图形的旋转 中考真题精编一(学生版)
数学九年级上册 旋转几何综合中考真题汇编[解析版]
数学九年级上册旋转几何综合中考真题汇编[解析版]一、初三数学旋转易错题压轴题(难)1.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】【分析】(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.【详解】解:(1)结论:DE=2DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=2DG.(2)如图2中,结论成立.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE =2DG .(3)①如图3﹣1中,当E ,F ,C 共线时,在Rt △ADC 中,AC =22AD CD +=2255+=52,在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,∴CF =CE ﹣EF =6,∴CG =12CF =3, ∵∠DGC =90°, ∴DG =22CD CG -=2253-=4,∴DE =2DG =42.②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.综上所述,DE 的长为2或2.【点睛】本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A2B与CD交于点E,若161A EEC=-,求nm的值.(3)如图二,在(2)的条件下,直线AB上有一点P,BP=2,点E是直线DC上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)5π;(2)3;(3)存在,63+【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=-推出16A CEC=,推出A1C=26nm•,推出BH=A1C=26nm•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到33FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2, ∴BA 1=2HA 1, ∴∠ABA 1=30°,∴旋转角为30°,∵BD=22125+=,∴D 到点D 1所经过路径的长度=3055ππ⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=-, ∴16A C EC=, ∴A 1C=26n m⋅, ∴BH=A 1C=2226n m n m -=⋅, ∴42226n m n m -=⋅, ∴m 4﹣m 2n 2=6n 4,∴242416n n m m-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,∴FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴FG F FM FE D ==,∵∠DFM=90°,tan 3FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴FM DM =;在矩形ABCD 中,有AD AB ==3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=+【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.3.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1,MN是过点A的直线,点C为直线MN外一点,连接AC,作∠ACD=60°,使AC=DC,在MN上取一点B,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;提出问题(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】【分析】(1)根据图中数据直接猜想AB+DB=CB(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;(4)过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.证明△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在Rt△AEC中根据边长计算出AC的长度.【详解】综合与实践(1)AB+DB=CB(2)线段CE如图所示.证明:∵∠ECB=∠ACD=60º,∴∠2+∠ACB=∠1+∠ACB,∴∠2=∠1.∵∠ACD=∠DBN=60º, ∠ABD+∠DBN=180º,∴∠ABD+∠ACD=180º,∴在四边形ACDB中,∠CAB+∠3=180º.∵∠CAB+∠4=180º,∴∠4=∠3.又∵AC=DC,∴△ACE≌△DCB(ASA)∴EA=BD,EC=BC.又∵∠ECB=60°,∴△ECB为等边三角形,∴EB=CB.而EB=EA+AB=DB+AB,∴CB=DB+AB.(3) AB-DB=CB;DB-AB=CB;(4)证明:如图,过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60º∴∠ECB+∠BCA=∠DCA+∠BCA即∠ECA=∠BCD∵∠DBN=120º∴∠DBA=60º又∵∠AFB=∠DFC∴∠EAF=∠BDC又∵AC=DC∴△ACE≌△DCB(ASA)∴BC=EC∴△ECB为等边三角形∴∠CEB=60º∵BC⊥CD∴∠ECA=∠BCD=90º∴在Rt△AEC中,∠CAE=30º∵BC=2,EC=BC∴AC=EC·tan60º= 3【点睛】本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.4.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.5.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.(3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.6.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AEDAB EACAB AC⎧⎪∠∠⎨⎪⎩===,∴△DAB≌△EAC,∴BD=EC.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM ,∵ED=DM ,DF ⊥EM , ∴FE=FM=FG , ∵AE=AG ,AF=AF , ∴△AFE ≌△AFG , ∴∠EAF=∠FAG=12m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.7.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标; (2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证△ADB ≌△AOB ; ②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344+. 【解析】 【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题; (2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.综上所述,30334-≤S≤30334+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.8.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF '的长最大值为222+,此时0315α=. 【解析】 【分析】(1)延长ED 交AG 于点H ,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A 、O 、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+2,此时α=315°. 【详解】(1)如图1,延长ED 交AG 于点H,∵点O 是正方形ABCD 两对角线的交点, ∴OA=OD ,OA ⊥OD , ∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△AOG ≌△DOE , ∴∠AGO=∠DEO , ∵∠AGO+∠GAO=90°, ∴∠GAO+∠DEO=90°, ∴∠AHE=90°, 即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′,∴在Rt△OAG′中,sin∠AG′O=OAOG=12,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=2OD,∴2,∴OF′=2,∴2+2,∵∠COE′=45°,∴此时α=315°. 【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.9.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果) (2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论; (3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+ 【解析】 【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答. 【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形,故答案为等边三角形; (2)AC CD CE +=,证明:由旋转的性质可知,60,DAE AD AE ∠==,ABC ∆是等边三角形60AB AC BC BAC ∴∠︒==,=, 60BAC DAE ∴∠∠︒==,BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=, 在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE SAS ∴∆∆≌()BD CE ∴=,CE BD CB CD CA CD ∴++===;(3)①BD 为2或8时,30DEC ∠=,当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,90AEC ∴∠︒=,ABD ACE ∆∆≌,9060ADB AEC B ∴∠∠︒∠︒==,又=,30BAD ∴∠︒=,122BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,30AEC ∴∠︒=,ABD ACE ∆∆≌,3060ADB AEC B ∴∠∠︒∠︒==,又=,90BAD ∴∠︒=,28BD AB ∴==,BD ∴为2或8时,30DEC ∠︒=;②点D 在运动过程中,DEC ∆的周长存在最小值,最小值为4+理由如下:ABD ACE ∆∆≌,CE BD ∴=,则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,当CE 最小时,DEC ∆的周长最小,ADE ∆为等边三角形,DE AD ∴=, AD的最小值为DEC ∴∆的周长的最小值为4+【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.10.(问题提出)如图①,已知△ABC 是等边三角形,点E 在线段AB 上,点D 在直线BC 上,且ED=EC ,将△BCE 绕点C 顺时针旋转60°至△ACF 连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF ,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF ;∵ED=EC ,∴∠ECD=∠EDC ,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC , 又∵∠EDC=∠EBC+∠BED ,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC , ∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,∴∠BDE=∠AEF ,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ),∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是: AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,。
初中数学旋转中考真题试卷
一、选择题(每题4分,共20分)1. 在平面直角坐标系中,将点A(2,3)绕原点逆时针旋转90°后得到的点B的坐标是()。
A. (3,2)B. (-3,2)C. (-3,-2)D. (3,-2)2. 下列关于图形旋转的说法正确的是()。
A. 旋转不改变图形的大小和形状B. 旋转会改变图形的大小C. 旋转会改变图形的形状D. 旋转会改变图形的大小和形状3. 在平面直角坐标系中,将线段AB绕点A逆时针旋转90°后,点B的坐标变为()。
A. (2,3)B. (-2,3)C. (-2,-3)D. (2,-3)4. 下列关于旋转中心、旋转方向和旋转角度的说法正确的是()。
A. 旋转中心可以是任意点B. 旋转方向只有顺时针和逆时针两种C. 旋转角度可以是任意角度D. 以上说法均正确5. 下列关于旋转的性质,错误的是()。
A. 旋转后的图形与原图形全等B. 旋转后的图形与原图形相似C. 旋转后的图形与原图形面积相等D. 旋转后的图形与原图形周长相等二、填空题(每题5分,共25分)6. 在平面直角坐标系中,将点P(3,4)绕原点逆时针旋转60°后得到的点Q的坐标是()。
7. 将等边三角形ABC绕点C顺时针旋转120°后,点A所到达的位置是点()。
8. 下列图形中,绕点O旋转180°后与原图形重合的是()。
A. 正方形B. 等腰梯形C. 等腰三角形D. 平行四边形9. 下列关于旋转的说法正确的是()。
A. 旋转会改变图形的大小B. 旋转会改变图形的形状C. 旋转会改变图形的位置D. 以上说法均正确10. 在平面直角坐标系中,将线段AB绕点A逆时针旋转90°后,线段AB的长度变为()。
三、解答题(每题10分,共30分)11. (10分)在平面直角坐标系中,已知点A(2,3),将点A绕原点逆时针旋转60°后得到的点B,求点B的坐标。
12. (10分)已知等边三角形ABC,将三角形ABC绕点C顺时针旋转90°后得到的三角形A'B'C',求三角形A'B'C'的边长。
2022年中考数学真题分类汇编:图形的旋转(含答案)
2022年数学中考试题汇编图形的旋转一、选择题1.(2022·湖南省益阳市)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC//C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④2.(2022·广西壮族自治区河池市)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A′B′C′.在此旋转过程中Rt△ABC所扫过的面积为( )A. 25π+24B. 5π+24C. 25πD. 5π3.(2022·内蒙古自治区包头市)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A′B′C,其中点A′与点A是对应点,点B′与点B是对应点.若点B′恰好落在AB边上,则点A到直线A′C的距离等于( )A. 3√3B. 2√3C. 3D. 24.(2022·广西壮族自治区南宁市)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,BB′⏜的长是( )A. 2√33π B. 4√33π C. 8√39π D. 10√39π5.(2022·内蒙古自治区赤峰市)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )A. 2πB. 2√2C. 2π−4D. 2π−2√26.(2022·天津市)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A. AB=ANB. AB//NCC. ∠AMN=∠ACND. MN⊥AC7.(2022·贵州省遵义市)在平面直角坐标系中,点A(a,1)与点B(−2,b)关于原点成中心对称,则a+b的值为( )A. −3B. −1C. 1D. 38.(2022·湖南省娄底市)如图,等边△ABC内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边△ABC的内心成中心对称,则圆中的黑色部分的面积与△ABC的面积之比是( )A. √3π18B. √318C. √3π9D. √399.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.10.(2022·湖南省娄底市)下列与2022年冬奥会相关的图案中,是中心对称图形的是( )A. B.C. D.11.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.12.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.13.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.14.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.15.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.16.(2022·上海市)有一个正n边形旋转90°后与自身重合,则n为( )A. 6B. 9C. 12D. 15二、填空题17.(2022·青海省西宁市)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E=______.18.(2022·湖北省随州市)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为,DH的长为.19.(2022·吉林省)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为______度.(写出一个即可)20.(2022·辽宁省盘锦市)如图,在△ABC中,AB=AC,∠ABC=30°,点D为BC的中点,将△ABC绕点D逆时针旋转得到△A′B′C′,当点A的对应点A′落在边AB上时,点C′在BA的延长线上,连接BB′,若AA′=1,则△BB′D的面积是______.21.(2022·湖南省永州市)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为______.三、解答题22.(2022·广西壮族自治区河池市)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.23.(2022·吉林省)图①,图②均是4×4的正方形网格,每个小正方形的顶点称为格点.其中点A,B,C均在格点上,请在给定的网格中按要求画四边形.(1)在图①中,找一格点D,使以点A,B,C,D为顶点的四边形是轴对称图形;(2)在图②中,找一格点E,使以点A,B,C,E为顶点的四边形是中心对称图形.24.(2022·江苏省常州市)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA’,那么点A’的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A’的位置可以表示为______;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A’A、A’B.求证:A’A=A’B.25.(2022·湖北省武汉市)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG//BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.26.(2022·四川省广安市)数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形),1.【答案】B【解析】解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,∴BC=B′C′.故①正确;②∵△ABC绕A点逆时针旋转50°,∴∠BAB′=50°.∵∠CAB=20°,∴∠B′AC=∠BAB′−∠CAB=30°.∵∠AB′C′=∠ABC=30°,∴∠AB′C′=∠B′AC.∴AC//C′B′.故②正确;③在△BAB′中,AB=AB′,∠BAB′=50°,∴∠AB′B=∠ABB′=12(180°−50°)=65°.∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.∴CB′与BB′不垂直.故③不正确;④在△ACC′中,AC=AC′,∠CAC′=50°,∴∠ACC′=12(180°−50°)=65°.∴∠ABB′=∠ACC′.故④正确.∴①②④这三个结论正确.故选:B.2.【答案】A【解析】解:∵∠ACB=90°,AC=6,BC=8,∴AB=10,∴Rt△ABC所扫过的面积=90⋅π×102360+12×6×8=25π+24,故选:A.3.【答案】C【解析】解:连接AA′,如图,∵∠ACB =90°,∠BAC =30°,BC =2, ∴AC =√3BC =2√3,∠B =60°, ∵将△ABC 绕点C 顺时针旋转得到△A′B′C , ∴CA =CA′,CB =CB′,∠ACA′=∠BCB′, ∵CB =CB′,∠B =60°,∴△CBB′为等边三角形,∴∠BCB′=60°,∴∠ACA′=60°,∴△CAA′为等边三角形,过点A 作AD ⊥A′C 于点D ,∴CD =12AC =√3,∴AD =√3CD =√3×√3=3, ∴点A 到直线A′C 的距离为3, 故选:C . 4.【答案】B【解析】解:根据题意可得, AC′//B′D ,∵B′D ⊥AB ,∴∠C′AD =∠C′AB′+∠B′AB =90°, ∵∠C′AD =α,∴α+2α=90°,∴α=30°,∵AC =4,∴AD =AC ⋅cos30°=4×√32=2√3, ∴AB =2AD =4√3,∴BB′⏜的长度l =nπr 180=60×π×4√3180=4√33.【解析】解:连接OE,OC,BC,由旋转知AC=AD,∠CAD=30°,∴∠BOC=60°,∠ACE=(180°−30°)÷2=75°,∴∠BCE=90°−∠ACE=15°,∴∠BOE=2∠BCE=30°,∴∠EOC=90°,即△EOC为等腰直角三角形,∵CE=4,∴OE=OC=2√2,∴S阴影=S扇形OEC−S△OEC=90π×(2√2)2360−12×2√2×2√2=2π−4,故选:C.6.【答案】C【解析】解:A、∵AB=AC,∴AB>AM,由旋转的性质可知,AN=AM,∴AB>AN,故本选项结论错误,不符合题意;B、当△ABC为等边三角形时,AB//NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,∵AM=AN,AB=AC,∴∠ABC=∠AMN,∴∠AMN=∠ACN,本选项结论正确,符合题意;D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;【解析】解:∵点A(a,1)与点B(−2,b)关于原点成中心对称,∴a =2,b =−1,∴a +b =1,故选:C .8.【答案】A【解析】解:作AD ⊥BC 于点D ,作BE ⊥AC 于点E ,AD 和BE 交于点O ,如图所示,设AB =2a ,则BD =a ,∵∠ADB =90°,∴AD =√AB 2−BD 2=√3a , ∴OD =13AD =√33a , ∴圆中的黑色部分的面积与△ABC 的面积之比是:π×(√33a)2×122a⋅√3a2=√3π18, 故选:A . 9.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形,故本选项错误;B .不是轴对称图形,是中心对称图形,故本选项错误;C .既是轴对称图形,又是中心对称图形,故本选项正确;D .是轴对称图形,不是中心对称图形,故本选项错误.故选C .10.【答案】D【解析】解:A.不是中心对称图形,故此选项不合题意;B .不是中心对称图形,故此选项不合题意;C .不是中心对称图形,故此选项不合题意;D .是中心对称图形,故此选项符合题意;故选:D .11.【答案】D【解析】解:A.是中心对称图形,不是轴对称图形,故此选项不合题意;B .不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.12.【答案】D【解析】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.13.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既是轴对称图形又是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.14.【答案】C【解析】解:A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.15.【答案】C【解析】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.16.【答案】C【解析】解:A.正6边形旋转90°后不能与自身重合,不合题意;B.正9边形旋转90°后不能与自身重合,不合题意;C.正12边形旋转90°后能与自身重合,符合题意;D.正15边形旋转90°后不能与自身重合,不合题意;故选:C.17.【答案】3√3−3【解析】解:在△ABC中,∵∠C=90°,∠B=30°,AB=6,∴AC=3,BC=3√3,∠CAB=60°,∵将△ABC绕点A逆时针方向旋转15°得到△AB′C′,∴△ABC≌△AB′C′,∠C′AE=45°,∴AC=AC′=C′E=3,BC=B′C′=3√3,∴B′E=B′C′−C′E=3√3−3.先在含30°锐角的直角三角形中计算出两条直角边,再根据旋转性质得到对应边相等、对应角相等得到AC=AC′=C′E=3,BC=B′C′=3√3,即可解答.18.【解析】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.∵∠EAF=∠BAD=90°,∴∠DAF=∠BAE,∵AFAD =AEAB=12,∴AFAE =ADAB,∴△DAF∽△BAE,∴∠ADF=∠ABE,∵∠DOH=∠AOB,∴∠DHO=∠BAO=90°,∴∠BHD=90°,∵AF=3,AE=4,∠EAF=90°,∴EF=√32+42=5,∵EF⊥AD,∴12⋅AE⋅AF=12⋅EF⋅AJ,∴AJ =125,∴EJ =√AE 2−AJ 2=√42−(125)2=165, ∵EJ//AB ,∴OJ OA =EJ AB ,∴OJOJ+125=1658, ∴OJ =85, ∴OA =AJ +OJ =125+85=4, ∴OB =√AB 2+AO 2=√42+82=4√5,OD =AD −AO =6−4=2,∵cos∠ODH =cos∠ABO ,∴DH OD =AB BO , ∴DH 2=4√5, ∴DH =4√55. 故答案为:90°,4√55. 19.【答案】72(答案不唯一).【解析】解:360°÷5=72°,则这个图案绕着它的中心旋转72°后能够与它本身重合,故答案为:72(答案不唯一). 20.【答案】3√34【解析】解:如下图所示,设A′B′与BD 交于点O ,连接A′D 和AD ,∵点D 为BC 的中点,AB =AC ,∠ABC =30°,∴AD ⊥BC ,A′D ⊥B′C′,A′D 是∠B′A′C′的角平分线,AD 是∠BAC ,∴∠B′A′C′=120°,∠BAC=120°,∴∠BAD=∠B′A′D=60°,∵A′D=AD,∴△A′AD是等边三角形,∴A′A=AD=A′D=1,∵∠BA′B′=180°−∠B′A′C′=60°,∴∠BA′B′=∠A′AD,∴A′B′//AD,∴A′O⊥BC,∴A′O=12A′D=12,∴OD=√1−14=√32,∵A′B′=2A′D=2,∵∠A′BD=∠A′DO=30°,∴BO=OD,∴OB′=2−12=32,BD=2OD=√3,∴S△BB′D=12×BD×B′O=12×√3×32=3√34.先证明△A′AD是等边三角形,再证明A′O⊥BC,再利用直角三角形30°角对应的边是斜边的一半分别求出A′B′和A′O,再利用勾股定理求出OD,从而求得△BB′D的面积.21.【答案】(2,−2)【解析】解:线段OA绕原点O顺时针旋转90°如图所示,则A′(2,−2),则旋转后A点坐标变为:(2,−2),故答案为:(2,−2).22.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点B2的坐标为(−4,−6);【解析】(1)根据关于y轴对称的点的坐标得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的坐标都乘以−2得到A2、B2、C2的坐标,然后描点即可.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.也考查了轴对称变换.23.【答案】解:(1)作点B关于直线AC的对称点D,连接ABCD,四边形ABCD为筝形,符合题意.(2)将点A向右平移1个单位,再向上平移1个单位可得点D,连接ABCD,AD//BC且AD= BC,∴四边形ABCD为矩形,符合题意.24.【答案】(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);(2)证明:如图:∵A′(3,74°),B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB−∠AOA′=74°−37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.25.【答案】解:(1)如图(1)中,点F,点G即为所求;(2)如图(2)中,线段AH,点Q即为所求.26.【答案】解:图形如图所示:【解析】利用轴对称图形,中心对称图形的性质,画出图形即可.本题考查利用作图设计图案,等边三角形的判定和性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
初三旋转试题及答案
初三旋转试题及答案一、选择题1. 将一个图形绕着某一点旋转一定角度后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:C2. 一个图形绕着某一点旋转180°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形答案:B3. 一个图形绕着某一条直线旋转180°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:A4. 一个图形绕着某一点旋转90°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形答案:C5. 一个图形绕着某一点旋转120°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:C二、填空题6. 一个图形绕着某一点旋转180°后,与原图形重合,这种图形称为中心对称图形,这个点称为____。
答案:对称中心7. 一个图形绕着某一条直线旋转180°后,与原图形重合,这种图形称为轴对称图形,这条直线称为____。
答案:对称轴8. 一个图形绕着某一点旋转一定角度后,与原图形重合,这种图形称为旋转对称图形,这个角度称为____。
答案:旋转角9. 一个图形绕着某一点旋转360°后,与原图形重合,这种图形称为____。
答案:旋转对称图形10. 一个图形绕着某一点旋转360°/n后,与原图形重合,这种图形称为n次旋转对称图形,这个点称为____。
答案:旋转中心三、解答题11. 已知一个图形绕着某一点旋转90°后,与原图形重合,求这个图形的旋转角。
答案:旋转角为90°。
12. 已知一个图形绕着某一条直线旋转180°后,与原图形重合,求这个图形的对称轴。
答案:对称轴为该直线。
中考复习之图形的旋转经典题(含答案)
图形的旋转经典题一.选择题(共10小题)1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部 C.边上 D.以上都有可能2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.23.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.74.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形5.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()6题7题9题A.π+πB.2π+2 C.3π+3π D.6π+67.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°9.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B. C. D.410.等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°二.填空题(共6小题)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是______.11题12题13题12.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为______.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是______.14.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于______.15.如图,用扳手拧螺母时,旋转中心为______,旋转角为______.16.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为______.三.解答题(共8小题)17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.19.如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.20.(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.21.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.22.如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.23.如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.(2016•玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B 的()A.内部 B.外部 C.边上 D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.2.(2016•宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016•朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.4.(2016•莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.5.(2016•呼伦贝尔校级一模)下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动【分析】根据旋转的定义来判断:旋转就是将图形绕某点转动一定的角度,旋转后所得图形与原图形的形状、大小不变,对应点与旋转中心的连线的夹角相等.【解答】解:传送带传送货物的过程中没有发生旋转.故选:A.【点评】本题考查了旋转,正确理解旋转的定义是解题的关键.6.(2016•无锡校级模拟)如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3π D.6π+6【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B 点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.(2016•和平区一模)一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°【分析】根据菱形是中心对称图形解答.【解答】解:∵菱形是中心对称图形,∴把菱形绕它的中心旋转,使它与原来的菱形重合,旋转角为180°的整数倍,∴旋转角至少是180°.故选C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.(2016春•雅安期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B. C. D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(2015•浠水县校级模拟)等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°【分析】根据等边三角形的性质及旋转对称图形得到性质确定出最小的旋转角即可.【解答】解:等边三角形ABC绕着它的中心,至少旋转120°才能与它本身重合.故选B【点评】此题考查了旋转对称图形,熟练掌握旋转的性质是解本题的关键.二.填空题(共6小题)11.(2016•邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2016•高青县模拟)如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为.【分析】如图,首先运用旋转变换的性质证明CD=CB(设为λ);运用勾股定理求出AB的长度;再次运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,由题意得CD=CB(设为λ);由勾股定理得:AB2=BD2﹣AD2,而BD=,AD=1,∴AB=4,AC=4﹣λ;由勾股定理得:λ2=12+(4﹣λ)2,解得:.故答案为.【点评】该题主要考查了旋转变换的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、勾股定理等几何知识点,这是灵活运用、解题的基础和关键.13.(2016•海曙区一模)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【分析】根据旋转的性质可得AB=AB′,然后判断出△ABB′是等腰直角三角形,根据等腰直角三角形的性质可得∠ABB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′C′A,然后根据旋转的性质可得∠C=∠B′C′A.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.14.(2016•太原二模)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120.【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质的应用,能求出∠B′DB的度数是解题的关键,作出图形更形象直观.15.(2016•怀柔区二模)如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.16.(2016•瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.三.解答题(共8小题)17.(2016•荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS 得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.18.(2016•丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.(2016•呼兰区模拟)如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.【分析】(1)和(2)分别画出图形;(3)作FC的中垂线,得Q(5,0).【解答】(1)S△ABC=×2×2=2;(2)S△DEF=2×3﹣1×2﹣×1×3=;∵ED=EF,∠DFE=90°,∴∠FDE=45°;(3)由勾股定理得:FC==,CQ==,FQ==,∴FC2=CQ2+FQ2,CQ=FQ,∴∠FQC=90°,∴点C绕点Q顺时针旋转90°后与点F重合;则点Q(5,0).【点评】本题考查了作图﹣旋转变换,对于画定值面积的三角形,利用面积的和、差先试求某点所组成的图形的面积是否符合题意,再确定这一点;同时根据勾股定理计算所成的三角形是否为直角三角形或等腰直角三角形.20.(2016春•重庆期末)(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P 在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.【分析】(1)设直线AP交直线b于O,根据平行线的性质得出∠2=∠AOB,根据三角形外角性质求出∠AOB=∠1+∠3,即可得出答案;(2)延长AP交直线b于O,根据平行线的性质得出∠ABO=∠2=50°,根据三角形的外角性质得出∠1=∠AOB+∠3,代入求出即可;(3)延长AP交直线b于O,根据三角形外角性质得出∠AOB=∠2+∠4,∠1=∠3+∠AOB,求出∠1=∠2+∠4+∠3,代入求出即可.【解答】(1)∠2=∠1+∠3,证明:设直线AP交直线b于O,如图1,∵直线a∥直线b,∴∠2=∠AOB,∵∠AOB=∠1+∠3,∴∠2=∠1+∠3;(2)解:延长AP交直线b于O,如图2,∵直线a∥直线b,∠2=50°,∴∠ABO=∠2=50°,∵∠3=30°,∴∠1=∠AOB+∠3=50°+30°=80°;(3)解:延长AP交直线b于O,如图3,∵∠AOB=∠2+∠4,∠1=∠3+∠AOB,∴∠1=∠2+∠4+∠3,∵∠1=100°,∠4=40°,∴∠2+∠3=∠1﹣∠4=60°.【点评】本题考查了平行线的性质,三角形外角性质的应用,能灵活运用性质进行推理是解此题的关键.21.(2014秋•五常市校级期中)(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.【分析】(1)如图1,首先证明BE2=PE2+PB2,得到∠BPE=90°;证明∠CPE=45°即可解决问题.(2)如图2,作旋转变换;首先证明∠AQP=60°;其次证明PQ2+CQ2=PC2,得到∠PQC=90°,求出∠AQC=150°,即可解决问题.【解答】解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.【点评】该题主要考查了旋转变换的性质、等边三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.22.(2014秋•苏州期中)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.【分析】(1)如图1,根据图形、已知条件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,得出FE=CE,∠AFE=∠C=45°.再证明∠DFE=90°.然后在Rt△DFE中应用勾股定理即可证明.【解答】(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)证明:如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∠B=∠AFD=45°.∵∠BAD=∠FAD,∴由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,,∴△AEF≌△AEC(SAS),∴FE=CE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.【点评】本题考查了旋转的性质,角平分线的定义,等腰直角三角形的性质,轴对称的性质,全等三角形的判定和性质等知识点.注意,旋转前后,图形的大小和形状都不改变.23.(2014秋•利川市校级期中)如图(1)所示,点C为线段AB上一点,△ACM、△CBN 是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.【分析】(1)根据等边三角形的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB;(2)连接AN,BM,根据等边三角形的性质及旋转的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB.【解答】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.【点评】此题主要考查学生对等边三角形的性质、旋转的性质及全等三角形的判定方法的综合运用.24.(2014秋•江西期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.,【解答】(1)证明:∵∠ACB=90°∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB 中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB 中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.21。
初中旋转试题及答案
初中旋转试题及答案在初中数学的学习中,旋转是一个重要的几何概念。
它涉及到图形的平移、旋转和缩放等变换。
以下是一份初中旋转试题及答案,旨在帮助学生掌握旋转的基本概念和计算方法。
试题一:一个点A(3,4)绕原点O(0,0)顺时针旋转90度后,点A的新坐标是什么?答案:当一个点绕原点顺时针旋转90度时,它的坐标会互换并改变符号。
因此,点A(3,4)旋转后的新坐标为(4,-3)。
试题二:一个矩形ABCD,其中A(1,2),B(5,2),C(5,6),D(1,6),绕点A顺时针旋转90度后,矩形的新位置是什么?答案:矩形ABCD绕点A顺时针旋转90度后,点B(5,2)变为(2,5),点C(5,6)变为(6,5),点D(1,6)变为(6,1)。
因此,旋转后的矩形顶点坐标为A(1,2),B(2,5),C(6,5),D(6,1)。
试题三:一个等边三角形,顶点分别为E(0,0),F(3,0),G(1.5,3),绕点E逆时针旋转120度后,三角形的新位置是什么?答案:等边三角形EFG绕点E逆时针旋转120度后,点F(3,0)变为(0,3),点G(1.5,3)变为(-1.5,1.5)。
因此,旋转后的等边三角形顶点坐标为E(0,0),F(0,3),G(-1.5,1.5)。
试题四:一个圆心在H(4,4)的圆,半径为5,绕点H逆时针旋转45度后,圆的位置会如何变化?答案:圆心H(4,4)的圆绕圆心逆时针旋转45度后,圆的位置不会改变,因为旋转是围绕圆心进行的。
圆心坐标仍然是H(4,4),半径仍然是5。
试题五:一个正方形IJKL,其中I(2,1),J(3,1),K(3,2),L(2,2),绕点I逆时针旋转45度后,正方形的新位置是什么?答案:正方形IJKL绕点I逆时针旋转45度后,点J(3,1)变为(2.707,0.707),点K(3,2)变为(2,2.414),点L(2,2)变为(1.293,1.707)。
因此,旋转后的正方形顶点坐标为I(2,1),J(2.707,0.707),K(2,2.414),L(1.293,1.707)。
2012-2023北京中考真题数学汇编:图形的旋转
2012-2023北京中考真题数学汇编图形的旋转(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)的大小,并证明.2.(2013北京中考真题)在△ABC中,AB=AC,∠BAC60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示)(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.二、作图题3.(2019北京中考真题)已知30∠=︒,H为射线OA上一定点,AOB∠为钝角,以点M为线段OH上一动点,连接PM,满足OMP到线段PN,连接ON.(1)依题意补全图1;∠=∠;(2)求证:OMP OPN(3)点M关于点H的对称点为Q,连接QP.写出一个4.(2012北京中考真题)在ABC 中,BA BC BAC α=∠=,,M 是AC 的中点,P 是线段线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若60α=︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.参考答案1.(1)见解析(2)90AEF ∠=︒,证明见解析【分析】(1)由旋转的性质得DM DE =,2MDE α∠=,利用三角形外角的性质求出C DEC α∠=∠=,可得DE DC =,等量代换得到DM DC =即可;(2)延长FE 到H 使FE EH =,连接CH ,AH ,可得DE 是FCH V 的中位线,然后求出B ACH ∠∠=,设DM DE m ==,CD n =,求出2BF m CH ==,证明()SAS ABF ACH ≅ ,得到AF AH =,再根据等腰三角形三线合一证明AE FH ⊥即可.【详解】(1)证明:由旋转的性质得:DM DE =,2MDE α∠=,∵C α∠=,∴D DEC M E C α∠-∠∠==,∴C DEC ∠=∠,∴DE DC =,∴DM DC =,即D 是MC 的中点;(2)90AEF ∠=︒;证明:如图2,延长FE 到H 使FE EH =,连接CH ,AH ,∵DF DC =,∴DE 是FCH V 的中位线,∴DE CH ∥,2CH DE =,由旋转的性质得:DM DE =,2MDE α∠=,∴2FCH α∠=,∵B C α∠=∠=,∴ACH α∠=,ABC 是等腰三角形,∴B ACH ∠∠=,AB AC =,设DM DE m ==,CD n =,则2CH m =,CM m n =+,∴DF CD n ==,∴FM DF DM n m =-=-,∵AM BC ⊥,∴BM CM m n ==+,∴()2BF BM FM m n n m m =-=+--=,∴CH BF =,在ABF △和ACH 中,AB AC B ACH BF CH =⎧⎪∠=∠⎨⎪=⎩,【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.2.(1)1302α︒-(2)见解析(【分析】(1)利用三角形内角和为(2)连接AD,CD,ED,根据旋转性质得出为等边三角形,证△ABD≌△ACD△ABD≌△EBC,推出AB=BE即可;(3)求出∠DCE=90°,△DEC为等腰直角三角形,求出即可.【详解】(1)解:∵AB=AC,∠∴∠ABC=∠ACB,∠ABC+∠ACB∴∠ABC=∠ACB=12(180°-∠A∵∠ABD=∠ABC-∠DBC,∠DBC即∠ABD=30°-12α;(2)△ABE为等边三角形.证明:如图,连接AD,CD,ED ∵线段BC绕点B逆时针旋转60∴BC=BD,∠DBC=60°.(3)∵∠BCD =60°,∠BCE ∴1506090DCE ︒-︒∠==︒.又∵∠DEC =45°,∴△DCE 为等腰直角三角形.PDM NCP PMD NPC PM NP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PDM ≌△NCP (AAS )∴PD=NC ,DM=CP设DM=CP=x ,则OC=OP+PC=2+x ,MH=MD+DH=x+1∵点M 关于点H 的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN 与△QDP 中90OC QD OCN QDP NC PD ︒=⎧⎪∠=∠=⎨⎪=⎩∴△OCN ≌△QDP (SAS )∴ON=QP【点睛】本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP 为条件反推OP 的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP .4.(1)图见解析,30°(2)∠CDB =90°-α(3)45°<α<60°.【分析】(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ 是等边三角形,即可得出答案:(2)首先由已知得出△APD ≌△CPD ,从而得出∠PAD +∠PQD =∠PQC +∠PQD =180°,即可求出;(3)由点P 不与点B ,M 重合,得到∠BAD >∠PAD >∠MAD ,由此求解即可.【详解】(1)解:补全图形如下:∵BA =BC ,点M 是AC 的中点,∴AC ⊥BD ,AM =CM∴∠CMD =90°,∴2120AMQ α∠==︒,∴∠CMQ =60°,由旋转的性质可得AM =QM =CM ,∴△CMQ 是等边三角形,∴∠DCM =60°∴∠CDB =30°.(2)解:作线段CQ 的延长线交射线BM 于点D ,连接PC ,AD ,∵AB =BC ,M 是AC 的中点,∴BM ⊥AC .∴AD =CD ,AP =PC ,在△APD 与△CPD 中,AD CD PD PD PA PC =⎧⎪=⎨⎪=⎩∴△APD ≌△CPD (SSS ).∴∠ADB =∠CDB ,∠PAD =∠PCD .又∵PQ =PA ,∴PQ =PC ,∠ADC =2∠CDB ,∴∠PQC =∠PCD =∠PAD .∴∠PAD +∠PQD =∠PQC +∠PQD =180°.∴∠APQ +∠ADC =360°-(∠PAD +∠PQD )=180°.∴∠ADC =180°-∠APQ =180°-2α,即2∠CDB =180°-2α.∴∠CDB =90°-α.(3)解:由(2)得出∠CDB =90°-α,且PQ =QD ,∴∠PAD =∠PCQ =∠PQC =2∠CDB =180°-2α,()9090MAD αα=︒-︒-=∠,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD.∴2α>180°-2α>α,∴45°<α<60°.【点睛】本题主要考查了旋转的性质,等边三角形的判定和性质,三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,熟知相关知识是解题的关键.。
图形的旋转(共30题)(学生版)--2023年中考数学真题分项汇编
图形的旋转(30题)一、单选题1(2023·江苏无锡·统考中考真题)如图,△ABC 中,∠BAC =55°,将△ABC 逆时针旋转α(0°<α<55°),得到△ADE ,DE 交AC 于F .当α=40°时,点D 恰好落在BC 上,此时∠AFE 等于()A.80°B.85°C.90°D.95°2(2023·天津·统考中考真题)如图,把△ABC 以点A 为中心逆时针旋转得到△ADE ,点B ,C 的对应点分别是点D ,E ,且点E 在BC 的延长线上,连接BD ,则下列结论一定正确的是()A.∠CAE =∠BEDB.AB =AEC.∠ACE =∠ADED.CE =BD3(2023·四川宜宾·统考中考真题)如图,△ABC 和△ADE 是以点A 为直角顶点的等腰直角三角形,把△ADE 以A 为中心顺时针旋转,点M 为射线BD 、CE 的交点.若AB =3,AD =1.以下结论:①BD =CE ;②BD ⊥CE ;③当点E 在BA 的延长线上时,MC =3-32;④在旋转过程中,当线段MB 最短时,△MBC 的面积为12.其中正确结论有()A.1个B.2个C.3个D.4个4(2023·山东聊城·统考中考真题)如图,已知等腰直角△ABC ,∠ACB =90°,AB =2,点C 是矩形ECGF 与△ABC 的公共顶点,且CE =1,CG =3;点D 是CB 延长线上一点,且CD =2.连接BG ,DF ,在矩形ECGF绕点C按顺时针方向旋转一周的过程中,当线段BG达到最长和最短时,线段DF对应的长度分别为m和n,则mn的值为()A.2B.3C.10D.13二、填空题5(2023·江苏连云港·统考中考真题)以正五边形ABCDE的顶点C为旋转中心,按顺时针方向旋转,使得新五边形A B CD E 的顶点D 落在直线BC上,则正五边ABCDE旋转的度数至少为°.6(2023·湖南张家界·统考中考真题)如图,AO为∠BAC的平分线,且∠BAC=50°,将四边形ABOC 绕点A逆时针方向旋转后,得到四边形AB O C ,且∠OAC =100°,则四边形ABOC旋转的角度是.7(2023·湖南常德·统考中考真题)如图1,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,D是AB上一点,且AD=2,过点D作DE∥BC交AC于E,将△ADE绕A点顺时针旋转到图2的位置.则图2中BDCE的值为.8(2023·江苏无锡·统考中考真题)已知曲线C1、C2分别是函数y=-2x(x<0),y=kx(k>0,x>0)的图像,边长为6的正△ABC的顶点A在y轴正半轴上,顶点B、C在x轴上(B在C的左侧),现将△ABC绕原点O顺时针旋转,当点B在曲线C1上时,点A恰好在曲线C2上,则k的值为.9(2023·辽宁·统考中考真题)如图,线段AB=8,点C是线段AB上的动点,将线段BC绕点B顺时针旋转120°得到线段BD,连接CD,在AB的上方作RtΔDCE,使∠DCE=90°,∠E=30°,点F为DE的中点,连接AF,当AF最小时,ΔBCD的面积为.10(2023·江西·统考中考真题)如图,在▱ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为.11(2023·上海·统考中考真题)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α< 180°),旋转后的点B落在BC上,点B的对应点为D,连接AD,AD是∠BAC的角平分线,则α=.12(2023·湖南郴州·统考中考真题)如图,在Rt△ABC中,∠BAC=90°,AB=3cm,∠B=60°.将△ABC绕点A逆时针旋转,得到△AB C ,若点B的对应点B 恰好落在线段BC上,则点C的运动路径长是cm(结果用含π的式子表示).13(2023·内蒙古·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=1,将△ABC绕点A逆时针方向旋转90°,得到△AB C .连接BB ,交AC于点D,则ADDC的值为.14(2023·黑龙江绥化·统考中考真题)已知等腰△ABC,∠A=120°,AB=2.现将△ABC以点B为旋转中心旋转45°,得到△A BC ,延长C A 交直线BC于点D.则A D的长度为.15(2023·浙江嘉兴·统考中考真题)一副三角板ABC和DEF中,∠C=∠D=90°,∠B=30°,∠E= 45°,BC=EF=12.将它们叠合在一起,边BC与EF重合,CD与AB相交于点G(如图1),此时线段CG 的长是,现将△DEF绕点C(F)按顺时针方向旋转(如图2),边EF与AB相交于点H,连结DH,在旋转0°到60°的过程中,线段DH扫过的面积是.三、解答题16(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.17(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.18(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.19(2023·辽宁·统考中考真题)在Rt ΔABC 中,∠ACB =90°,CA =CB ,点O 为AB 的中点,点D 在直线AB 上(不与点A ,B 重合),连接CD ,线段CD 绕点C 逆时针旋转90°,得到线段CE ,过点B 作直线l ⊥BC ,过点E 作EF ⊥l ,垂足为点F ,直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时,请直接写出线段AD 与线段EF 的数量关系;(2)如图,当点D 在线段AB 上时,求证:CG +BD =2BC ;(3)连接DE ,△CDE 的面积记为S 1,△ABC 的面积记为S 2,当EF :BC =1:3时,请直接写出S 1S 2的值.20(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB C 的位置,那么可以得到:AB=AB ,AC =AC ,BC=B C ;∠BAC=∠B AC ,∠ABC=∠AB C ,∠ACB=∠AC B ()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:;(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A BC 的位置.①请在图中作出点O;②如果BB =6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.21(2023·浙江绍兴·统考中考真题)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB =12,AD=10,∠B为锐角,且sin B=45.(1)如图1,求AB边上的高CH的长.(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C ,D .①如图2,当点C 落在射线CA上时,求BP的长.②当△AC D 是直角三角形时,求BP的长.22(2023·四川南充·统考中考真题)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B 落在AC上,连接MB′.当点M在边BC上运动时(点M 不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.在综合实践活动课上,李老师让同桌两位同学用相同的两块含30°的三角板开展数学探究活动,两块三角板分别记作△ADB和△A D C,∠ADB=∠A D C=90°,∠B=∠C=30°,设AB=2.【操作探究】如图1,先将△ADB和△A D C的边AD、A D 重合,再将△A D C绕着点A按顺时针方向旋转,旋转角为α0°≤α≤360°,旋转过程中△ADB保持不动,连接BC.(1)当α=60°时,BC=;当BC=22时,α=°;(2)当α=90°时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC的中点F,将△A D C绕着点A旋转一周,点F的运动路径长为.如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.25(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕,点C顺时针旋转60°得到△A P C,连接PP ,由PC=P C,∠PCP =60°,可知△PCP 为三角形,故PP =PC,又P A =PA,故PA+PB+PC =PA +PB+PP ≥A B,由可知,当B,P,P ,A在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=;已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a 元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为元.(结果用含a的式子表示)26(2023·四川·统考中考真题)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BDC=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.27(2023·湖北黄冈·统考中考真题)【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.(1)如图1,当m=1时,直接写出AD,BE的位置关系:;(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.28(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD 中,使45°角的顶点始终与正方形的顶点C 重合,绕点C 旋转三角尺时,45°角的两边CM ,CN 始终与正方形的边AD ,AB 所在直线分别相交于点M ,N ,连接MN ,可得△CMN .【探究一】如图②,把△CDM 绕点C 逆时针旋转90°得到△CBH ,同时得到点H 在直线AB 上.求证:∠CNM =∠CNH ;【探究二】在图②中,连接BD ,分别交CM ,CN 于点E ,F .求证:△CEF ∽△CNM ;【探究三】把三角尺旋转到如图③所示位置,直线BD 与三角尺45°角两边CM ,CN 分别交于点E ,F .连接AC 交BD 于点O ,求EFNM的值.29(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G,以BG为边长向外作正方形BEFG,将正方形BEFG绕点B顺时针旋转.特例感知:(1)当BG在BC上时,连接DF,AC相交于点P,小红发现点P恰为DF的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接EG,并延长与DF相交,发现交点恰好也是DF中点P,如图②,根据小红发现的结论,请判断△APE的形状,并说明理由;规律探究:(3)如图③,将正方形BEFG绕点B顺时针旋转α,连接DF,点P是DF中点,连接AP,EP,AE,△APE 的形状是否发生改变?请说明理由.30(2023·贵州·统考中考真题)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP, BE之间的数量关系,并说明理由.。
初三旋转测试题卷子及答案
初三旋转测试题卷子及答案一、选择题(每题3分,共15分)1. 一个点绕原点旋转90度后,其坐标变为原来的什么?A. 相反数B. 倒数C. 两倍D. 四倍2. 一个图形绕某点旋转180度后,与原图形的关系是?A. 完全重合B. 完全相反C. 部分重合D. 没有关系3. 一个图形绕某点旋转60度后,其面积和周长会如何变化?A. 面积不变,周长不变B. 面积变小,周长变小C. 面积不变,周长变长D. 面积变小,周长变大4. 一个图形绕其对称轴旋转180度后,图形的位置会如何变化?A. 完全重合B. 完全相反C. 部分重合D. 没有变化5. 如果一个图形绕某点旋转了θ度,那么它的旋转矩阵是什么?A. [cosθ -sinθ; sinθ cosθ]B. [cosθ sinθ; -sinθ cosθ]C. [sinθ cosθ; cosθ -sinθ]D. [sinθ -sinθ; cosθ cosθ]二、填空题(每题2分,共10分)6. 一个点P(x, y)绕原点旋转θ度后,其新坐标为_________。
7. 若一个图形绕点(a, b)旋转θ度,其旋转后的图形与原图形的对应点坐标变化关系为_________。
8. 一个正方形绕其中心点旋转45度后,其四个顶点的坐标变化情况是_________。
9. 一个圆绕其圆心旋转任意角度,其形状和大小_________。
10. 旋转矩阵可以表示为_________,其中θ为旋转角度。
三、解答题(每题5分,共20分)11. 给定一个点P(1, 2),求该点绕原点旋转120度后的坐标。
12. 一个矩形ABCD,其中A(-1, 1),B(1, 1),C(1, -1),D(-1, -1),求该矩形绕点A旋转90度后的顶点坐标。
13. 描述一个正方形绕其对称轴旋转90度后,四个顶点的坐标变化情况。
14. 解释旋转矩阵在图形旋转变换中的作用。
四、综合题(每题5分,共10分)15. 一个正六边形绕其中心点旋转60度后,求其顶点坐标的变化。
初三旋转考试题及答案
初三旋转考试题及答案初三数学旋转考试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点P(3,4)绕原点O逆时针旋转90°后,新坐标为:A. (4,3)B. (-3,4)C. (3,-4)D. (4,-3)2. 一个正方形绕其中心点旋转45°后,其边长不变,面积不变,以下说法正确的是:A. 形状不变B. 形状改变C. 面积改变D. 形状和面积都改变3. 一个圆心在原点的圆,半径为r,绕原点旋转任意角度后,其半径:A. 变大B. 不变C. 变小D. 无法确定4. 若点A(1,2)绕点B(2,3)旋转30°,旋转后的点A'坐标为:A. (1.5, 3.5)B. (1.5, 2.5)C. (2.5, 3.5)D. 无法确定5. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状:A. 不变B. 变为等边三角形C. 变为等腰三角形D. 变为直角三角形二、填空题(每题2分,共10分)6. 一个矩形绕其中心点旋转180°后,其形状________。
7. 点P(2,-1)绕原点O逆时针旋转45°后,新坐标的横坐标为________。
8. 若一个圆绕其圆心旋转任意角度,其周长________。
9. 一个平行四边形绕其对角线交点旋转90°后,其形状变为________。
10. 一个等边三角形绕其一边的中点旋转60°,旋转后的图形与原图形________。
三、解答题(共25分)11. (5分)若点M(-1,1)绕点N(1,1)旋转60°,求点M'的坐标。
12. (10分)一个边长为4的正方形ABCD,以点A为旋转中心,逆时针旋转30°,求旋转后正方形A'B'C'D'的顶点坐标。
13. (10分)一个圆心在原点,半径为5的圆,绕原点旋转60°,求旋转后圆上任意一点P(x,y)的新坐标。
图形的旋转(中考专题提升)2022—2023学年人教版数九年级学上册
图形的旋转(中考专题提升)一、单选题1.有一个正n边形旋转90后与自身重合,则n为()A.6 B.9 C.12 D.152.如图所示的运动员只经过旋转不能得到的是( )3.如图,OAB绕点O逆时针旋转80到OCD的位置,已知45∠等于()AOB∠=,则AODA.55B.45C.40D.35△,点B'恰好落在CA的延长线上,4.如图,将直角三角板ABC绕顶点A顺时针旋转到AB C''B C,则BAC'∠为(),∠=︒∠=︒3090A.90︒B.60︒C.45︒D.305.如图,将△ABC绕点A逆时针旋转55°,得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为( )A.65°B.70°C.75°D.80°6.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,将ABC 绕点C 逆时针旋转90°得到DEC ,则AED ∠的度数为( )A .105°B .120°C .135°D .150°7.将矩形ABCD 绕点A 顺时针旋转()0360αα︒<<︒,得到矩形AEFG .当GC GB =时,下列针对α值的说法正确的是( )A .60︒或300︒B .60︒或330︒C .30D .60︒8.如图,在Rt △ABC 中,∠BAC=90°,AB=AC=3,将一个无限大的直角尺MON 的直角顶点O 与BC 边上的中点D 重合并绕点D 旋转,分别交AB 、AC 所在的直线于点E 、F,连接EF,若BE=1,则EF 的长度为( )A.B. C.或 D.无法确定9.如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6 B.3 C.2 D.1.510.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE 绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°二、填空题11.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A'BO',则点A'的坐标为.12.如图,将正方形ABCD 绕点A 按逆时针方向旋转到正方形AB ' C ' D ' ,旋转角为α( 0︒<α< 180︒),连接B ' D 、C ' D ,若B ' D =C ' D ,则∠α =____.13.如图,AB=BC=CD,AB⊥BC,∠BCD=30°,则∠BAD=________°.14.如图,点E 在正方形ABCD 的边CB 上,将△DCE 绕点D 顺时针旋转90°到△DAF 的位置,连接EF,过点D 作EF 的垂线,垂足为点H,与AB 交于点G,若AG=4,BG=3,则BE 的长为 .15.如图,△ABC ,△ADE 均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE 绕点A 在平面内自由旋转,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点,若AD=3,AB=7,则线段MN 的取值范围是______.16.如图,在ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.三、解答题17.如图,以点O 为旋转中心,将△ABC 按顺时针方向旋转60°,作出旋转后的图形(不用写作法).18.阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且3PA =,4PB =,5PC =,求∠APB 的度数. 小伟是这样思考的:如图2,利用旋转和全等的知识构造AP C '△,连接PP ',得到两个特殊的三角形,从而将问题解决.参考小伟同学思考问题的方法,解决下列问题.(1)请你计算图1中∠APB 的度数.(2)如图3,在正方形ABCD 内有一点P ,且2PA =,1PB =,3PD =,求∠APB 的度数.19.已知ABC 是等边三角形,点B ,D 关于直线AC 对称,连接AD ,CD .(1)求证:四边形ABCD 是菱形;(2)在线段AC 上任取一点Р(端点除外),连接PD .将线段PD 绕点Р逆时针旋转,使点D 落在BA 延长线上的点Q 处.请探究:当点Р在线段AC 上的位置发生变化时,DPQ ∠的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ 与CP 之间的数量关系,并加以证明.20.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(1,4),B(4,1),C(4,3).(1)画出将△ABC 向左平移5个单位长度得到的△A 1B 1C 1;(2)画出将△ABC 绕原点O 顺时针旋转90°得到的△A 2B 2C 2.21.已知:如图,在ABC ∆中,120BAC ∠=︒,以BC 为边向形外作等边三角形BCD ∆,把ABD ∆绕着点D 按顺时针方向旋转60︒后得到ECD ∆,若3AB =,2AC =,求BAD ∠的度数与AD 的长.22.已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE ,CF.(1)如图1,求证:ADE≌CDF;(2)直线AE与CF相交于点G.①如图2,BM AGBN CF于点N,求证:四边形BMGN是正方形;⊥于点M,⊥②如图3,连接BG,若4DE=,直接写出在DEF旋转的过程中,线段BG长度的最小值.AB=,2参考答案1--10CCBBD AACCA11.812.60°13.15 14.15.22≤MN ≤5216.1917.解析 如图所示,△A'B'C'即为所求.18.(1)150APB ∠=︒(2)135APB ∠=︒19.(1)连接BD ,ABC 是等边三角形,AB BC AC ∴==,点B ,D 关于直线AC 对称,∴AC 垂直平分BD ,,DC BC AD AB ∴==,AB BC CD AD ∴===,∴四边形ABCD 是菱形;(2)当点Р在线段AC 上的位置发生变化时,DPQ ∠的大小不发生变化,始终等于60°,理由如下: 将线段PD 绕点Р逆时针旋转,使点D 落在BA 延长线上的点Q 处,PQ PD ∴=, ABC 是等边三角形,,60AB BC AC BAC ABC ACB ∴==∠=∠=∠=︒,连接PB ,过点P 作PE CB ∥交AB 于点E ,PF ⊥AB 于点F ,则60,60APE ACB AEP ABC ∠=∠=︒∠=∠=︒,60APE BAC AEP ∴∠=∠=︒=∠,APE ∴是等边三角形,AP EP AE ∴==,PF AB ⊥,APF EPF ∴∠=∠,点B ,D 关于直线AC 对称,点P 在线段AC 上,∴PB = PD ,∠DPA =∠BPA ,∴PQ = PD ,PF AB ⊥,QPF BPF ∴∠=∠,∴∠QPF -∠APF =∠BPF -∠EPF ,即∠QPA = ∠BPE ,∴∠DPQ =∠DPA - ∠QPA =∠BPA -∠BPE = ∠APE = 60°;(3)AQ = CP ,证明如下:AC = AB ,AP = AE ,∴AC - AP = AB – AE ,即CP = BE ,AP = EP ,PF ⊥AB ,∴AF = FE ,PQ = PD ,PF ⊥AB ,∴QF = BF ,∴ QF - AF = BF – EF ,即AQ = BE ,∴AQ = CP .20. (1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.21.60BAD ∠=︒,AD=5【解析】只要证明A 、B 、D 、C 四点共圆,即可推出∠BAD=∠BCD =60°,然后证明A 、C 、E 三点共线,根据旋转的性质,推出AD=AE=AC+CE=AC+AB=2+3=5.解:∵ABC ∆的120BAC ∠=︒,以BC 为边向形外作等边BCD ∆,∴12060180BAC BDC ∠+∠=︒+︒=︒.∴A ,B ,D ,C 四点共圆,∴60BAD BCD ∠=∠=︒,180ACD ABD ∠+∠=︒,又∵ABD ECD ∠=∠,∴180ACD ECD ∠+∠=︒,∴180ACE ∠=︒,即A ,C ,E 共线.∵把ABD ∆绕D 点按顺时针方向旋转60︒到ECD ∆位置且3AB =,∴3AB CE ==,∴235AD AE AC AB ==+=+=.本题考查旋转变换、等边三角形的性质、四边形内角和定理等知识,解题的关键是充分利用旋转不变性解决问题,本题的突破点是证明A 、C 、E 共线,△AED 是等边三角形即可. 22(1)证明:四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒.DE DF =,90EDF ∠=︒.ADC EDF ∴∠=∠,ADE CDF ,在ADE 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩ADE ∴≌()SAS CDF △;(2)①证明:如图2中,设AG 与CD 相交于点P .90ADP ∠=︒,90DAP DPA ∴∠+∠=︒. ADE ≌CDF ,DAE DCF ∴∠=∠.DPA GPC ∠∠=,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒.90PGN ∠∴=︒,BM AG ⊥,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒.四边形ABCD 是正方形,AB BC ∴=,90ABC MBN ∠∠==︒.ABM CBN ∴∠=∠.又90AMB BNC ∠∠==︒,AMB ∴≌CNB △.MB NB ∴=.∴矩形BMGN 是正方形;②解:作DH AG ⊥交AG 于点H ,作BM AG ⊥于点M ,∵90,90,DHA AMB ADH DAH BAM AD AB ∠=∠=︒∠=︒-∠=∠= ∴AMB ≌DHA .BM AH ∴=.222AH AD DH =-,4=AD ,DH ∴最大时,AH 最小,2DH DE ==最大值.23BM AH ∴==最小值最小值由()2①可知,BGM 是等腰直角三角形,226BG BM ∴=最小值。
初三旋转试题及答案
初三旋转试题及答案一、选择题(每题3分,共30分)1. 若一个图形绕某点旋转180°后与自身重合,则该图形是()。
A. 线段B. 等腰三角形C. 正方形D. 圆2. 一个正方形绕其中心旋转90°后,其形状和大小()。
A. 都不变B. 形状不变,大小改变C. 形状改变,大小不变D. 都改变3. 旋转对称图形的旋转中心是()。
A. 任意一点B. 图形的顶点C. 图形的中心点D. 图形的边4. 旋转对称图形的旋转角可以是()。
A. 任意角度B. 180°C. 90°D. 360°5. 一个图形绕某点旋转后,与原图形()。
A. 完全重合B. 形状相同C. 大小相同D. 位置相同6. 一个图形绕某点旋转180°后,其位置()。
A. 与原图形重合B. 与原图形相反C. 与原图形相邻D. 与原图形远离7. 一个图形绕某点旋转90°后,其()。
A. 形状不变B. 大小不变C. 位置不变D. 所有都不变8. 一个图形绕某点旋转360°后,其()。
A. 形状不变B. 大小不变C. 位置不变D. 所有都不变9. 一个图形绕某点旋转,若旋转前后图形完全重合,则该旋转是()。
A. 任意旋转B. 旋转对称C. 镜像对称D. 轴对称10. 一个图形绕某点旋转后,若旋转前后图形形状和大小都不变,则该旋转是()。
A. 任意旋转B. 旋转对称C. 镜像对称D. 轴对称二、填空题(每题4分,共20分)1. 一个图形绕某点旋转180°后,其位置与原图形()。
2. 一个图形绕某点旋转90°后,其形状()。
3. 一个图形绕某点旋转360°后,其位置()。
4. 一个图形绕某点旋转,若旋转前后图形大小不变,则该旋转是()。
5. 一个图形绕某点旋转,若旋转前后图形形状不变,则该旋转是()。
三、解答题(每题10分,共50分)1. 描述一个正方形绕其中心点旋转90°后的图形变化情况。
旋转两种解题模型(学生版)-初中数学
旋转两种解题模型目录解题知识必备压轴题型讲练题型一:奔驰模型题型二:费马点模型压轴能力测评模型一:奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。
我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题模型二:费马点模型最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以应熟练掌握费马点等此类最值经典题。
题型一:奔驰模型一.选择题(共1小题)1.(2020秋•顺平县期中)如图,P是等边三角形ABC内的一点,且P A=3,PB=4,PC=5,将ΔABP绕点B顺时针旋转60°到ΔCBQ位置.连接PQ,则以下结论错误的是()A.∠QPB=60°B.∠PQC=90°C.∠APB=150°D.∠APC=135°二.填空题(共4小题)2.(2023秋•北屯市校级期中)如图,在平面直角坐标系中,已知ΔAOB是等边三角形,点A的坐标是(0,6),点B在第一象限,∠OAB的平分线交x轴于点P,把ΔAOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到ΔABD,连接DP.则DP=,D点坐标为.(如图),把ΔABC绕3.(2023秋•长宁区校级期中)已知在ΔABC中,∠ACB=90°,AB=20,sin B=55着点C按顺时针方向旋转α°(0<α<360),将点A、B的对应点分别记为点A 、B ,如果△AA′C为直角三角形,那么点A与点B′的距离为.线上的点E处时,∠BED的度数为.5.(2021秋•盘龙区校级期中)如图,P是等边三角形ABC内的一点,且P A=3,PB=4,PC=5,以BC为边在ΔABC外作ΔBQC≅ΔBP A,连接PQ,则以下结论中正确有(填序号)①ΔBPQ是等边三角形②ΔPCQ是直角三角形③∠APB=150°④∠APC=135°三.解答题(共6小题)6.(2022秋•西湖区校级期中)如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到ΔCDE的位置,使A,C,D三点在同一直线上,连接AE,求∠DEA的度数.7.(2021秋•长乐区期中)在RtΔABC中,∠ACB=90°,∠ABC=30°,AC=4,将ΔABC绕点B顺时针旋转一定的角度得到ΔDBE,点A,C的对应点分别是D,E,连接AD.(1)如图1,当点E恰好在边AB上时,求∠ADE的大小;(2)如图2,若F为AD中点,求CF的最大值.8.(2022秋•东胜区校级期中)(原题初探)(1)小明在数学作业本中看到有这样一道作业题:如图1,P是正方形ABCD内一点,连结P A,PB,PC现将ΔP AB绕点B顺时针旋转90°得到的△P′CB,连接PP′.若P A=2,PB=3,∠APB=135°,则PC的长为,正方形ABCD的边长为.(变式猜想)(2)如图2,若点P是等边ΔABC内的一点,且P A=3,PB=4,PC=5,请猜想∠APB的度数,并说明理由.(拓展应用)(3)聪明的小明经过上述两小题的训练后,善于反思的他又提出了如下的问题:如图3,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长度为.9.(2023秋•梁山县期中)如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将ΔP AC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.10.(2020秋•黄石期中)下面是一道例题及其解答过程,请补充完整.(1)如图1,在等边三角形ABC内部有一点P,P A=3,PB=4,PC=5,求∠APB的度数.11.(2023秋•罗山县期中)阅读与理解:如图1,等边ΔBDE(边长为a)按如图所示方式设置.操作与证明:(1)操作:固定等边ΔABC(边长为b),将ΔBDE绕点B按逆时针方向旋转120°,连接AD,CE,如图2;在图2中,请直接写出线段CE与AD之间具有怎样的大小关系.(2)操作:若将图1中的ΔBDE,绕点B按逆时针方向旋转任意一个角度α(60°<α<180°),连接AD,CE,AD与CE相交于点M,连BM,如图3;在图3中线段CE与AD之间具有怎样的大小关系?∠EMD的度数是多少?证明你的结论.猜想与发现:(3)根据上面的操作过程,请你猜想在旋转过程中,当α为多少度时,线段AD的长度最大,最大是多少?当α为多少度时,线段AD的长度最小,最小是多少?题型二:费马点模型一.选择题(共1小题)1.(2023秋•萧山区期中)如图,已知∠BAC=60°,AB=4,AC=6,点P在ΔABC内,将ΔAPC绕着点A逆时针方向旋转60°得到ΔAEF.则AE+PB+PC的最小值为()A.10B.219C.53D.213二.解答题(共2小题)2.(台州期中)(1)知识储备①如图1,已知点P为等边ΔABC外接圆的BC上任意一点.求证:PB+PC=P A.②定义:在ΔABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为ΔABC的费马点,此时P A+PB+PC的值为ΔABC的费马距离.(2)知识迁移如图2,在ΔABC 的外部以BC 为边长作等边ΔBCD 及其外接圆,根据(1)的结论,易知线段AD 的长度即为ΔABC 的费马距离.②在图3中,用不同于图2的方法作出ΔABC 的费马点P (要求尺规作图).(3)知识应用①判断题(正确的打√,错误的打×):ⅰ.任意三角形的费马点有且只有一个;ⅱ.任意三角形的费马点一定在三角形的内部.②已知正方形ABCD ,P 是正方形内部一点,且P A +PB +PC 的最小值为6+2,求正方形ABCD 的边长.3.(宿豫区校级期中)探究问题:(1)阅读理解:①如图(A ),在已知ΔABC 所在平面上存在一点P ,使它到三角形顶点的距离之和最小,则称点P 为ΔABC 的费马点,此时P A +PB +PC 的值为ΔABC 的费马距离;②如图(B ),若四边形ABCD 的四个顶点在同一圆上,则有AB ⋅CD +BC ⋅DA =AC ⋅BD .此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C ),已知点P 为等边ΔABC 外接圆的BC上任意一点.求证:PB +PC =P A ;②根据(2)①的结论,我们有如下探寻ΔABC (其中∠A 、∠B 、∠C 均小于120°)的费马点和费马距离的方法:第一步:如图(D ),在ΔABC 的外部以BC 为边长作等边ΔBCD 及其外接圆;第二步:在BC 上任取一点P ′,连接P ′A 、P ′B 、P ′C 、P ′D .易知P ′A +P ′B +P ′C =P ′A +(P ′B +P ′C )=P ′A +;第三步:请你根据(1)①中定义,在图(D )中找出ΔABC 的费马点P ,并请指出线段的长度即为ΔABC 的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A 、B 、C 构成了如图(E )所示的ΔABC (其中∠A 、∠B 、∠C 均小于120°),现选取一点P 打水井,使从水井P 到三村庄A 、B 、C 所铺设的输水管总长度最小,求输水管总长度的最小值.1.(连城县期中)(1)如图1,点P 是等边ΔABC 内一点,已知P A =3,PB =4,PC =5,求∠APB 的度数.要直接求∠A 的度数显然很困难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠P AD =60°使AD =AP ,连接PD ,CD ,则ΔP AD 是等边三角形.∴=AD =AP =3,∠ADP =∠P AD =60°∵ΔABC 是等边三角形∴AC =AB ,∠BAC =60°∴∠BAP =∴ΔABP ≅ΔACD∴BP =CD =4,=∠ADC ∵在ΔPCD 中,PD =3,PC =5,CD =4,PD 2+CD 2=PC 2∴∠PDC =°(2)如图3,在ΔABC 中,AB =BC ,∠ABC =90°,点P 是ΔABC 内一点,P A =1,PB =2,PC =3,求∠APB 的度数.2.(西城区校级期中)如图,P 是等边ΔABC 内的一点,且P A =5,PB =4,PC =3,将ΔAPB 绕点B 逆时针旋转,得到ΔCQB .求:(1)点P 与点Q 之间的距离;(2)求∠BPC 的度数.3.(汉阳区期中)如图,P 是等腰ΔABC 内一点,AB =BC ,连接P A ,PB ,PC .(1)如图1,当∠ABC =90°时,将ΔP AB 绕B 点顺时针旋转90°,画出旋转后的图形;(2)在(1)中,若P A =2,PB =4,PC =6,求∠APB 的大小;(3)当∠ABC =60°时,且P A =3,PB =4,PC =5,则ΔAPC 的面积是943+3(直接填答案)4.(汉阳区期中)(1)阅读证明①如图1,在ΔABC 所在平面上存在一点P ,使它到三角形三顶点的距离之和最小,则称点P 为ΔABC 的费马点,此时P A +PB +PC 的值为ΔABC 的费马距离.②如图2,已知点P 为等边ΔABC 外接圆的BC 上任意一点.求证:PB +PC =P A .(2)知识迁移根据(1)的结论,我们有如下探寻ΔABC (其中∠A ,∠B ,∠C 均小于120°)的费马点和费马距离的方法:第一步:如图3,在ΔABC 的外部以BC 为边长作等边ΔBCD 及其外接圆;第二步:在BC 上取一点P 0,连接P 0A ,P 0B ,P 0C ,P 0D .易知P 0A +P 0B +P 0C =P 0A +(P 0B +P 0C )=P 0A +;第三步:根据(1)①中定义,在图3中找出ΔABC 的费马点P ,线段的长度即为ΔABC 的费马距离.(3)知识应用已知三村庄A ,B ,C 构成了如图4所示的ΔABC (其中∠A ,∠B ,∠C 均小于120°),现选取一点P 打水井,使水井P 到三村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.5.(当涂县校级期中)如图,点P 是等边ΔABC 外一点,P A =3,PB =4,PC =5(1)将ΔAPC 绕点A 逆时针旋转60°得到△P 1AC 1,画出旋转后的图形;(2)在(1)的图形中,求∠APB 的度数.。
2024年中考数学真题汇编专题26 图形的旋转+答案详解
2024年中考数学真题汇编 专题26 图形的旋转+答案详解(试题部分)一、单选题1.(2024·山东·中考真题)用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.(2024·广东深圳·中考真题)下列用七巧板拼成的图案中,为中心对称图形的是( )A .B .C .D .3.(2024·四川成都·中考真题)在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A .()1,4−−B .()1,4−C .()1,4D .()1,4−4.(2024·吉林·中考真题)如图,在平面直角坐标系中,点A 的坐标为()4,0−,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2−−B .()4,2−C .()2,4D .()4,25.(2024·江苏扬州·中考真题)在平面直角坐标系中,点()1,2P 关于原点的对称点P'的坐标是( ) A .()1,2B .()1,2-C .()1,2-D .()1,2−−6.(2024·四川自贡·中考真题)我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是( )A .是轴对称图形B .是中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形也不是中心对称图形7.(2024·四川内江·中考真题)2024年6月5日,是二十四节气的芒种,二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是( )A .B .C .D .8.(2024·四川凉山·中考真题)点(),3P a −关于原点对称的点是()2,P b ',则a b +的值是( ) A .1B .1−C .5−D .59.(2024·山东烟台·中考真题)下图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走( )A .①B .②C .③D .④10.(2024·广东广州·中考真题)下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .11.(2024·天津·中考真题)如图,ABC 中,30B ∠=,将ABC 绕点C 顺时针旋转60得到DEC ,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠=∠ B .AC DE ∥ C .AB EF =D .BF CE ⊥12.(2024·湖北·中考真题)平面坐标系xOy 中,点A 的坐标为()4,6−,将线段OA 绕点O 顺时针旋转90︒,则点A 的对应点A '的坐标为( )A .()4,6B .()6,4C .()4,6−−D .()6,4−−13.(2024·内蒙古赤峰·中考真题)如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B BAC BD'=.其中正确的结论是( )A .①②③④B .①②③C .①③④D .②④14.(2024·四川内江·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为点B ,将ABO 绕点A 逆时针旋转到11AB O V 的位置,使点B 的对应点1B 落在直线34y x =−上,再将11AB O V 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =−上,如此下去,……,若点B 的坐标为()0,3,则点37B 的坐标为( ).A .()180,135B .()180,133C .()180,135−D .()180,133−15.(2024·北京·中考真题)如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等; ②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等; ④点O 到该八边形各边所在直线的距离都相等。
全国中考数学旋转的综合中考真题分类汇总含详细答案
一、旋转真题与模拟题分类汇编(难题易错题)1.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.2.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN2AP=2,∴最大值为2+4;如图2,过P 作PE ⊥x 轴于E ,∵△APN 是等腰直角三角形,∴PE =AE =2, ∴OE =BO ﹣AB ﹣AE =6﹣4﹣2=2﹣2,∴P (2﹣2,2).如图3中,根据对称性可知当点P 在第四象限时,P (2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P 坐标(2﹣2,2)或(2﹣2,﹣2),AM 的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.3.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC边上的高DE ,可证ABC ≌)BDE()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴≌()BDE AASBC DE a ∴==,BCD 1S BCDE 2=⋅, 2BCD 1S a 2∴=; ()2BCD 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD 1S BC DE 2=⋅, 2BCD 1S a 2∴=; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==,11BF BC a 22==, FAB ABF 90∠∠∴+=, ABD 90∠=,ABF DBE 90∠∠∴+=,FAB EBD ∠∠∴=,线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB 和BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB ∴≌()BED AAS ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=, BCD ∴的面积为21a 4. 【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.4.已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF ⊥BD 交 BC 于 F ,连接 DF ,G 为 DF 中点,连接 EG ,CG .(1) 求证:EG =CG ;(2) 将图①中△BEF 绕 B 点逆时针旋转 45∘,如图②所示,取 DF 中点 G ,连接 EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕 B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG.证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
2023中考数学图形的旋转历年真题及答案
2023中考数学图形的旋转历年真题及答案随着中考的临近,中学生们都开始为考试做准备。
其中,数学科目中的几何部分常常是学生们头疼的问题之一。
其中一个关键概念是图形的旋转,考查学生对图形变化的理解和运用。
为了帮助同学们更好地准备数学考试,接下来将介绍一些历年中考数学真题中涉及到图形旋转的题目,并附上详细的解答。
【例题一】设点A(-3, 2),将该点绕原点顺时针旋转120°,求旋转后的坐标。
解答:首先,将点A的坐标(x, y)表示为向量的形式:OA = (-3, 2)。
接下来,我们需要找到一个旋转矩阵来对该向量进行旋转。
设矩阵R为旋转矩阵,其旋转角度为θ,则有:R = [cosθ -sinθ][sinθ cosθ]由于我们需要顺时针旋转120°,所以θ = 2π/3。
代入上述旋转矩阵公式计算得到旋转后的向量OA':OA' = (-3, 2) * [cos(2π/3) -sin(2π/3)][sin(2π/3) cos(2π/3)]化简计算得到OA' = (3/2, -2sqrt(3)/2)。
因此,旋转后的坐标为B(3/2, -2sqrt(3)/2)。
【例题二】图形P在平面直角坐标系内的坐标如下:P(-2, 0), Q(-2, 2), R(0, 2), S(0, 0)将图形P绕原点逆时针旋转90°,求旋转后的坐标。
解答:首先,将图形P的四个顶点分别表示为向量的形式:OP = (-2, 0),OQ = (-2, 2),OR = (0, 2),OS = (0, 0)。
接下来,我们需要找到一个旋转矩阵来对这些向量进行旋转。
同样设矩阵R为旋转矩阵,其旋转角度为θ,则有:R = [cosθ -sinθ][sinθ cosθ]由于我们需要逆时针旋转90°,所以θ = π/2。
代入上述旋转矩阵公式计算得到旋转后的向量OP'、OQ'、OR'和OS':OP' = (-2, 0) * [cos(π/2) -sin(π/2)][sin(π/2) cos(π/2)]OQ' = (-2, 2) * [cos(π/2) -sin(π/2)][sin(π/2) cos(π/2)]OR' = (0, 2) * [cos(π/2) -sin(π/2)][sin(π/2) cos(π/2)]OS' = (0, 0) * [cos(π/2) -sin(π/2)][sin(π/2) cos(π/2)]化简计算得到OP' = (0, -2),OQ' = (-2, -2),OR' = (-2, 0),OS' = (0, 0)。
中考数学专卷2020届中考数学总复习(27)图形的旋转-精练精析(1)及答案解析
图形的变化——图形的旋转1一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C.D.π4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.35.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A. B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.18如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=_________ .11如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是_________ .12.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为_________ .13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________ .14.如图,在△A BC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为_________ .15如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是_________ .16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为_________ .17如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=_________ .三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.19.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为_________ cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是_________ ,∠AFB=∠_________(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.图形的变化——图形的旋转1参考答案与试题解析一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)考点:坐标与图形变化-旋转.专题:压轴题.分析:先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.解答:解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选C.点评:本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.2如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.专题:几何图形问题.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B C.D.π考点:旋转的性质;弧长的计算.专题:几何图形问题.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A. 6 B4C3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.5.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B C D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B60°C.90°D.150°考点:旋转的性质.专题:几何图形问题.分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.解答:解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.点评:本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.8.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB6πC.3πD.1.5π考点:旋转的性质;弧长的计算.专题:计算题.分析:根据弧长公式列式计算即可得解.解答:解:的长==1.5π.故选:D.点评:本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.考点:旋转的性质.分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.解答:解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.12如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1 .考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 6 .考点:旋转的性质;相似三角形的判定与性质.专题:几何图形问题.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,根据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是掌握圆的面积公式.16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.考点:旋转的性质.专题:几何图形问题.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.17.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.考点:旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.专题:几何图形问题.分析:(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.点评:此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.19如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.考点:旋转的性质;正方形的判定;平移的性质.专题:几何图形问题.分析:(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为4cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.考点:几何变换综合题.专题:几何综合题.分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案;(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,此时DP+EP值为最小,进而得出答案;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.解答:解:(1)∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm,∵∠ACD=30°,∠DAC=90°,AC=12cm,∴CD=AC÷cos30°=12÷=12×=8(cm),∵点E为CD边上的中点,∴AE=DC=4cm.故答案为:4;(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE,∴△ADE为等边三角形,∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°,∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′,∴点E,D′关于直线AC对称,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′,∵△ADE是等边三角形,AD=AE=4,∴DD′=2×AD×=2×6=12,即DP+EP最小值为12cm;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6﹣x)cm,在Rt△GD′C中x2+(6﹣x)2=(4)2,解得:x1=3﹣,x2=3+(不合题意舍去),∴点D′到BC边的距离为(3﹣)cm.点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是BF ,∠AFB=∠AED(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.分析:(1)直接根据旋转的性质得到DE=BF,∠AFB=∠AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,根据旋转的性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,则∠PAE=45°,再根据全等三角形的判定方法得到△APE≌△APQ,则PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)根据正方形的性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,根据旋转的性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,根据勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2.解答:解:(1)∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.故答案为BF,AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△AP Q中∵,∴△APE≌△APQ,∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质、正方形的性质以及勾股定理.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.。
《图形的旋转(解答题)》之中考真题精选汇编(能力提升卷)
《图形的旋转(解答题)》之中考真题精选汇编(能力提升卷)1.综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.2.如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线P A ,并将射线P A 绕点P 逆时针旋转90°与BD 交于点E ,根据题意在图中画出图形,图中∠PBE 的度数为 度;(2)【问题探究】根据(1)所画图形,探究线段P A 与PE 的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P 在射线CB 上移动,将射线P A 绕点P 逆时针旋转90°与BD 交于点E ,探究线段BA ,BP ,BE 之间的数量关系,并说明理由.3.在Rt △ABC 中,∠ACB =90°,CA =CB ,点O 为AB 的中点,点D 在直线AB 上(不与点A ,B 重合),连接CD ,线段CD 绕点C 逆时针旋转90°,得到线段CE ,过点B 作直线l ⊥BC ,过点E 作EF ⊥l ,垂足为点F ,直线EF 交直线OC 于点G .(1)如图1,当点D 与点O 重合时,请直接写出线段AD 与线段EF 的数量关系;(2)如图2,当点D 在线段AB 上时,求证:CG +BD =√2BC ;(3)连接DE ,△CDE 的面积记为S 1,△ABC 的面积记为S 2,当EF :BC =1:3时,请直接写出S 1S 2的值.4.如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;(2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD 上画点H,并连接MH,使∠BHM=∠MBD.5.如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP:PB=1:2,BF=√2k,求等联线AB和线段PE的长(用含k的式子表示).6.如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=4√2,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.7.如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平形线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60°,得到△ACQ,连接EQ、PQ,PQ交AC于F.(1)证明:在点P的运动过程中,总有∠PEQ=120°.(2)当APDP为何值时,△AQF是直角三角形?8.如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为√2,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.9.如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BCD=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA 的值.10.1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,由PC=P′C,∠PCP′=60°,可知△PCP′为三角形,故PP′=PC,又P′A′=P A,故P A+PB+PC=P′A′+PB+PP′≥A′B,由可知,当B,P,P′,A′在同一条直线上时,P A+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=;已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求P A+PB+PC的值;(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=2√3km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,√2a元/km,选取合适的P的位置,可以使总的铺设成本最低为元.(结果用含a的式子表示)11.如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;(3)填空:∠OCB的度数为.12.【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.【问题探究】(1)如图1,当m=1时,直接写出AD,BE的位置关系:.(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=√3,AB=4√7,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.13.在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.14.综合与实践.(1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.①∠BOC的度数是.②BD:CE=.(2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.①∠AOB的度数是;②AD:BE=.(3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.①说明△MND为等腰三角形.②求∠MND的度数.15.在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形P AB,再画出该三角形向右平移2个单位后的△P′A′B′.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.16.【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型迁移】(3)在(2)的条件下,若AD=4√2,BD=3CD,求cos∠AFB的值.17.如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.18.如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.19.如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.。
中考体系-90.图形的旋转-1(最全,含答案)
图形的旋转一、 生活中的旋转(非坐标轴)及中心对称 二、 坐标轴中的旋转 三、 旋转的性质四、 作图——旋转变换一、 生活中的旋转及中心对称1. 【易】将图所示的图案通过旋转后可以得到的图案是( )【答案】C2. 【易】(2010初一上期末)右图将如何变换才能够将下图所缺位置填满,形成矩形ABCD ( )A .顺时针旋转180度再向下平移B .逆时针旋转180度再向下平移C .顺时针旋转90度再向下平移D .逆时针旋转90度再向下平移 【答案】D3. 【易】(浙江杭州2012初一第二学期期中)如图,要使正五角星旋转后与自身重合,至少将它绕中心顺时针旋转的角度为_______度.A B C DD【答案】72度4. 【易】(2009年广东深圳外国语初二上)如图,E 为AC 、BD 的中点,若将ABE △看成由CDE △经图形顺时针旋转而得到,则旋转角是_________.【答案】180°5. 【易】(北京市西城区2011—2012学年度第一学期期末试卷)下列图形中,中心对称图形有A .4个B .3个C .2个D .1个 【答案】B6. 【易】(杭州萧山2011-2012初一第二学期期中)当一个图形在旋转变换中第一次与自身重合时,我们称此时图形转过的角度为旋转角,图中等边三角形和正方形的旋转角分别是( )A .60︒、90︒B .60︒、180︒C .120︒、90︒D .120︒、180︒【答案】C7. 【易】(初二下数学早读练习)如右上图所示,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是 ( )A .30︒B .60︒C .72︒D .90︒【答案】CE DCBA8. 【易】(10年北京八中期中)在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )【答案】B9. 【易】(沈阳)如图1,由“基本图案”正方形ABCO 绕O 点顺时针旋转90︒后的图形是( )【答案】A10. 【易】(广州市育才中学2011学年第一学期)在下图44的正方形网格中,MNP △绕某点旋转一定的角度,得到111M N P △,则其旋转中心可能是( )A .点AB .点BC .点CD .点D【答案】B11. 【易】(聊城市数学试题)如图,O 是正六边形ABCDEF 的中心,图形中可由OBC △绕点O 逆时针旋转120︒得到的三角形是_________________.【答案】ODE △12. 【中】(上海普陀区初三下质量调研)将图形(右)绕中心旋转180︒后的图形是_________(画出图形).11BA CDEF O ABCABCD【答案】13. 【中】(2012燕山二模)在平面内,如果一个图形绕一个定点旋转一个角度α(360α<︒)后,能与自身重合,那么就称这个图形是旋转对称图形,α为这个旋转对称图形的一个旋转角.例如,正方形绕着它的对角线交点旋转90︒、180︒、270︒都能与自身重合,所以正方形是旋转对称图形,90︒、180︒、270︒都可以是这个旋转对称图形的一个旋转角.请依据上述规定解答下列问题: ⑴判断下列命题的真假: ①等腰梯形是旋转对称图形. ②平行四边形是旋转对称图形.⑵下列图形中,是旋转对称图形,且有一个旋转角是120︒的是__________(写出所有正确结论前的序号).①等边三角形②有一个角是60︒的菱形③正六边形④正八边形 ⑶正五边形显然满足下面两个条件:①是旋转对称图形,且有一个旋转角是72︒. ②是轴对称图形,但不是中心对称图形.思考:还有什么图形也同时满足上述两个条件?请说出一种. 【答案】⑴①假②真;⑵①,③;⑶正十五边形二、 坐标轴中的旋转14. 【易】(2011•宜昌)如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为()21,.如果将矩形OABC 绕点O 旋转180︒旋转后的图形为矩形111OA B C ,那么点1B 的坐标为( )A .()21,B .()21-,C .()21--,D .()21-,【答案】C15. 【易】(2011华南师大附中初二下期中)正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90︒后,B 点的坐标为( )A .()22-,B .()41,C .()31,D .()40,【答案】B16. 【易】(2011年广西区钦州市中考数学试题)如图,在方格纸上的ABC △经过变换得到DEF △,正确的是( )A .把ABC △向右平移6格B .把ABC △向右平移4格,再向上平移1格C .把ABC △绕点A 顺时针旋转90︒,再向右平移6格D .把ABC △绕点A 逆时针旋转90︒,再向右平移6格 【答案】D17. 【易】(10年北京十三中期中)如图,以菱形ABCD 的两条对角线所在直线为坐标轴建立平面直角坐标系,已知菱形周长为12,120ABC ∠=︒,则点A 的坐标是___________.若将此菱形绕点O 顺时针旋转90︒,此时点A 的坐标是___________.【答案】0⎫⎪⎪⎝⎭,0⎛ ⎝⎭,18. 【易】(天津耀华中学2010届初三第一次月考)将点()02B ,绕点()13A ,逆时针旋转90︒,则旋转后B 点的坐标为___________.第2题AB CED F【答案】()22,19. 【易】(10年大兴二模)如图,在平面直角坐标系.xOy .中,等腰梯形ABCD 的顶点坐标分别为()11A ,,()21B -,,()21C --,,()11D -,..y .轴上一点()02P ,绕点A 旋转180°得点1P ,点1P 绕点B 旋转180°得点2P ,点2P 绕点C 旋转180︒得点3P ,则点3P 的坐标是(________,________).【答案】()60-,20. 【中】如图,在平面直角坐标系中,点B 的坐标是()10,,若点A 的坐标为()a b ,,将线段BA 绕点B 顺时针旋转90°得到线段BA ',则点A '的坐标是___________.【答案】()1,1b a +-21. 【中】(黑龙江省龙东地区2013年初中毕业学业统一考试数学试题)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC △在平面直角坐标系中的位置如图所示.⑴ 将ABC △向上平移3个单位后,得到111A B C △,请画出111A B C △,并直接写出点1A 的坐标.⑵ 将ABC △绕点O 顺时针旋转90︒,请画出旋转后的222A B C △,并求点B 所经过的路径长.(结果保留π)【答案】⑴ 如下图,1A 的坐标()36-,.⑵ 如下图2BB 的弧长.22. 【中】(2013年绥化市初中毕业学业考试数学试卷)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC △的顶点均在格点上,请按要求完成下列步骤:⑴ 画出将ABC △向右平移3个单位后得到的111A B C △,再画出将111A B C △绕点1B 按逆时针方向旋转90︒后所得到的212A B C △;⑵ 求线段11B C 旋转到12B C 的过程中,点1C 所经过的路径长.【答案】⑴ 正确画出平移后的图形正确画出旋转后的图形⑵ 点1C 所经过的路径长90π42π180⨯==三、 旋转的性质1. 角度23. 【易】(杭州青勇进中学2011第二学期七年级期中)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若COD △是由AOB △绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .135︒B .90︒C .45︒D .30︒【答案】B24. 【易】(首都师大附中2011-2012期中)如图,将ABC △绕点C 顺时针旋转40︒得A CB ''△,若AC A B ''⊥,则BAC ∠为( )CABC 2A 2C 1B 1A 1BACCD ABOAB'A'CBA .50︒B .60︒C .70︒D .80︒ 【答案】A25. 【易】(上海市中考题)如图,在ABC Rt ∆中,已知︒∠90=C ,︒=∠50B ,点D 在边BC 上,CD BD 2=,把ABC ∆绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt ACB △的边上,则m =_________.【答案】80 120︒︒或B '点落在AB 上或落在AC 上.26. 【易】(郴州市初中毕业考试试卷)(2011-2012北京交大附初二下期末)如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,1∠与2∠的和总是保持不变,那么1∠与2∠的和是_______度.【答案】9027. 【易】(杭州翠苑中学2009学年初一第二学期期中)如图,一块等腰直角的三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C ''的位置,使A C B ',,三点共线,那么旋转角度的大小为 .【答案】135︒28. 【易】(2011福建厦门中考)如图,在正方形网格中,将ABC △绕点A 旋转后得到ADE △,则下列旋转方式中,符合题意的是( )21A .顺时针旋转90︒B .逆时针旋转90︒C .顺时针旋转45︒D .逆时针旋转45︒ 【答案】B29. 【易】(2011年广州二中初三上期中)如左图,在同一平面内,将ABC △绕点A 旋转40︒到AB C ''△的位置,使得CC AB '∥,则B AC '∠=( )A .30︒B .40︒C .70︒D .80︒ 【答案】A30. 【易】(2012南京高淳县期中调研)如图,直角ABC △中,AC AB ⊥,30B ∠=︒.在平面内,将ABC △绕直角顶点A 逆时针旋转至AB C ''△的位置,点C 刚好落在B C ''上,则BAB '∠等于( )A .30︒B .60︒C .45︒D .90︒【答案】B31. 【易】(青岛市中考题)如图,P 是正ABC ∆内的一点,且6=PA ,8=PB ,10=PC ,若将PAC ∆绕点A 逆时针旋转后,得到AB P '∆,则点P 与P '之间距离为___________,APB ∠=_______________.CC'ABB'ABCB 'C 'A BC ED【答案】△APP '为等边三角形,660PP PA APP ''==∠=︒,,又22221086P B '==+ 22PB PP '=+,故90BPP '∠=︒,从而150APB APP BPP ''∠=∠+∠=︒.32. 【易】(09年石景山一模)如图所示,把一个直角三角尺ACB 绕着30︒角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则BDC ∠的度数为_________.【答案】15°33. 【易】(2010年初一下两部联考)已知30EAD ∠=°,ADE △绕着点A 旋转50°后能与ABC △重合,则BAE ∠=_________度.【答案】2034. 【易】(广州市育才中学2011学年第一学期)用等腰直角三角板画45AOB ∠=︒,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22︒,则三角板的斜边与射线OA 的夹角α为_________【答案】22︒35. 【易】(福建泉州丰泽区毕业考)在右图方格纸中,把ABC △绕A 逆时针旋转_________度后可得AB C ''△.CABP'PEDCBA【答案】90︒36. 【易】(2009深圳中学初二上期中)如下左图,90AOB ∠=︒,35B ∠=︒,A OB ''△可以看作是由AOB △绕点O 顺时针旋转α角度得到的.若点A '在AB 上,则旋转角α的大小可以是( )A .35︒B .55︒C .70︒D .90︒ 【答案】B37. 【易】(2010广州天河区期中考试)如图,已知点O 是等边ABC △三条高的交点,现将AOB △绕点O 至少要旋转几度后与BOC △重合( )A .60︒B .120︒C .240︒D .360︒ 【答案】B38. 【易】如图,在平面直角坐标系中,点A 在x 轴上,ABO ∆是直角三角形,,︒=∠90ABO 点B 的坐标为()12-,.将ABO ∆绕原点顺时针旋转90°得到O B A 11∆,则过1A 、B 两点的直线解析式为____________【答案】35y x =+39. 【中】(天津市耀华中学初二年级期末阶段性形成检测数学试卷)P 为等边ABC △内任意一点,将ABP △绕点A 逆时针方向旋转60︒,边AB 与AC 重合,得到ACQ △,若48PB PA PC ===,,则APB ∠的度数为________.【答案】150︒40. 【中】(2012年齐齐哈尔市中考题)如图,在Rt ABC △,AC AB =,点D 为BC 中点,MDN ∠=90°,MDN ∠绕点D 旋转,DM 、DN 分别与边AC AB 、交于E 、F 两点,下列结论:①BC CF BE 22=+;②ABC AEF S S ∆∆≤41;③AEDF AD EF S =⋅四边形;④EF AD ≥;⑤AD与EF 可能互相平分.其中正确结论的个数是( ) A .1个 B .2个C .3个D .4个【答案】C△AED ≌△CFD ,设AB AC a ==,AE CF x ==,则AF a x =-,2211111()22228AEFAEFSAE AF x a x x a a S ⎛⎫==-=--+ ⎪⎝⎭,有最大值218a .222222211()222EF AE AF x a x x a a EF ⎛⎫=+=+-=-+ ⎪⎝⎭,最小值为EF AD ,≥. 212ADC AEDF S S AD ==四边形. ③④错误.41. 【中】如图,矩形OABC 在平面直角坐标系中,O 为坐标原点,点A (0,4),C (2,0),将矩形OABC 绕点O 按顺时针方向旋转135°,得到矩形EFGH (点E 与点O重合). ⑴若GH 交y 轴于点M ,则FOM ∠=___________,OM =__________. ⑵矩形EFGH 沿y 轴向上平移t 个单位.①直线GH 与x 轴交于点D ,若BO AD //,求t 的值;EM DCBAFN②若矩形EFGH 与矩形OABC 重叠部分的面积为S ,试求当2240-≤<t 时,S 与t 之间的函数关系式【答案】⑴ 45︒;⑵ ①四边形ADOB 为平行四边形,2OD AB ==,如图①,设OE t ON t ==,则,2)EN NH DN ==-=,,.由2 )2OD AB t ==-+=,2t =故.② 在矩形 EFGH y 沿轴向上平移的过程中,考虑三个极端情况;当EF 经过点C 时,2t =;当HG 经过点O时,t =GF 经过点C时,2t =. 从而分类讨论得:221 (02)22 2 (212)2)2t t S t t t t t ⎧<⎪⎪⎪=-<⎨⎪⎪-+-<⎪⎩≤≤≤42. 【中】将ABC ∆绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得C B A ''∆,即如图①,,θ='∠B BA n ACC A BC C B AB B A ='=''='.我们将这种变换记为[θ,n ].图④图③图②图①⑴如图①,对ABC ∆作变换[60°,3]得C B A ''∆,则=∆''∆ABC C B A S S :_____________;直线BC 与直线C B ''所夹的锐角为__________度.⑵如图②,ABC ∆中,,,︒=∠︒=∠9030ACB BAC ,对ABC ∆作变换[θ,n ]得C B A ''∆,使点B ,C ,C '在同一直线上,且四边形C B AB '为矩形,求θ和n 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第23章 图形的旋转中考真题精编一
1. (2020•赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是( )
A . 等边三角形
B . 平行四边形
C . 正八边形
D . 圆及其一条弦
2. (2020•海南)如图,在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,1AC cm =,将Rt △ABC 绕点A 逆时针旋转得Rt △AB C '',使点C '落在AB 边上,连接BB ',则BB '的长度是(
)
C A .1cm B .2cm
4. (2020•宁夏)如图,直线5
42
y x =
+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点B 逆时针旋转90︒后得到△11A O B ,则点1A 的坐标是 .
5. (2020•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.
(1)画出线段AB 关于线段MN 所在直线对称的线段11A B (点1A ,1B 分别为A ,B 的对应点); (2)将线段11B A 绕点1B 顺时针旋转90︒得到线段12B A ,画出线段12B A .
6. (2019·天津市)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC
7. (2015•赤峰)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-3,4),B (-4,2),C(-2,1),且△A1B1C1与△ABC关于原点O成中心对称.
(1)画出△A1B1C1,并写出A1的坐标;
(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.
8.(2014•烟台)如图,将△ABC绕点P顺时针旋转90°得△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)
9. (2014•仙桃)如图,在直角坐标系中,点A的坐标为(﹣1,2),点
C的坐标为(﹣3,0),将点C绕点A逆时针旋转90°,再向下平移3个
单位,此时点C的对应点的坐标为.
11.(2020•山西)综合与实践问题情境:
如图①,点E为正方形ABCD内一点,90
∠=︒,将Rt△ABE绕点B按顺时针方向旋转
AEB
90︒,得到△CBE'(点A的对应点为点)C.延长AE交CE'于点F,连接DE.
'的形状,并说明理由;
猜想证明:(1)试判断四边形BE FE
(2)如图②,若DA DE
=,请猜想线段CF与FE'的数量关系并加以证明;
解决问题:(3)如图①,若15
AB=,3
CF=,请直接写出DE的长.
12. (2019·通辽)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;
②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
13. (2018·鄂尔多斯)(1)【操作发现】
如图1,将△ABC绕点A顺时针旋转60°,得到△ADE,连接BD,则∠ABD=度.(2)【类比探究】如图2,在等边三角形ABC内任取一点P,连接PA,PB,PC,求证:以PA,PB,PC的长为三边必能组成三角形.
(3)【解决问题】如图3,在边长为7的等边三角形ABC内有一点P,∠APC=90°,∠BPC=120°,求△APC的面积.
(4)【拓展应用】如图4是A,B,C三个村子位置的平面图,经测量AC=4,BC=5,∠ACB=30°,P为△ABC内的一个动点,连接PA,PB,PC.求PA+PB+PC的最小值.
14. (2015•随州)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△AB E绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,
)米,现要在E、F之间修一条笔直道路,求这条道路EF的且AE⊥AD,DF=40(31
长(结果取整数,参考数据:2=1.41,3=1.73)
15. (2015•三明)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.。