造成电阻的测量值总比真实值大
B.电压表的分流造成电阻的测量值总比真实值小
C.温度升高到一定值后,电流表应改为外接法
(4)将本实验所用的热敏电阻接到一个电流较大的恒流电源中使用,当电流通过电阻产生的热量与电阻向周围环境
散热达到平衡时,满足关系式I2R=k(t-t0)(其中k是散热系数,t是电阻的温度,t0是周围环境温度,I为电流强度
拉过一较小的距离,球仍搁在挡板与滑块上且处于静止状态,则与原来相比A.滑块对球的弹力增大
B.挡板对球的弹力减小
C.斜面对滑块的弹力增大
山西省忻州一中 长治二中 临汾一中 康杰中学2013-2014学年高三第四次四校联考数学试题(理科)A卷
山西省忻州一中 长治二中 临汾一中 康杰中学2013-2014学年高三第四次四校联考数学试题(理科)A 卷【满分150分,考试时间120分】一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.集合A={x|x 2-2x>0},B={y|y= 2 x ,x>0},R 是实数集,则(C R B)∪A 等于( ) A .R B .(-∞,0)∪1,+∞) C .(0,1 D .(-∞,1∪(2,+∞)2. 已知z 是复数z 的共轭复数, z+z + z ·z =0,则复数z 在复平面内对应的点的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 3.设公比 12q =的等比数列{n a }的前n 项和为n S ,则43S a = ( ) A .152 B .154C .72D .744.命题p :∀x ∈R,sinx-cosx< 2命题q :“a=1”是“直线l 1:ax+2y-1=0与直线l 2:x+(a+1)y+4=0平行”的充分条件 则下列命题中,真命题是A .(⌝q)∨pB .p ∧qC .(⌝p)∧(⌝q)D .(⌝p)∨ (⌝q) 5.某一个班全体学生参加物理测试,成绩的频率分布直方图如图,则该班的平均分估计是 A .70 B .75 C .68 D .666.在长为8的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC 、BC 的长,则该矩形面积大于15的概率 ( )A .16B .14C .23D .457.右图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有 ( )A .1个B .2个C .3个D .4个8.把函数f(x)=sin 2x-2sinxcosx+3cos 2x 的图像沿x 轴向左平移m(m>0)个单位,所得函数g(x)的图像关于直线x= π8对称,则m 的最小值为 ( )/分频率A.4πB.3πC.2πD.43π 9.已知一个几何体的三视图如图所示,则这个几何体的体积是( )A .233B .236C .113D .10310.已知四边形ABCD ,∠BAD=120º,∠BCD=60º,AB =AD =2,则AC 的最大值为( ) A .433 B .4 C .833D .811.已知双曲线x 2a 2 − y 2b 2=1(a>0,b>0),右焦点F 到渐近线的距离小于等于a,则该双曲线离心率的取值范围为( ) ABCD 12.若f(x)满足x 2f '(x)—2xf(x)=x 3e x ,f(2)= —2e 2.则x>0时,f(x) ( )A.有极大值,无极小值 B.有极小值,无极大值 C.既有极大值,又有极小值 D.既无极大值,也无极小值二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.(2x+1x )6展开式中的常数项等于________14.∆ABC 中,|CB →|cos ∠ACB=|BA →|cos ∠CAB=3,且AB →·BC →=0,则AB 长为 _ 15.已知直线x+y+2a-b=0(b ∈R,0≤a ≤2)与圆x 2+y 2=2有交点,则a+b 的最大值为 16.四棱锥P-ABCD 底面是一个棱长为2的菱形,且∠DAB=60º,各侧面和底面所成角均为60º,则此棱锥内切球体积为三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12, q=S 2b 2.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的取值范围.18.为了普及环保知识增强环保意识,某校从理工类专业甲班抽取60人,从文史类乙班抽取50人参加环保知识测试 ⑴ 根据题目条件完成下面2×2列联表,并据此判断你是否有99%的把握认为环保知识与专业有关⑵为参加上级举办的环保知识竞赛,学校举办预选赛,预选赛答卷满分100分,优秀的同学得60分以上通过预选,非优秀的同学得80分以上通过预选,若每位同学得60分以上的概率为12,得80分以上的概率为13,现已知甲班有3人参加预选赛,其中1人为优秀学生,若随机变量X 表示甲班通过预选的人数,求X的分布列及期望E (X ). 附: k 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d), n=a+b+c+d19.(本题满分12分)如图,四棱锥P-ABCD 的底面是矩形,侧面PAD ⊥底面ABCD ,在∆PAD 中PA →+PD →=2PE →,且AD=2PE(1)求证:平面PAB ⊥平面PCD ;(2)如果AB=BC,∠PAD=60º,求DC 与平面PBE 的正弦值20.已知点P 在圆x 2+y 2=1上运动,DP ⊥y 轴,垂足为D,点M 在线段DP 上,且|DM||DP|=22 (Ⅰ)求点M 的轨迹方程;(Ⅱ)直线l 与y 轴交于点Q(0,m)(m≠0),与点M 的轨迹交于相异的两点A,B ,且AQ →=λQB →,若OA →+λOB →=4OQ →.求m 的取值范围.21.已知函数()x f x e =(e 为自然对数的底),()ln(())g x f x a =+(a 为常数),()g x 是实数集R 上的奇函数.BP ACDE⑴ 求证:()1f x x ≥+()x R ∈;⑵ 讨论关于x 的方程:2ln ()()(2)g x g x x ex m =⋅-+()m R ∈的根的个数;请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B 、C ,∠APC 的平分线分别交AB 、AC 于点D 、E ,(Ⅰ)证明:∠ADE=∠AED ; (Ⅱ)若AC=AP ,求PCPA的值。
(新课标I版01期)2014届高三数学_名校试题分省分项汇编专题04_三角函数与三角形(含解析)理
(新课标I 版01期)2014届高三数学 名校试题分省分项汇编专题04三角函数与三角形(含解析)理一.基础题组1. 【山西省长治二中 康杰中学 临汾一中 忻州一中2013届高三第四次四校联考】在ABC ∆中,角A 、B 、C 所对的边分别为a ,b ,c 且a=1,B=45°,ABC S ∆=2,则b 等于( )A .5B .25C .41D .252. 【唐山市2013-2014学年度高三年级摸底考试】已知1sin 23α=,则2c o s ()4πα-=( ) A .13-B .23-C .13D .233. 【河北唐山开滦二中2013~2014学年度第一学期高三年级期中考试】若1sin()63πα-=,则22cos ()162πα+-=( ) A. 31 B. 31- C. 97 D. 97-【答案】A. 【解析】试题分析:212cos ()1cos()sin[()]sin()6232363παππππααα+-=+=-+=-=,选A. 考点:三角函数的倍角公式、诱导公式.4. 【2012-2013学年度南昌市高三第二次模拟测试卷】将函数))(6sin(R x x y ∈+=π图像上所有的点向左平行移动6π个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图像的解析式为( ) A.)32sin(π+=x y B.)32sin(π+=x y C.2sin xy = D.2cosx y =5. 【河北省保定市八校联合体2014届高三上学期第一次月考】已知sin()sin 0,32ππααα++=-<<则2cos()3πα+等于( )A .45-B .35-C .35D .456. 【河北省邯郸市2014届高三9月摸底考试数学】设函数()sin cos 2f x x x =图象的一个对称轴是( )A .B .0x = C7. 【河北衡水中学2013~2014学年度高三上学期二调高三数学试卷】已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位B.向右平移π12个长度单位C.向左平移π6个长度单位D.向左平移π12个长度单位【答案】A 【解析】试题分析:由图像知1A =,724()123T ππππω=-==,∴2ω=,又∵23πϕπ⨯+=,∴3πϕ=,∴()sin(2)3f x x π=+将图像向右平移π6个长度单位可得到()sin 2g x x =. 考点:1.由图像确定函数解析式;2.图像变换.8. 【河北唐山开滦二中2013~2014学年度第一学期高三年级期中考试】函数x x y sin 2cos 2+= (656ππ≤≤-x )的值域是_______________。
高考语文二轮病句复习题及答案
高考语文二轮病句复习题及答案病句修改是高考语文必考的重要题型,修改病句练习训练对于高考语文复习是很重要的,以下是店铺为大家收集整理的高考病句专题练习题及答案,请考生认真复习。
高考病句专题练习一1. (2014大纲,3,3分)下列各句中,没有语病的一句是( )A.有的人看够了城市的繁华,喜欢到一些人迹罕至的地方去游玩,但这是有风险的,近年来已经发生了多次背包客被困野山的案情。
B.他家离铁路不远,小时候常常去看火车玩儿,火车每当鸣着汽笛从他身边飞驰而过时,他就很兴奋,觉得自己也被赋予了一种力量。
C.新“旅游法”的颁布实施,让很多旅行社必须面对新规定带来的各种新问题,不少旅行社正从过去拼价格向未来拼服务转型的阵痛。
D.哈大高铁施行新的运行计划后,哈尔滨至北京、上海等地的部分列车也将进一步压缩运行时间,为广大旅客快捷出行提供更多选择。
[答案] 1.D[解析] 1.A.搭配不当。
“发生”“多次”和“案情”不搭配,“多次”改为“多起”,“案情”改为“案件”。
B.语序不当。
应该把“每当”放在“火车”之前。
C.成分残缺。
“从过去拼价格向未来拼服务转型的阵痛”的中心语是“阵痛”,“阵痛”之前缺少谓语动词,可在“旅行社正”后加“承受”或“经历”等动词。
2. (2014四川,4,3分)下列各句中,没有语病的一项是( )A.城镇建设要充分体现天人合一理念,提高优秀传统文化特色,构建生态与文化保护体系,实现城镇与自然和谐发展。
B.金沙遗址博物馆的“太阳神鸟”金箔,是古蜀国黄金工艺辉煌成就的典型代表,以其精致和神秘展示了古蜀人的智慧与魅力。
C.全国规模最大的两栖爬行动物标本馆,已经收藏了10万多号标本,这些标本几乎覆盖了所有中国的两栖爬行动物种类。
D.音乐剧是19世纪末诞生的,它具有极富时代感的艺术形式和强烈的娱乐性,使它成为很多国家的观众都喜欢的表演艺术。
[答案] 2.B[解析] 2.A项,“提高优秀传统文化特色”中“提高”与“特色”搭配不当。
(解析版)山西省忻州一中、康杰中学、长治二中、临汾一中2014届高三第三次四校联考语文试题
(解析版)山西省忻州一中、康杰中学、长治二中、临汾一中2014届高三第三次四校联考语文试题【考试时间150分钟,满分150分】注意事项:1.本试题分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
2.全部答案在答题卡上完成,答在本试题上无效。
第I卷(阅读题共70分)甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成后面题目。
谈中国艺术学的当代建构王文章中国民族艺术以独特的创造法则和审美取向在世界艺术之林独树一帜。
艺术创造的多样性和精粹性,艺术认知的深刻性和审美思想闪耀的光辉,都可与世界上任何国家、民族媲美。
但不能否认的是,以现代学术眼光来看,我们对自己的艺术缺乏严密逻辑论证和系统理论体系建构的系统性、体系性的研究和把握,从历史的纵向上来看尤其如此。
当代中国艺术的研究,要改变传统的非学理性的感性体悟式研究方式,不能再停留在无需确定学科边界的“广谱研究”上。
艺术学学科体系的建构无疑为我们改变这一艺术研究的状况提供了一种可能性。
建构中国艺术学知识体系,要关照它与哲学、美学等知识体系的内在联系,同时要以具有国际学术视野的坐标来审视中国艺术学体系的建构,比如不因改变多少年来持有偏见的“西方艺术中心论”而偏移为“东方艺术中心论”。
有了正确的坐标,才会有“美美与共”的学术眼光。
在这样的基础上,我们首先需要面对的是中国传统艺术理论资源的转化与发展。
如果不能做到在这样一个深厚的“中国特色”的基础上对中国学术传统的继承与发扬,我们就很难建立起“中国的艺术学”。
同时也必须认识到,今天努力建构具有中国特色的艺术学学科体系,开掘其蕴含的人文历史价值,弘扬中华民族优秀文化,既有着历史的必然性,也是中华民族文化复兴和在新的时代文化崛起的必然要求。
(摘自《艺术百家》2013年第3期,有删改)【小题2】下列的理解和分析,不符合原文意思的一项是()(3分)A.艺术创造的多样性和精粹性,艺术认知的深刻性和审美思想闪耀的光辉是中国民族艺术独树一帜,屹立于世界艺术之林的重要原因。
2013年高考数学 倒计时20天 正能量 第1辑金题强化卷07 理 (学生版)无锡新领航教育
2013年普通高等学校招生全国统一考试金题强化卷数学理(7)第I 卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 【山东省青岛市2012届高三第二次模拟】已知集合{},3M m =-,{}22730,N x x x x =++<∈Z ,如果M N ≠∅ ,则m 等于 A .1- B .2- C .2-或1- D .32- 2. 【改编题】复数201321i i -(i 为虚数单位)的虚部是( ) A .15i B .15 C . 15i - D .15- 3. 【2013届山东临沂高三二模考试】设函数)(x f 为定义在R 上的奇函数,当0x ≥时,()22x f x x b =++(b 为常数),则(1)f -=(A )52-(B )1- (C )3- (D )3 4. 【原创题】若(,)2παπ∈,且3cos2sin()4παα=-,则sin 2α的值为( ) A. 118 B. 118- C.1718 D.1718- 5. 【济钢高中2012届高三5月份高考冲刺题】下列结论错误的...是 ( )A .命题“若p ,则q ”与命题“若,q ⌝则p ⌝”互为逆否命题;B .命题:[0,1],1x p x e ∀∈≥,命题2:,10,q x R x x ∃∈++<则p q ∨为真;C .“若22,am bm <则a b <”的逆命题为真命题;D .若q p ∨为假命题,则p 、q 均为假命题.6. 【“华安、连城、永安、漳平一中,龙海二中,泉港一中”六校联考2012-2013学年上学期第三次月考】函数[]2()2,55f x x x x =--∈-,,定义域内任取一点0x ,使0()0f x ≤的概率是( )101.A 32.B 103.C 54.D7. 【济钢高中2012届高三5月份高考冲刺题】如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )A .B .C .D .8. 【原创改编题】已知点P (x ,y )满足条件20,250,0,x y x y y a --≤⎧⎪+-≥⎨⎪-≤⎩点A (2,1),且||cos OP AOP⋅∠的最大值为a 的值是A .-2B .lC .1D .29. 【山东省青岛市2012届高三第二次模拟】函数y =三点到原点的距离构成等比数列,则以下不可能成为该等比数列的公比的数是A .34BCD10.【 山东省莱芜市2012届高三4月高考模拟试题】定义域为[a,b]的函数()y f x =图像的两个端点为A 、B ,M (x ,y )是()f x 图象上任意一点,其中(1)[,]=+-∈x a b a b λλ,已知 向量(1)ON OA OB λλ=+- ,若不等式||MN k ≤ 恒成立,则称函数()[,]f x a b 在上“k阶线性近似”。
高考专题训练-极坐标与参数方程(含解析)
精品题库试题理数1. (2014天津蓟县邦均中学高三第一次模拟考试,4) 圆为参数)的圆心到直线(t为参数)的距离是()A 1BC D 3[解析] 1. 圆的普通方程为, 圆心为(1, -2).直线的普通方程为, 所以点(1, -2) 到直线的距离为.2.(2014重庆一中高三下学期第一次月考,15)在直角坐标系中,以为极点,轴非负半轴为极轴建立极坐标系。
已知点,若极坐标方程为的曲线与直线(为参数)相交于、两点,则。
[解析] 2. 曲线的直角坐标系方程为,圆心在(3,-3),半径为;直线的普通方程为,该直线过圆心,且|OP|=5,所以过点P 且垂直于直线的直线被圆截得的弦长为,根据相交弦定理可得. 3. (2014天津蓟县第二中学高三第一次模拟考试,13) 圆心在,半径为3的圆的极坐标方程是 [解析] 3. 圆心在直角坐标系内的坐标为(-3,0),由此可得在直角坐标系内圆的方程为,即,根据及可得该圆的极坐标方程是. 4. (2014安徽合肥高三第二次质量检测,12) 在平面直角坐标系中,曲线的参数方程为(为参数). 以为极点,射线为极轴的极坐标系中,曲线的方程为,曲线与交于两点,则线段的长度为___________.[解析] 4.因为曲线的参数方程为(为参数),化为普通方程为, 又因为曲线的极坐标方成为,所以, 所以普通方程为,即, 所以圆心到直线的距离为,弦长.5. (2014重庆杨家坪中学高三下学期第一次月考,15) 直线(为参数)被曲线所截的弦长为_______________.[解析] 5. 由消去得,由整理得, 所以,即, 因为圆心到直线的距离为, 所以所求的弦长为.6. (2014湖北黄冈高三4月模拟考试,16) (选修4-4:坐标系与参数方程)已知曲线的极坐标方程为,则曲线上点到直线(为参数)距离的最大值为 . [解析] 6. 因为,所以,所以,即,其参数方程为(为参数),又因为,所以, 所以点到直线的距离为,(为参数), 故曲线上点到直线(为参数)距离的最大值为.7. (2014广东汕头普通高考模拟考试试题,14)在直角坐标系中,曲线的参数方程为(为参数);在极坐标系(与直角坐标系取相同的长度单位,且原点为极点,以轴正半轴为极轴)中,曲线的方程为,则与交点个数为___________.[解析] 7. 曲线,,由圆心到直线的距离,故与的交点个数为2.8. (2014广东广州高三调研测试,15) (坐标系与参数方程选讲选做题) 若点在曲线(为参数,)上,则的取值范围是______________.[解析] 8. 由已知P 点所在轨迹方程为,表示与原点连线的斜率。
山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第三次四校联考数学理试题
2013届高三年级第三次四校联考数学试题(理科)命题:临汾一中 忻州一中 康杰中学 长治二中(考试时间120分钟 满分150分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,选出符合题目要求的一项.1. 集合{}|02P x Z x =∈≤<,{}4|2≤∈=x Z x M ,则P M 等于 A.{}1B. {}1,0C. )2,0[D. ]2,0[2. 某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有 A. 474种B. 77种C. 462种D. 79种3. 复数z 1=3+i,z 2=1-i,则复数21z z 的虚部为 A. 2B. -2iC. -2D. 2i4. 过点(2,0)M 作圆221x y +=的两条切线MA ,MB (A ,B 为切点),则MA MB ⋅=A.2B.52 C.2D.32 5. 函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期是π,若其图像向右平移3π个单位后得到的函数为奇函数,则函数()f x 的图像A.关于点,012π⎛⎫⎪⎝⎭对称B.关于直线12x π=对称C.关于点5,012π⎛⎫⎪⎝⎭对称D.关于直线512x π=对称 6. 如图所示的算法流程图中输出的最后一个数为-55,则判断框中的条件为A.?11<nB. ?11≥nC.?10<nD. ?10≥n7. 点P 为双曲线1C :和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为D.2 8. 若某几何体的三视图是如图所示的三个直角三角形, 则该几何体的外接球的表面积为 A.10π B.50π C.25π D.100π9. 对于下列命题:①在△ABC 中,若sin2sin2A B =,则△ABC为等腰三角形;②已知a ,b ,c 是△ABC 的三边长,若2a =,5b =,6A π=,则△ABC 有两组解;③设2012sin3a π=,2012cos 3b π=,2012tan 3c π=,则a b c >>;④将函数2sin 36y x π⎛⎫=+ ⎪⎝⎭图象向左平移6π个单位,得到函数2cos 36y x π⎛⎫=+ ⎪⎝⎭图象.其中正确命题的个数是A.0B.1C. 2D.310. 已知球的直径SC=4,A ,B 是该球球面上的两点, 30=∠=∠BSC ASC ,则棱锥S —ABC的体积为A .B.C.D. 111. 函数()cos f x x π=与函数()2log 1g x x =-的图像所有交点的横坐标之和为 A .2B. 4C. 6D. 812. 函数)(x f y =为定义在R 上的减函数,函数)1(-=x f y 的图像关于点(1,0)对称, ,x y 满足不等式0)2()2(22≤-+-y y f x x f ,(1,2),(,)M N x y ,O 为坐标原点,则当41≤≤x 时,OM ON ⋅的取值范围为 ( )A .[)+∞,12B .[]3,0C .[]12,3D .[]12,0二、填空题:本大题共4小题,每小题5分,共20分.13.在正三角形3AB =中,D 是AB 上的点,3,1AB BD ==,则AB AD ⋅=.14. 实数对(,)x y 满足不等式组20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩则目标函数z=kx -y 当且仅当x=3,y=1时取最大值,则k 的取值范围是 .15.已知xxx f ln )(=,在区间[]3,2上任取一点0x ,使得0'()0f x >的概率为 . 16.已知定义在R 上的函数)(x f 是奇函数且满足)()23(x f x f =-,3)2(-=-f ,数列{}n a 满足11-=a ,且21n n S an n=⨯+(其中n S 为{}n a 的前n 项和),则=+)()(65a f a f . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(本小题满分12分)已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21成等差数列.(1)求数列{}n a 的通项公式;(2)若nb na )21(2=,设nn n a b c =,求数列{}n c 的前n 项和n T . 18.(本小题满分12分)某中学参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示. (1)求合唱团学生参加活动的人均次数;(2)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题满分12分)如图,四边形PCBM 是直角梯形,90PCB ∠=︒,PM ∥BC ,1,2PM BC ==.又1AC =,120,ACB AB PC ∠=︒⊥,直线AM 与直线PC 所成的角为60︒.(1)求证:PC AC ⊥;(2)求二面角M AC B --的余弦值. 20.(本小题满分12分)已知椭圆,22)0(1:2222=>>=+e b a by a x C 的离心率左、右焦点分别为F 1、F 2,点)3,2(P ,点F 2在线段PF 1的中垂线上。
高考数学(理)二轮试题:第8章《空间几何体的表面积和体积》(含答案)
精品题库试题理数1. (2014大纲全国,8,5分)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.16π C.9π D.1.A1.设球的半径为R,由题意可得(4-R)2+()2=R2,解得R=,所以该球的表面积为4πR2=.故选A.2. (2014湖北,8,5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A. B. C. D.2.B2.圆锥的体积V=πr2h=πh=,由题意得12π≈,π近似取为,故选B.3. (2014陕西,5,5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D.3.D3.如图为正四棱柱AC1.根据题意得AC=,∴对角面ACC1A1为正方形,∴外接球直径2R=A1C=2,∴R=1,∴V球=,故选D.4.(2014安徽,7,5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21D.184.A4.根据题意作出直观图如图,该多面体是由正方体切去两个角而得到的,根据三视图可知其表面积为6+2××()2=6×+=21+.故选A.5.(2014浙江,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90 cm2B.129 cm2C.132 cm2D.138 cm25.D5.由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为S=3×5+2××4×3+4×3+3×3+2×4×3+2×4×6+3×6=138(cm2).6.(2014重庆一中高三下学期第一次月考,6)已知一个四面体的一条棱长为,其余棱长均为2,则这个四面体的体积为()(A)1 (B)(C)(D)36. A6. 取边长为的边的中点, 并与其对棱的两个端点连接,7.(2014重庆一中高三下学期第一次月考,5)某几何体的三视图如下图所示,则它的表面积为()(A)(B)(C)(D)7. B7. 该三视图对应的几何体为组合体,其中上半部为半径为3母线长为5的圆锥,下半部为底面半径为3高为5的圆柱,所以其表面积为.8.(2014天津蓟县第二中学高三第一次模拟考试,5) 某几何体的三视图如图所示,根据图中标出的数据.可得这个几何体的表面积为( )A.B.C.D. 128. B8. 从三视图中可以看出该几何体是正四棱锥,且其斜高为底面是边长为2的正方形,故其表面积为.9. (2014山西忻州一中、康杰中学、临汾一中、长治二中四校高三第三次联考,11) 三棱锥P—ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为()9. B9. 三棱锥P-ABC的外接球与高为6底面边长为3的正三棱柱的外接球相同,即可把三棱锥P-ABC补成高为6底面边长为3的正三棱柱,由此可得球心O到底面ABC的距离为3,设底面ABC的外接圆圆心为O1, 连接OA, O1A、OO1, 则O1A =, OO1=3,所以OA2=O1A2+=,所以该求的体积为.10. (2014山西忻州一中、康杰中学、临汾一中、长治二中四校高三第三次联考,3) 下图是一个体积为10的空间几何体的三视图,则图中x的值为( )A. 2B. 3C. 4D. 510. A10. 根据三视图可知,该几何体由两部分组成,上半部为底面边长分别为3和2的长方形高为x的四棱锥,下半部为高为1底面边长分别为3和2的长方形的长方体,所以其体积为,解得x=2.11. (2014山西太原高三模拟考试(一),10) 在三棱锥S-ABC中,AB⊥BC, AB=BC=,SA=SC=2,二面角S-AC-B的余弦值是, 若S、A、B、C都在同一球面上,则该球的表面积是( )11. D11. 取线段AC的中点E, 则由题意可得SE⊥AC, BE⊥AC, 则∠SEB即为二面角S-AC-B的平面角, 在△SEB中, SE=, BE=1, 根据余弦定理, 得, 在△SAB和△SCB中, 满足勾股定理, 可得SA⊥AB, SC⊥BC, 所以S、A、B、C都在同一球面上,则该球的直径是SB, 所以该球的表面积为.12. (2014山西太原高三模拟考试(一),8) 一个几何体的三视图如图所示(单位:cm),则该几何体的体积为( )A. (32+) ㎝3B. (32+) ㎝3C. (41+) ㎝3D. (41+) ㎝312. C12. 该三视图对应的几何体为由上中下三部分构成的组合体,其中上半部是长宽高分别为3、3、1的长方体;中半部为底面直径为1高为1的圆柱;下半部为长宽高分别为4、4、2的长方体,其体积为.13.(2014安徽合肥高三第二次质量检测,3) 某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D. 13.B13. 由三视图知,原几何体是一个三棱柱,底面是等腰直角三角形,且腰长为2,所以该三棱柱的体积.14. (2014重庆杨家坪中学高三下学期第一次月考,6) 已知某几何体的三视图如图所示,若该几何体的体积为24,则该几何体的底面积是()A. 6B. 12C. 18D. 2414. C14. 根据三视图可知,该几何体是一个有一条侧棱垂直于底面的四棱锥,该四棱锥的高为4,因为体积为24,所以底面积.15. (2014河北石家庄高中毕业班复习教学质量检测(二),8) 点, ,,在同一个球的球面上,,, 若四面体体积的最大值为, 则该球的表面积为( )15. C15. 如图,当平面时,四面体体积的最大. 此时,,所以,设球半径为R,则,即,从而,故.16. (2014湖北黄冈高三4月模拟考试,6) 一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为()A.B.C.D.16. D16.原几何体如图中三棱锥,由已知正视图、侧视图和俯视图均是三角形,可知该几何体有一个侧面垂直于底面,高为,底面是一个等腰直角三角形,则这个几何体的外接球的球心在高线上,且是等边三角形的中心,所以这个几何体的外接球的半径为,所以这个几何体的外接球的表面积为.17. (2014河北唐山高三第一次模拟考试,9) 正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A.B.C.D.17. D17. 设球半径为,如图所示,可得,解得,所以表面积为.18. (2014河北唐山高三第一次模拟考试,7) 某几何体的三视图如图所示,则该几何体的体积为()A. 6B. 2C. 3D.18.D18. 由三视图知,原几何体的体积为.19. (2014贵州贵阳高三适应性监测考试, 5) 下图是一个几何体的三视图,则该几何体的体积等于()19.D19.该几何体是一三棱柱,qi 其体积为=4.20. (2014黑龙江哈尔滨第三中学第一次高考模拟考试,8) 如图所示,是一个空间几何体的三视图,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是()A. B. C. D.20. C20. 由三视图知,原几何体是一个三棱柱,其底边为边长为2的等边三角形,高为2,所以球心在三棱柱上下两底面的中心的连线的中点,球的半径为,球的表面积为.21.(2014山东潍坊高三3月模拟考试数学(理)试题,7)三棱锥S-ABC的所有顶点都在球O的表面上,SA平面ABC,AB BC,又SA=AB= BC=1,则球O的表面积为( )(A) (B)(C) 3(D) 1221. C21. 三棱锥S-ABC的外接球与高为1底面边长为1等腰直角三角形的直三棱柱的外接球相同,即可把三棱锥P-ABC补成高为1底面边长为1等腰直角三角形的直三棱柱,由此可得球心O到底面ABC的距离为,设底面ABC的外接圆圆心为O1, 连接OA, O1A、OO1, 则O1A =, OO1=,所以OA2=O1A2+=,所以该求的体积为.22.(2014吉林实验中学高三年级第一次模拟,8)若某棱锥的三视图(单位:cm) 如图所示,则该棱锥的体积等于()A.10 cm3B.20 cm3C.30 cm3D.40 cm322. B22. 根据三视图可知,该几何体为如下图所示的四棱锥,其中PA⊥PB,底面ABCD为矩形且与侧面PAB垂直,过点P作线段AB的垂线,则该垂线即为四棱锥的高,其长度为cm,而矩形ABCD的边长AD=5,AB=5,所以其体积为cm3.23.(2014湖北八校高三第二次联考数学(理)试题,4)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.48cm3B.98cm3 C.88cm3D.78cm323. B23. 该三视图对应的几何体为长、宽、高分别为6 cm、3 cm、6 cm的长方体截去一个三棱锥后所得的几何体,其体积为6×3×6-98 cm3.24.(2014河南豫东豫北十所名校高中毕业班阶段性测试(四)数学(理)试题, 11) 如图所示,棱长为6的正方体无论从哪一个面看,都有两个直通的边长为l的正方形孔,则这个有孔正方体的表面积(含孔内各面)是( )( A) 222(B) 258 (C) 312 (D) 32424. C24. 表面积等于正方体的表面积减去12个表面上的小正方形面积,加上6个棱柱的侧面积,减去6个通道的6个小正方体的表面积.则S=6×36-12+6×4×6-6×6=312.故选C.25.(2014河南豫东豫北十所名校高中毕业班阶段性测试(四)数学(理)试题, 4) 某几何体的三视图如图所示,其中正视图与侧视图均为矩形,俯视图上半部分为半,圆,则该几何体的体积为( )(A) (B) (C) (D)25. C25. 根据三视图可知,该几何题是由半圆柱和直三棱柱构成的组合体,其中半圆柱的底面半径为1,高为2;直三棱柱的底面是腰长为的等腰直角三角形,故该几何体的体积为.26.(2014吉林省长春市高中毕业班第二次调研测试,9) 某几何体的三视图如图所示,则它的表面积为()A. B.C.D.26.26. 由几何体的三视图可知,该几何体是一个沿旋转轴作截面,截取的半个圆锥,底面半径是1,高是2,所以母线长为,所以其表面积为底面半圆面积和圆锥的侧面积的一半以及截面三角形的面积的和,即,故选.27.(2014湖北武汉高三2月调研测试,8) 如图,在长方体ABCD-A1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G.设AB=2AA1=2a.在长方体ABCD-A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE-D1DCGH内的概率为P,当点E,F分别在棱A1B1,BB1上运动且满足EF=a时,则P的最小值为27. D27. 根据几何概型,===,其中“=” 当且仅当时成立. 故选D.28. (2014吉林高中毕业班上学期期末复习检测, 7) 某几何体的三视图(如图),则该几何体的体积是()A.B.C.D.28. B28. 由三视图知,原几何体是由一个半圆柱与一个半圆锥构成,其体积为.29. (2014河南郑州高中毕业班第一次质量预测, 4) 如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的表面积为()A.B.C.D.29. C29.由已知,元几何体为四棱柱,其底面边长为,侧视图的高为,底面积为,又因为棱柱的高为3,侧面积为,故原几何体的表面积为.30. (2014河北衡水中学高三上学期第五次调研考试, 3) 一个几何体按比例绘制的三视图如图所示(单位:), 则该几何体的体积为().A. B. C. D.30.C30.由三视图可知,该几何体是由三个棱长为1的正方体加半个正方体构成,所以体积为31.(2014成都高中毕业班第一次诊断性检测,8) 一个长方体被一个平面截去一部分后所剩几何体的三视图如下图所示(单位:cm) ,则该几何体的体积为()(A) 120 (B) 80 (C) 100(D) 6031. C31.画出直观图可知,原几何体的体积.32. (2014北京东城高三12月教学质量调研) 一个空间几何体的三视图如图所示,则该几何体的体积为()(A)(B)(C)(D)32. C32. 原几何体是由一个圆柱与一个圆锥构成,其体积为.33.(2014江苏,8,5分)设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为V1、V2,若它们的侧面积相等,且=,则的值是________.33.33.设圆柱甲的底面半径为r1,高为h1,圆柱乙的底面半径为r2,高为h2.由题意得==,∴=.又∵S甲侧=S乙侧,即2πr1h1=2πr2h2,∴==,故==·=×=.34.(2014山东,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则=________.34.34.如图,设S△ABD=S1,S△PAB=S2,E到平面ABD的距离为h1,C到平面PAB的距离为h2,则S2=2S1,h2=2h1,V1=S1h1,V2=S2h2,∴==.35.(2014天津,10,5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.35.π35.该几何体由一个圆锥和一个圆柱组成,故体积V=π×12×4+×π×22×2=π(m3).36.13.(2014天津蓟县邦均中学高三第一次模拟考试,13) 如果一个几何体的三视图如图所示(单位长度: cm), 则此几何体的表面积是。
双曲线及其性质
精品题库试题理数1. (2021大纲全国,9,5分)已知双曲线C的离心率为2,核心为F1、F2,点A在C上.假设|F1A|=2|F2A|,那么cos∠AF2F1=( )A. B. C. D.[答案][解析] 1.由题意得解得|F2A|=2a,|F1A|=4a,又由已知可得=2,因此c=2a,即|F1F2|=4a,∴cos∠AF2F1===.应选A.2. (2021重庆,8,5分)设F1、F2别离为双曲线-=1(a>0,b>0)的左、右核心,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,那么该双曲线的离心率为( )A. B. C.[答案][解析] 2.设|PF1|=m,|PF2|=n,依题意不妨设m>n>0,于是∴m·n=··⇒m=3n.∴a=n,b=n⇒c=n,∴e=,选B.3. (2021广东,4,5分)假设实数k知足0<k<9,那么曲线-=1与曲线-=1的( )A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等[答案][解析] 3.∵0<k<9,∴9-k>0,25-k>0.∴-=1与-=1均表示双曲线,又25+(9-k)=34-k=(25-k)+9,∴它们的焦距相等,应选A.4. (2021湖北,9,5分)已知F1,F2是椭圆和双曲线的公共核心,P是它们的一个公共点,且∠F1PF2=,那么椭圆和双曲线的离心率的倒数之和的最大值为( )A. B.[答案][解析] 4.解法一:设椭圆方程为+=1(a1>b1>0),离心率为e1,双曲线的方程为-=1(a2>0,b2>0),离心率为e2,它们的焦距为2c,不妨设P为两曲线在第一象限的交点,F1,F2别离为左,右核心,那么易知解得在△F1PF2中,由余弦定理得(a1+a2)2+(a1-a2)2-2(a1+a2)·(a1-a2)cos 60°=4c2,整理得+3=4c2,因此+=4,即+=4.设a=,b=,∴+=a·b≤|a|·|b|=×=×=,故+的最大值是,应选A.解法二:不妨设P在第一象限,|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理得m2+n2-mn=4c2.设椭圆的长轴长为2a1,离心率为e1,双曲线的实轴长为2a2,离心率为e2,它们的焦距为2c,那么+===.∴===,易知-+1的最小值为.故=.应选A.5.(2021山东,10,5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,那么C2的渐近线方程为( )±y=±y=0±2y=±y=0[答案][解析] 5.设椭圆C1和双曲线C2的离心率别离为e1和e2,那么e1=,e2=.因为e1·e2=,因此=,即=,∴=.故双曲线的渐近线方程为y=±x=±x,即x±y=0.6.(2021天津,5,5分)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个核心在直线l上,那么双曲线的方程为()=1=1=1=1[答案][解析] 6.由题意得=2且c=5.故由c2=a2+b2,得25=a2+4a2,那么a2=5,b2=20,从而双曲线方程为-=1.7.(2021课表全国Ⅰ,4,5分)已知F为双曲线C:x2-my2=3m(m>0)的一个核心,那么点F到C的一条渐近线的距离为()A.[答案][解析] 7.由题意知,双曲线的标准方程为-=1,其中a2=3m,b2=3,故c==,不妨设F为双曲线的右核心,故F(,0).其中一条渐近线的方程为y=x,即x-y=0,由点到直线的距离公式可得d==,应选A.8.(2021天津蓟县第二中学高三第一次模拟考试,8) 已知双曲线, 那么双曲线右支上的点P到右核心的距离与点P到右准线的距离之比等于( )A.B.C. 2D. 4[答案] 8. C[解析] 8. 双曲线的方程为,由此可得双曲线的离心率. 双曲线右支上的点P到右核心的距离与点P到右准线的距离之比即为该双曲线的离心率,故所求值为2.9. (2021山西忻州一中、康杰中学、临汾一中、长治二中四校高三第三次联考,12) 已知双曲线,过其左核心作轴的垂线,交双曲线于两点,假设双曲线的右极点在以为直径的圆内,那么双曲线离心率的取值范围是()A.B.C.D.[答案] 9. A[解析] 9. 令. 由双曲线的性质可得,也即以为直径的圆的半径为,而右极点与左核心的距离为a+c,由题意可知,整理得,两边同除,,解得或,又因为双曲线的离心率大于1,可得.10. (2021山西太原高三模拟考试(一),9) 设P在双曲线上,F1,F2是该双曲线的两个核心,∠F1PF2=90°,且F1PF2的三条边长成等差数列,那么此双曲线的离心率是( )A. 2B. 3C. 4D. 5[答案] 10. D[解析] 10. 不妨设点P在双曲线的右支,设、、,那么依照双曲线的概念可得①,依照题意可得②、③,由①②得,代入到③中得,两边同除得,又因为e>1,因此可得e=5.11. (2021福州高中毕业班质量检测, 8) 已知、是双曲线() 的左、右核心,假设双曲线左支上存在一点与点关于直线对称,那么该双曲线的离心为( )A.B.C.D. 2[答案] 11. B[解析] 11. 依题意,过核心且垂直于渐近线的直线方程为,联立方程组,解得,因此对称中心的点的坐标为,由中点坐标公式得对称点的坐标为代入双曲线方程可得,又因为,化简得,故.12.(2021安徽合肥高三第二次质量检测,4) 以下双曲线中,有一个核心在抛物线准线上的是()A. B.C. D.[答案] 12. D[解析] 12. 因为抛物线的核心坐标为,准线方程为,因此双曲线的核心在轴上,双曲线的核心在轴且为知足条件. 应选D.13. (2021河北石家庄高中毕业班温习教学质量检测(二),12) 已知双曲线的左右核心别离为,,点为坐标原点,点在双曲线右支上,内切圆的圆心为, 圆与轴相切于点,过作直线的垂线,垂足为,那么与的长度依次为( )A. B. C. D.[答案] 13. A[解析] 13.设的内切圆与别离相切于点、,那么:, , 。
【解析版】山西省长治二中 康杰中学 临汾一中 忻州一中2013届高三第四次四校联考数学(文)试题
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0)1lg(≤+=x x A ,集合{}12≤=xx B ,则B A = ( )A .{}11≤<-x xB .{}0≤x xC .{}01≤<-x xD .{}1≤x x2. 已知复数iiz +=12,则=⋅z z ( ) A .i -1B .2C .i +1D .03.设等差数列{}n a 的前n 项和为n S ,2a 、5a 是方程02322=--x x 的两个根,=6S ( ) A .29 B .5 C .29- D .5-4.阅读右边的程序框图,运行相应的程序,则输出i 的值为 ( )A .3B .4C .5D .65.下列选项中,说法正确的是( )A .“0,0200≤-∈∃x x x R ”的否定是“0,2>-∈∃x x x R ”B .若向量b a,满足0<⋅b a ,则a 与b 的夹角为钝角C .若22am bm ≤,则a b ≤D .命题“p q ∨为真”是命题“q p ∧为真”的必要不充分条件6..某几何体的三视图如图所示,则该几何体的体积为 ( )7.已知平面向量,35,10),2,1(=+=⋅=b a b a a则b = ( )A .25B .25C .23D .528.函数)sin()(ϕω+=x A x f (其中2πϕ<)的图像如图所示,为了得到x x g ωsin )(=的图像,则只要将)(x f 的图像( )A .向左平移6π个单位长度 B .向右平移6π个单位长度C .向左平移3π个单位长度 D .向右平移3π个单位长9.若[]3,3-∈k ,则k 的值使得过)1,1(A 可以做两条直线与圆2(1)12k -+>2)(22=+-y k x 相切的概率等于( )A .21 B .31 C .32 D .4310.已知21,F F 分别是椭圆)0,0(12222>>=+b a by a x 的左右焦点,过1F 垂直与x 轴的直线交椭圆于B A ,两点,若2ABF ∆是锐角三角形,则椭圆离心率的范围是( )A .)12,0(-B .)12,1(+C .)1,12(-D .)22,0(即可,而212112tan 12AF b AF F F F ac ∠==<,即22b ac <,整理得2()210c ca a+->,解得1e >-,又因为11.定义在R 上的函数)(x f 满足1)4(=f ,)(x f '为)(x f 的导函数,已知)(x f y '=的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则21++a b 的取值范围是 ( )12.若定义在R 上的偶函数()x f 满足()()x f x f =+2且[]1,0∈x 时,(),x x f =则方程()x x f 3log =的零点个数是( )A .2个B .3个C .4个D .多于4个 【答案】C 【解析】第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.在ABC ∆sin ,A C a b ==则角A = .14.已知圆07622=--+x y x 与抛物线)0(2>=a ax y 的准线相切,则=a .15.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球体的表面积为 . 【答案】273a π16.已知函数9)(22-+=x ax x f 的定义域为{}0,≠∈x R x x ,则实数a 的取值范为 .三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 的前n 项和为n S ,且21()n n S a n N *=-∈,n n a b 4log 2=. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n n b a ⋅的前n 项和n T .18.为了调查某大学学生在周日上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果: 表1:男生上网时间与频数分布表表2:女生上网时间与频数分布表(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;(Ⅱ)完成表3的22⨯列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率. 表3 :附:))()()(()(2d b c a d c b a bc ad n k ++++-=,其中d c b a n +++=ACE平面ABCD,四边形ABCD为平行四边形,19.在如图所示的几何体中,平面⊥AE∠ECBC=EFACB .BCAC==,22//,,=90=AE平面BCEF;(Ⅰ)求证:⊥D-的体积.(Ⅱ)求三棱锥ACE20. 椭圆的左、右焦点分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(-. (Ⅰ)求椭圆C 的方程; (Ⅱ)过点)0,56(-作不与y 轴垂直的直线l 交该椭圆于N M ,两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由.【答案】(I )2214x y +=;(II )是定值900.21.设)1()(2++=x ax e x f x .(Ⅰ)若0>a ,讨论)(x f 的单调性;(Ⅱ)1=x 时,)(x f 有极值,证明:当⎢⎣⎡⎥⎦⎤∈2,0πθ时,2)(sin )(cos <-θθf f22.(本小题满分10)选修4-1:几何证明选讲如图,已知⊙O 是ABC ∆的外接圆,AD BC AB ,=是BC 边上的高,AE 是⊙O 的直径.(1)求证:AE AD BC AC ⋅=⋅;(2)过点C 作⊙O 的切线交BA 的延长线于点F ,若4,2==CF AF ,求AC 的长.23.(本小题满分10)选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为⎩⎨⎧=+=ααsin cos 1t y t x (t 为参数,0<α<π),曲线C 的极坐标方程为θθρcos 4sin 2=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求|AB |的最小值.【答案】(I )24y x = ;(II ) 4.【解析】24.(本小题满分10分)选修4-5:不等式选讲设()||,.f x x a a =-∈R(1)当5=a ,解不等式3≤)(x f ;(2)当1=a 时,若∃R x ∈,使得不等式m x f x f 2121-≤+-)()(成立,求实数m 的取值范围.。
【恒心】山西省忻州一中 长治二中 临汾一中 康杰中学2013-2014学年高三第四次联考理综试题及参考答案
山西省忻州一中长治二中临汾一中康杰中学2013-2014学年高三第四次四校联考理科综合试题A卷命题:忻州一中临汾一中康杰中学长治二中(考试时间150分钟满分300分)以下数据可供解题时参考:可能用到的相对原子质量:H 1 Li 7 C 12 O 16 Na 23 Si 28 Fe 56 Co 59第Ⅰ卷 (选择题 126分)一、选择题(本大题共13小题,每小题6分,共计78分。
在每小题列出的四个选项中,只有一项是最符合题目要求的。
)1.下列关于DNA复制和转录的叙述错误的是A.DNA分子的复制可以从多个起点开始,提高复制效率B.两种过程都以DNA为模板,都有解旋现象C.转录是指以DNA的整条链为模板合成mRNA的过程D.两过程均可在细胞核、细胞质基质、线粒体、叶绿体中发生2.下图表示某生物膜的部分结构,图中A、B、C、D表示某些物质,a、b、c、d表示物质跨膜运输方式。
下列说法正确的A.神经元接受刺激产生兴奋的生理基础是Na+通过a方式内流B.若是胰岛B细胞膜,则胰岛素以d方式分泌C.若线粒体受损伤,会影响人成熟红细胞吸收K+D.若该细胞是雌激素作用的靶细胞,该激素以b方式进入细胞3.下列有关实验的叙述,正确的是A.渗透装置中长颈漏斗内液面不再升高时,漏斗内溶液浓度等于烧杯内溶液浓度B.健那绿是专一性染线粒体的活性染色剂,在显微镜下观察到线粒体呈蓝绿色C.探究唾液淀粉酶最适温度的实验中,可用斐林试剂检验还原糖的生成D.验证光合作用需要光照的实验中,需将叶片的一半遮光,以控制无关变量4.下图为人体细胞的形态、数目变化情况,据图分析下列说法正确的是A.图①②③过程中细胞遗传信息的表达过程不同B.①②③三个过程中已经发生了基因突变的是②③C.③过程使细胞的遗传物质有所差异,但细胞的形态和功能没有变化D.与甲相比,乙中细胞与外界环境进行物质交换的能力增强5.下列相关叙述正确的是A.水稻长势整齐,因此群落在垂直方向上没有分层现象B.只有群落的结构受到干扰或破坏时,才会出现群落的演替C.草原生态系统与北极苔原生态系统相比较,恢复力稳定性较高D.在自然环境中,种群的数量增长到K值后,就保持恒定不变6.下列有关变异与育种的叙述中,正确的是A.DNA分子中碱基对的增添、缺失和替换不一定都是基因突变B.某植物经X射线处理后未出现新的性状,则没有新基因产生C.二倍体植株的花粉经脱分化与再分化后便可得到稳定遗传的植株D.发生在水稻根尖内的基因重组比发生在花药中的更容易遗传给后代7.化学与生活是紧密相联的,下列关于生活与化学的说法不正确的是A.从海水提取物质不一定都必须通过化学反应才能实现B.大量的氮、磷废水排入海洋,易引发赤潮C.为了防止中秋月饼等富脂食品氧化变质,延长食品保质期,在包装袋中常放入生石灰D.保护加酶洗衣粉的洗涤效果,应用温水溶解洗衣粉8.N A表示阿佛加德罗常数,下列说法正确的是A.60克SiO2含有2N A个Si-O共价键B.1.0 L 1.0 mo1/L的NaAlO2水溶液中含有的氧原子数为2N AC.8.2 g Na218O2与足量的CO2和H2O(g)的混合气体充分反应后转移电子数为0.1N A D.N A个Fe(OH)3胶体粒子的质量为107g9.分析下表中各项的排布规律,有机物X是按此规律排布的第23项,下列有关X的组成、性质的说法中肯定错误的是A.②⑤B.①③④C.③④D.②③⑤10.元素周期表有许多有趣的编排方式,有同学将短周期元素按照原子序数递增的顺序进行排列得到如图所示的“蜗牛”元素周期表。
【Ks5u首发】山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第四次四校联考理综试题 Word版含答案
2014届高三年级第三次四校联考理科综合试题命题:临汾一中 忻州一中 康杰中学 长治二中【考试时间150分钟,满分300分】以下数据可供解题时参考:可能用到的相对原子质量 H:1 C:12 N:14 O:16Na:23 S:32 Cl:35.5 Fe:56第Ⅰ卷 (选择题 126分)一、选择题:本大题共13小题,每小题6分。
在每小题列出的四个选项中,只有一项是最符合题目要求的。
1.右图为人体内某细胞发生的变化,则一定发生的是 A. 甲细胞发生了脱分化过程 B. 甲细胞正在发生凋亡C. 乙细胞将不断进行减数分裂D. 乙细胞的蛋白质成分发生了改变2. 胰液分泌的调节是一个复杂的过程,右图为胰 液分泌调节的部分示意图。
下列分析正确的是A. 咀嚼食物引起胰腺分泌胰液的调节方式属 于条件反射B. 食物进入胃内后,引起胰液分泌的调节方 式为体液调节C. 激素A 能作用于胰腺与细胞膜的信息传递 功能有关D. 激素B 作用于胰腺后很快被灭活导致激素 的作用时间短3.取某种植物生长状态一致的新鲜叶片,用打孔器打出若干圆片,平均分成四组,各置于相同的密闭装置内,在其他条件相同 且适宜的情况下,分别置于四种不同温度下﹙t 1<t 2<t 3<t 4﹚。
测得光照相同胰液咀嚼食物神经中枢 乙甲时间后各装置内O 2的增加值及黑暗条件下各装置内O 2的消耗值,结果如下表。
下列分析不正确...的是4.下图表示人体内的某反射弧及其神经纤维局部放大的示意图,相关说法不正确... 的是A. 甲图中,①所示的结构属 于反射弧的感受器B. 乙图的b 处神经纤维膜对 Na + 的通透性强C .甲图的⑥结构中发生的信号变化需要消耗ATPD.人体内乙图所示神经纤维的兴奋传导方向是a←b→c 5.下列有关生物学研究的叙述,正确的有A.“35S 标记的T 2噬菌体侵染细菌”的实验中,若未经搅拌就进行离心,则上清液放射性低B.“探究细胞大小与物质运输效率的关系”的实验中,NaOH 扩散速度是因变量C. 在电子显微镜下拍摄到的叶绿体的结构照片属于物理模型D.对酵母菌计数时,应吸取培养液滴满血细胞计数板的计数室,然后再盖上盖玻片并镜检6.下图为皱粒豌豆形成的原因和囊性纤维病的病因图解。
山西省临汾一中、康杰中学、忻州一中、长治二中2015届高三第二次四校联考数学理试题 Word版含答案
2015届高三年级第二次四校联考数学(理)试题2014.12命题:康杰中学 临汾一中 忻州一中 长治二中【满分150分,考试时间为120分钟】一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号) 1.已知集合{}1,0,1M =-,{}2,N x x a a M ==∈,则集合M N =A.{}0B. {}0,2-C. {}2,0,2-D. {}0,22. 复数z 为纯虚数,若(3i)i z a -⋅=+ (i 为虚数单位),则实数a 的值为 A .13-B .3C .3-D .133. 设双曲线)0,0(12222>>=-b a b y a x的渐近线方程为y x =,则该双曲线的离心率为 A .223 B .2 C .332 D4. 如图所示的程序框图,若输入的x 值为0,则输出的y 值为A .32B .0C .1D 5. 已知条件p :|1|2x +≤,条件q :x a ≤,且p 是q 的充分 不必要条件,则a 的取值范围是 A. 1≥aB .1≤aC .1-≥aD .3-≤a6. 已知实数,x y 满足⎪⎩⎪⎨⎧≥++≥+-≤-010102y x y x y x ,则y x z +=2的最大值为 A .2-B .1-C .0D .47. 设数列{}n a 的前n 项和为n S ,若111,3()n n a a S n N *+==∈,则6S =A .44 B .54 C .61(41)3⋅-D .51(41)3⋅-8. 在三棱锥S ABC -中,AB BC == 2SA SC AC === ,二面角S AC B --的余弦值是 ,则 三棱锥S ABC -外接球的表面积是(第4题图)A.32π B. 2πC. D. 6π9. 如图为某几何体的三视图,则该几何体的表面积为 A .510+ B. 210+C. 6226++D. 626++10. 设,A B 为抛物线22y px =)0(>p 上不同的两点,O 为坐标原点,且OA OB ⊥,则OAB ∆面积的最小值为A .2p B .22pC .24p D .26p11. 在平面直角坐标系xOy 中,已知P 是函数()ln (1)f x x x =>的图象上的动点,该图像 在点P 处的切线l 交x 轴于点M .过点P 作l 的垂线交x 轴于点N ,设线段MN 的中点的横坐标为t ,则t 的最大值是A .21e B .122e e +C D .1 12.已知函数2|lg |0()10x x f x xx >⎧=⎨-≤⎩,则方程2(2)(0)f x x a a +=>的根的个数不可能为 A .3 B .4 C .5 D .6 二、填空题(4×5=20分, 把答案填在答题纸的相应位置上)13. 6,2)(=-⋅,则向量a 与b 的夹角是___________. 14. 若函数)20)(sin()(πϕωϕω<>+=且x x f 在区间⎥⎦⎤⎢⎣⎡ππ326,上是单调减函数,且函数值从1减小到1-,则=)4(πf ___________.15. 抛物线x 4y 2=的焦点为F ,点P 为抛物线上的动点,若)01(,-A ,则PAPF 的最小值为___________. 16. 已知数列2sin2πn n a n =,则=+⋅⋅⋅+++100321a a a a ___________. 三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17. (本小题满分12分)在ABC ∆中角A 、B 、C 所对的边分别为a 、b 、c ,面积为S .已知22)(2c b a S -+= (1)求C sin ; (2)若10=+b a ,求S 的最大值. 18.(本小题满分12分)(第9题图)正视图侧视图 俯视图如图1,直角梯形ABCD 中,AD ∥,BC 090=∠ABC ,BC AB AD 21==,E 是底边BC 上的一点,且BE EC 3=. 现将CDE ∆沿DE 折起到DE C 1∆的位置,得到如图2所示的四棱锥,1ABED C -且AB A C =1. (1)求证:⊥A C 1平面ABED ;(2)若M 是棱E C 1的中点,求直线BM 与平面DE C 1所成角的正弦值.19.(本小题满分12分)在等差数列}{n a 中,n S 为其前n 项和,已知366-==S a ;正项数列}{n b 满足:022121=--++n n n n b b b b ,2042=+b b .(1)求数列}{n a 和}{n b 的通项公式; (2)设,nnn b a c =求数列}{n c 的前n 项和n T . 20.(本小题满分12分)在平面直角坐标系xOy 中,21F F 、分别为椭圆C :)0(12222>>=+b a by a x 的左、右焦点,B为短轴的一个端点,E 是椭圆C上的一点,满足OF OE 1+=,且21F EF ∆的周长为)12(2+.(1)求椭圆C 的方程;(2)设点M 是线段2OF 上的一点,过点2F 且与x 轴不垂直的直线l 交椭圆C 于Q P 、两点,若MPQ ∆是以M 为顶点的等腰三角形,求点M 到直线l 距离的取值范围. 21. ( 本小题满分12分)设函数)1()(+=x ae x f x(其中718.2=e 28...),2)(2++=bx x x g ,已知它们在0=x 处有相同的切线.(1) 求函数)(x f ,)(x g 的解析式;A CD E 图1B EADM C 1 图2(2) 求函数)(x f 在[]1,+t t )3(->t 上的最小值;(3) 若对2-≥∀x ,)()(x g x kf ≥恒成立,求实数k 的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,CF ABC ∆是边AB 上的高,,.FP BC FQ AC ⊥⊥ (1)证明:A 、B 、P 、Q 四点共圆;(2)若CQ =4,AQ =1,PF CB 的长. 23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 的极坐标方程是θρcos 4=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是t t y t x (sin cos 1⎩⎨⎧=+=αα是参数)(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A 、B 两点,且14=AB ,求直线的倾斜角α的值. 24.(本小题满分10分)选修4—5:不等式选讲已知函数222)(--+=x x x f (1)解不等式2)(-≥x f ;(2)设a x x g -=)(,对任意),[+∞∈a x 都有 )()(x f x g ≥,求a 的取值范围.2015届高三年级第二次四校联考理科数学参考答案一、选择题(每小题5分,共60分) 1-5:ADCBA 6-10:DBCDC 11-12:BA 二、填空题(每小题5分,共20分) 13.3π14.23 15. 2216. 5000- 三、解答题:17、 (本小题满分12分)解:(1)条件可化为ab c b a C ab 2sin 212222+-+= …2分由余弦定理可得1cos sin 21+=C C ,03cos 8cos 52=++C C …6分 0)1)(cos 3cos 5(=++C C )(1cos 53cos 舍或-=-=C C故54sin =C …8分(2)10)2(5252sin 212=+≤==b a ab C ab S 当且仅当5==b a 时“=”成立 …12分18、 (本小题满分12分) 解:(1)设121===BC AB AD ,则2,111==D C A C 21221D C AD A C =+ ∴AD A C ⊥1 ………2分又 21=BE ,231=E C 45222=+=∴BE AB AE∴2122149E C AE A C ==+∴AE A C ⊥1 ………4分 又AD ∩A AE =∴⊥A C 1平面ABED ………5分(2)由(1)知:⊥A C 1平面ABED 且AD AB ⊥,分别以1AC AD AB 、、为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系,如图 ………6分则)0,1,0(),0,21,1(),1,0,0(),0,0,1(1D E C BM 是E C 1的中点 ∴)21,41,21(M ∴)21,41,21(-=BM ………8分设平面DE C 1的法向量为),,(z y x n = )1,1,0(),0,21,1(1-=-=D C DE由⎪⎩⎪⎨⎧=⋅=⋅001D C n DE n 即⎪⎩⎪⎨⎧=-=-0021z y y x 令2=y 得)2,2,1(=n ………10分 设直线BM 与平面DE C 1所成角为θ,则94sin ==θ ∴ 直线BM 与平面DE C 1所成角的正弦值为94. ………12分 19、(本小题满分12分) 解:(1)设等差数列}{n a 的公差为d 。
山西省名校2013-2014学年高三第四次四校联考数学(文科)试卷及答案
山西省忻州一中 长治二中 临汾一中 康杰中学2013-2014学年高三第四次四校联考数学试题(文科)A 卷命题:长治二中 康杰中学 临汾一中 忻州一中考试时间120分钟,满分150分第Ⅰ卷(选择题 60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是最符合题目要求的)1.复数z 满足i i i z +=-2)((i 为虚数单位),则 z =A .i --1B .i -1C .i 31+-D .i 21- 2.已知全集{}6,54321,,,,=I ,集合{}543,,=M ,{}4,321,,=N ,则右图中阴影部分表示的集合为 A .{}21, B .{}6,21, C .{}543,21,,,D .{}643,21,,,3.命题“R x ∈∃0,使得01020<++x x ”的否定是 A .“R x ∈∃0使得01020≥++x x ” B .“R x ∈∃0使得01020>++x x ” C .“R x ∈∀,使得012≥++x x ” D .“R x ∈∀,使得12++x x >0” 4.设公比12q =的等比数列}{n a 的前n 项和为n S ,则43Sa = A .152B .154C .72D .745.某一个班全体学生参加历史测试,成绩的频率分布直方图如图,则该班的平均分估计是A .70B .75C .66D .68x y 2sin =的图象向右平移4π个单位,再向上6.平移所得函数图象对应的解析式为 A.1)42sin(+-=πx yB.yC.x y 2sin 2=D.y 7程序框图如图所示,若该程序输出的频率结果为65,则判断框中应填入的条件是 A .5<i ? B .6<i ? C .5≥i ? D .6≥i ?8.一个几何体的三视图如图所示,则这个几何体的体积为A .648π+B .16083π+ C .6416π+ D .160163π+9.函数22()22x xx xf x --+=-的图像大致为10.已知双曲线1222=-b y a (0,0)a b >>以及双曲线221a b -=(0,0)a b >>的渐近线将第一象限三等分,则双曲线12222=-bya x 的离心率为A . 2 BC D . 2或311.已知函数()f x 满足)2()2(-=+x f x f ,(2)y f x =-关于y 轴对称,当)2,0(∈x 时,22()log f x x =,则下列结论中正确的是A .(4.5)(7)(6.5)f f f <<B .(7)(4.5)(6.5)f f f <<C .(7)(6.5)(4.5)f f f <<D .(4.5)(6.5)(7)f f f <<12.已知曲线y =与x 轴的交点为,A B ,分别由,A B 两点向直线y x =作垂线,垂足为,C D ,沿直线y x =将平面ACD 折起,使ACD BCD ⊥平面平面,则四面体ABCD的外接球的表面积为A .2πB .4πC .6πD .8πxD A B C 俯视图侧视图第Ⅱ卷(非选择题90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.已知函数122log ,0,()2,0,x x f x x x x >⎧⎪=⎨⎪--≤⎩ 则不等式()0f x <的解集为 .14.已知实数y x ,满足约束条件⎪⎩⎪⎨⎧≤≥-+≥+-301205x y x y x ,则22(1)z x y =++的最小值是 .15.在ABC ∆中, AB →+AC →=2AM →,|AM →|=1,点P 在AM 上且满足AP →=2PM →, 则PA →•(PB →+PC →)= .16.已知n S 为数列}{n a 的前n 项和,0>n a ,211()n n n n a S S S ++-=⋅且21=a ,则=n a .三、解答题(本大题共70分)17.(本小题满分12分) 在△ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,且满足22cos22sin ()2cos ()12sin sin 2A B C B C ππ++++-=.(Ⅰ)求角A 的大小; (Ⅱ)若5,4==c b ,求B sin .18.(本小题满分12分) 太原市启动重污染天气Ⅱ级应急响应,大力发展公共交通.为了调查市民乘公交车的候车情况,交通部门从在某站台等车的60名候车乘客中随机抽取15人,按(Ⅱ)若从上表第三、四组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.19.(本小题满分12分) 如图,在几何体ABCDE 中,2,,CA CB CA CB CD ABC ==⊥⊥平面,F 为线段AB 的中点,//,EF CD EF CD =(Ⅰ)求证:ABE ADE ⊥平面平面. (II)求几何体ABCDE 的体积. 20.(本小题满分12分)设点)0,1(F ,动圆P 经过点F 且和直线1-=x 相切.记动圆的圆心P 的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(II) 过点(0,2)M 的直线l 与曲线W 交于A 、B试题类型:A两点,且直线l 与x 轴交于点C ,设MA AC α=,MB BC β=,求证:αβ+为定值. 21.(本小题满分12分)已知函数x x a x x f ln )1( 21)(2---=,其中R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值;(II) 若0>∀x ,1)(≥x f 恒成立,求a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分) 选修4—1;几何证明选讲如图,已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点C B ,,APC ∠的平分线分别交AC AB ,于点E D ,, (Ⅰ)证明:;AED ADE ∠=∠(Ⅱ)若AP AC =,求PAPC 的值.23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是,为参数)(242222t t y t x ⎪⎪⎩⎪⎪⎨⎧+==圆C 的极坐标方程为)4cos(2πθρ+=.(Ⅰ)求圆心C 的直角坐标;一、选择题(本大题共60分)1-5 BACAD5-10 CBBBD 11-12 AC 二、填空题(本大题共20分)13错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第三次四校联考数学(理)试题命题:临汾一中 忻州一中 康杰中学 长治二中(考试时间120分钟 满分150分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,选出符合题目要求的一项.1. 集合{}|02P x Z x =∈≤<,{}4|2≤∈=x Z x M ,则P M 等于A.{}1B. {}1,0C. )2,0[D. ]2,0[2. 某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有 A. 474种 B. 77种 C. 462种 D. 79种3. 复数z 1=3+i,z 2=1-i,则复数21z z 的虚部为 A. 2B. -2iC. -2D. 2i4. 过点(2,0)M 作圆221x y +=的两条切线MA ,MB (A ,B 为切点),则MA MB ⋅=B.52 D.325. 函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期是π,若其图像向右平移3π个单位后得到的函数为奇函数,则函数()f x 的图像A.关于点,012π⎛⎫⎪⎝⎭对称B.关于直线12x π=对称C.关于点5,012π⎛⎫⎪⎝⎭对称D.关于直线512x π=对称 6. 如图所示的算法流程图中输出的最后一个数为-55,则判断框中的条件为A.?11<nB. ?11≥nC.?10<nD. ?10≥n7. 点P 为双曲线1C :和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为D.2 8. 若某几何体的三视图是如图所示的三个直角三角形, 则该几何体的外接球的表面积为 A.10π B.50π C.25π D.100π9. 对于下列命题:①在△ABC 中,若sin2sin2A B =,则△ABC为等腰三角形;②已知a ,b ,c 是△ABC 的三边长,若2a =,5b =,6A π=,则△ABC 有两组解;③设2012sin3a π=,2012cos 3b π=,2012tan 3c π=,则a b c >>;④将函数2sin 36y x π⎛⎫=+ ⎪⎝⎭图象向左平移6π个单位,得到函数2cos 36y x π⎛⎫=+ ⎪⎝⎭图象.其中正确命题的个数是A.0B.1C. 2D.310. 已知球的直径SC=4,A ,B 是该球球面上的两点,, 30=∠=∠BSC ASC ,则棱锥S —ABC的体积为 A.B.C.D. 111. 函数()cos f x x π=与函数()2log 1g x x =-的图像所有交点的横坐标之和为 A .2B. 4C. 6D. 812. 函数)(x f y =为定义在R 上的减函数,函数)1(-=x f y 的图像关于点(1,0)对称, ,x y 满足不等式0)2()2(22≤-+-y y f x x f ,(1,2),(,)M N x y ,O 为坐标原点,则当41≤≤x 时,OM ON ⋅的取值范围为 ( )A .[)+∞,12B .[]3,0C .[]12,3D .[]12,0二、填空题:本大题共4小题,每小题5分,共20分.13.在正三角形3AB =中,D 是AB 上的点,3,1AB BD ==,则AB AD ⋅=.14. 实数对(,)x y 满足不等式组20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩则目标函数z=kx -y 当且仅当x=3,y=1时取最大值,则k 的取值范围是 .15.已知xxx f ln )(=,在区间[]3,2上任取一点0x ,使得0'()0f x >的概率为 . 16.已知定义在R 上的函数)(x f 是奇函数且满足)()23(x f x f =-,3)2(-=-f ,数列{}n a 满足11-=a ,且21n n S an n=⨯+(其中n S 为{}n a 的前n 项和),则=+)()(65a f a f . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(本小题满分12分)已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21成等差数列.(1)求数列{}n a 的通项公式; (2)若n b na )21(2=,设n n n a b c =,求数列{}n c 的前n 项和n T .18.(本小题满分12分)某中学参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示. (1)求合唱团学生参加活动的人均次数;(2)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题满分12分)如图,四边形PCBM 是直角梯形,90PCB ∠=︒,PM ∥BC ,1,2PM BC ==.又1AC =,120,ACB AB PC ∠=︒⊥,直线AM 与直线PC 所成的角为60︒. (1)求证:PC AC ⊥;(2)求二面角M AC B --的余弦值.20.(本小题满分12分)已知椭圆,22)0(1:2222=>>=+e b a by a x C 的离心率左、右焦点分别为F 1、F 2,点)3,2(P ,点F 2在线段PF 1的中垂线上。
(1)求椭圆C 的方程;(2)设直线m kx y l +=:与椭圆C 交于M 、N 两点,直线F 2M 与F 2N 的倾斜角互补,求证:直线l 过定点,并求该定点的坐标.21.(本小题满分12分) 已知函数.ln )2()(2x x a ax x f ++-= (1)当1=a 时,求曲线)(x f y =在点))1(,1f (处的切线方程;(2)当0>a 时,若)(x f 在区间],1[e 上的最小值为-2,求a 的取值范围; (3)若对任意2121),,0(,x x x x <+∞∈,且22112)(2)(x x f x x f +<+恒成立,求a 的取值范围.1 2 3请考生在22、23、24三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交 圆O 于点C B 、,APC ∠的平分线分别交AC AB 、于点E D 、.(1)证明:ADE AED ∠=∠;(2)若AP AC =,求PCPA的值.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系.已知曲线θθρcos 2sin :2a C =)0(>a,已知过点)4,2(--P 的直线l 的参数方程为:⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222,直线l 与曲线C 分别交于N M ,两点.(1)写出曲线C 和直线l 的普通方程;(2)若|||,||,|PN MN PM 成等比数列,求a 的值.24.(本小题满分10分)选修4-5:不等式选讲设.,)(R a a x x f ∈-=(1)当1,()3x f x -≤≤≤时,求a 的取值范围;(2)若对任意x ∈R ,()()12f x a f x a a -++≥-恒成立,求实数a 的最小值.参考答案选择题二、填空题13、152 14、1,12⎛⎫- ⎪⎝⎭15、2e - 16、 3三、解答题17、解(1)由题意知0,212>+=n n n a S a ………………1分 当1=n 时,21212111=∴+=a a a 当2≥n 时,212,21211-=-=--n n n n a S a S 两式相减得1122---=-=n n n n n a a S S a ………………3分 整理得:21=-n na a ………4分 ∴数列{}n a 是以21为首项,2为公比的等比数列.211122212---=⨯=⋅=n n n n a a ……………5分 (2)42222--==n b n na ∴nb n 24-=,……………………6分nn n n n nn a b C 28162242-=-==- n n n n n T 28162824282028132-+-⋯+-++=- ① 13228162824202821+-+-+⋯++=n n nnn T ② ①-②得1322816)212121(8421+--+⋯++-=n n n nT ………………9分 111122816)21144281621)2112184+-+-----=----⋅-=n n n n nn (( n n 24=.………………………………11分 .28n n nT =∴……………12分18、由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40.(1)该合唱团学生参加活动的人均次数为110250340230 2.3100100⨯+⨯+⨯==.………………4分(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为222105040021004199C C C P C ++==.…………………8分 (3)从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知(1)()()P P A P B ξ==+111110505040241001005099C C C C C C =+=;(2)()P P C ξ==1110402100899C C C ==; ξ的分布列:…………………10分ξ的数学期望:4150820129999993E ξ=⨯+⨯+⨯=.…………………12分 19、方法1:(1)∵,PC BC PC AB ⊥⊥,∴PC ⊥平面ABC ,∴PC AC ⊥.(4分)(2)取BC 的中点N ,连MN .∵PM CN = ,∴MN PC =,∴MN ⊥平面ABC .作NH ⊥ AC ,交AC 的延长线于H ,连结MH .由三垂线定理得AC MH ⊥,∴MHN ∠为二面角M AC B --的平面角.∵直线AM 与直线PC 所成的角为60︒,∴在Rt AMN ∆中,60AMN ∠=︒.在ACN ∆中,AN = 在Rt AMN ∆中,cot 601MN AN AMN =⋅∠︒=. 在Rt NCH ∆中,sin 1sin 60NH CN NCH =⋅∠=⨯︒=. 在Rt MNH ∆中,∵MHcos NH MHN MH ∠==. 故二面角M AC B --.(12分) 方法2:(1)∵,PC BC PC AB ⊥⊥,∴PC ⊥平面ABC ,∴PC AC ⊥.(4分)(2)在平面ABC 内,过C 作BC 的垂线,并建立空间直角坐标系如图所示.设(0,0,)P z ,则(0,0,)CP z =.13(0,1,),0)(,)22AM z z =--= .……………(5分)∵2cos60|cos ,|||||||AM CP AM CP AM CP ⋅︒=<>==⋅,且0z >12=,得1z =,∴3(,1)2AM = .……………(7分)设平面MAC 的一个法向量为(,,1)x y =n ,则由0,0AM CA ⎧⋅=⎪⎨⋅=⎪⎩n n得310,210,2y y ⎧++=⎪⎪⎨⎪-=⎪⎩得1,x y ⎧=⎪⎨⎪=-⎩∴(1,1)=-n .……………(9分) 平面ABC 的一个法向量为(0,0,1)CP =.cos ,||CP CP ||CP ⋅<>==⋅n n n .……………(11分)显然,二面角M AC B --为锐二面角,∴二面角M AC B --.(12分) 20、(1)由椭圆C 的离心率22=e ,得22=a c ,其中22b a c -=, 椭圆C 的左、右焦点分别为)0,(),0,(21c F c F -,又点F 2在线段PF 1的中垂线上222221)2()3()2(|,|||c c PF F F -+=∴=∴……………(3分) 解得,1,2,122===b a c.1222=+∴y x 椭圆的方程为 …………… (5分)(2)由题意,知直线MN 存在斜率,其方程为.m kx y +=由⎪⎩⎪⎨⎧+==+m kx y y x ,1222消去.0224)12(,222=-+++m kmx x k y 得 … (6分) △=(4km )2—4(2k 2+1)(2m 2—2)>0 ( 7分)设),,(),,(2211y x N y x M 则,1222,1242221221+-=+-=+k m x x k km x x ……………(8分)且1,1221122-+=-+=x mkx k x m kx k N F M F ……………(9分)由已知直线F 2M 与F 2N 的倾斜角互补,得.011,0221122=-++-+=+x mkx x m kx k k N F M F 即…(10分)化简,得02))((22121=-+-+m x x k m x kx 0212)(412222222=-+--+-⋅∴m k k m km k m k 整理得.2k m -= (11分)直线MN 的方程为)2(-=x k y ,因此直线MN 过定点,该定点的坐标为(2,0) ……………(12分) 21、解:(Ⅰ)当1=a 时,xx x f x x x x f 132)(,ln 3)(2+-=+-=.………………2分 因为2)1(,0)1('-==f f . 所以切线方程是.2-=y ……………………4分 (Ⅱ)函数x x a ax x f ln )2(2)(++-=的定义域是),(∞+0. ………………5分 当0>a 时,)0(1)2(21)2(2)('2>-+-=++-=x xx a ax x a ax x f令0)('=x f ,即0)1)(12(1)2(2)('2=--=++-=x ax x x x a ax x f , 所以21=x 或ax 1= (7)分当110≤<a ,即1≥a 时,)(x f 在[1,e]上单调递增,所以)(x f 在[1,e]上的最小值是2)1(-=f ;当e a <<11时,)(x f 在[1,e]上的最小值是2)1()1(-=<f a f ,不合题意;当e a≥1时,)(x f 在(1,e )上单调递减, 所以)(x f 在[1,e]上的最小值是2)1()(-=<f e f ,不合题意………………8分(Ⅲ)设x x f x g 2)()(+=,则x ax ax x g ln )(2+-=,只要)(x g 在),(∞+0上单调递增即可 (9)分 而xax ax x a ax x g 1212)('2+-=+-= 当0=a 时,01)('>=xx g ,此时)(x g 在),(∞+0上单调递增;……………………10分 当0≠a 时,只需0)('≥x g 在),(∞+0上恒成立,因为),0(+∞∈x ,只要0122≥+-ax ax , 则需要0>a ,………………………………12分 对于函数122+-=ax ax y ,过定点(0,1),对称轴041>=x ,只需082≤-=∆a a , 即80≤<a . 综上80≤≤a . ………………………………………………12分 22、(1)∵ PA 是切线,AB 是弦,∴ ∠BAP=∠C ,又 ∵ ∠APD=∠CPE ,∴ ∠BAP+∠APD=∠C+∠CPE ,∵ ∠ADE=∠BAP+∠APD ,∠AED=∠C+∠CPE ,∴ ∠ADE=∠AED 。