学生宿舍设计方案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年第二学期

工程与决策综合实验课程论文

题目:方法分析学生宿舍设计方案

姓名:刘洋、刘欢、檀伟琴、张颖

学号:

专业:数学与应用数学(专升本)

授课教师:**

完成时间: 2015年6月17日

方法分析学生宿舍设计方案

随着高等教育改革,高校合并,扩大招生,后勤社会化改革等一系列高校发展措施的实施,加强高校学生宿舍的建设已成为一项重要的任务。但是,我国传统的学生宿舍建设水平较低,设计师在进行创作的过程中可以凭借的理论资料较少,这一切使高校学生宿舍的研究显得十分迫切和重要。从学生的经济性方面、舒适性方面和安全性方面和学院的经济效益综合考虑。对此,采用定性与定量相结合的层次分析法对学生宿舍设计方案的评价进行分析,本文给出了它的原理、思想和评价步骤,并进行了算法比较。并用改进层次分析法确定各评价指标的权重,最终得出最好建设方案。采用定性与定量相结合的层次分析法()对学生宿舍设计方案进行分析,并从经济性、舒适性和安全性方面等因素建立模型。建立各个层次的判断矩阵,通过软件计算各个方面的总权重值并进行排序,从而判断出哪个因素是我们考虑的重点,进而抉择出哪种方案最好,最终得出第二种方案最好。

从实例中得到的结论与实际相符,并且数学模型简单,容易掌握,是切实可行的、易接受的、也便于推广。实例证明:论文所建立的学生宿舍设计方案评价方法是先进的,该模型和算法具有严密的逻辑推理和数学依据,为学生宿舍设计方案评价提供了一个新的方法。

一、问题重述

随着社会的发展教育越来越重要,学生的数量越来越多,学生的生活成为了我们比较观注的问题。学生宿舍事关学生在校期间的生活品质, 直接或间接地影响到学生的生活、学习和健康成长。学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理, 同时要考虑成本和收费的平衡, 这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。因此,学生宿舍的

设计必须考虑经济性、舒适性和安全性等问题。

经济性:建设成本、运行成本和收费标准等。

舒适性:人均面积、使用方便、互不干扰、采光和通风等。

安全性:人员疏散和防盗等。

二、问题分析

本文首先从目前高校学生宿舍的建设情况出发。然后,通过对高校学生进行实地走访和问卷调查,了解到目前高校学生宿舍在使用上的一些不合理现象。接着,结合调查分析指出影响宿舍设计的主要因素,提出“以人为本”的设计原则。从学生的经济性、舒适性和安全性各方面因素考虑,也要从学院的投资、收益上来考虑,本问题的定量数据不多,但问题包含的因素及其关系具体而明确。我们运用层次分析法,两两比较列出成对比较矩阵,进而求出相应的最大特征值和权向量。并进行层次单排序、组合总排序及其一致性检验,得出最佳方案。

三、问题的假设:

1、假设每个设计方案建设成本的单价一致;

2、假设各宿舍公共设施一致;

3、假设每平方米的消耗(运行成本)一致;

4、假设每个平方米的收费标准一致;

5、假设城市的区位、文化习俗的差异不大;

6、假设每套方案的建筑楼层的使用年限是一致的;

7、假设每个地域的光照强度和风的动力因素相差不大;

8、假设每个地域的治安条件相差不大;

9、假设每个地域的自然灾害因素的发生几率是一致的;

10、假设每个寝室与寝室之间互不干扰。

四、符号说明:

A :表示准则层A 对目标层O 的成对比较矩阵;

i A :表示子准则层B 对于准则层A 的成对比较矩阵;1,2,3 i B :表示方案层C 对子准则层B 的成对比较矩阵;1,2 (9)

ij λ : 表示每个矩阵的最大特征值;

ij CI : 表示各一致性指标;

ij RI :表示各随机一致性指标;

ij CR : 表示各随机一致性比率;

j B :表示子准则层的各个因素;

j A :表示准则层 各个因素;

ij ω :表示未归一化的权向量; ij

ϖ :表示归一化后的权向量; n 表示A 层对目标所建立矩阵的阶数;

1n 表示经济性方面的子准则层因素对经济性的对比矩阵的阶数; 2n 表示舒适性方面的子准则层因素对舒适性的对比矩阵的阶数; 3n 表示安全性方面的子准则层因素对安全性的对比矩阵的阶数。

五、模型的建立与分析:

运用层次分析法分析、解决学生宿舍设计方案的评价。层次分析法是一种定性与定量相结合的系统分析法,根据问题的总目标,以系统化的观点,把问题分解成若干因素,并按其支配关系构成递阶层次结构模型,然后运用两两比较的方法确定决策方案的重要性,从而获得满意的结果。

5.1 构造层次结构图:

将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图如下:

5.2 构造成对比较矩阵

在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不易被别人接受,因而我们采用了 等人提出的一致矩阵法,即不把所有因素放在一起比较,而是两两相互比;此时采用相对尺度,尽可能减少性质不同的诸因素相互比较的困难,以提高准确度 。

判断矩阵是表示本层所有因素针对上一层某一个因素的相对重要性的比较 。 判断矩阵的元素ij a 用 的 1 — 9 标度方法给出。从层次结构的第二层开始,对于从属于上一层每一个因素的同一诸因素 , 用成对比法和 1-9 比较尺度构造成对比较阵 , 每次取两个因素 i A 和j A 用ij a 表示 i A 和j A 对目标的影响

之比,全部比较结果可用成对比较矩阵:1

)(,0,)(-⨯=>=ij ji ij n n ij a a a a A ( 1,2,3 )

相关文档
最新文档