实验一金属箔式应变片

合集下载

金属箔式应变片实验报告

金属箔式应变片实验报告

一、实验目的1. 了解金属箔式应变片的工作原理和结构特点。

2. 掌握金属箔式应变片的安装方法及注意事项。

3. 通过实验验证金属箔式应变片的性能,包括灵敏度、非线性误差、温度系数等。

二、实验原理金属箔式应变片是一种将应变转换为电信号的传感器。

当应变片受到拉伸或压缩时,其电阻值发生变化,从而产生电压信号。

实验中,利用金属箔式应变片组成的电桥电路,通过测量电桥输出电压的变化,来反映应变片受到的应变。

三、实验仪器与材料1. 金属箔式应变片2. 电桥电路3. 稳压电源4. 电压表5. 数字多用表6. 加载装置7. 温度计8. 实验台四、实验步骤1. 将金属箔式应变片安装在实验台上,确保其固定牢固。

2. 将应变片接入电桥电路,连接稳压电源和电压表。

3. 在加载装置上施加一定的力,观察电压表读数的变化。

4. 记录不同加载力下的电压值。

5. 改变加载方向,重复步骤3和4,观察电压值的变化。

6. 测量应变片的温度,记录不同温度下的电压值。

7. 利用数字多用表测量应变片的电阻值。

五、实验结果与分析1. 灵敏度测试根据实验数据,绘制应变片电压值与加载力的关系曲线。

根据曲线斜率,计算应变片的灵敏度。

2. 非线性误差测试根据实验数据,绘制应变片电压值与加载力的关系曲线。

通过曲线拟合,得到线性拟合曲线,计算非线性误差。

3. 温度系数测试根据实验数据,绘制应变片电压值与温度的关系曲线。

通过曲线拟合,得到线性拟合曲线,计算温度系数。

六、实验结论1. 通过实验验证了金属箔式应变片的工作原理和结构特点。

2. 实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度。

3. 温度对金属箔式应变片的影响较小,温度系数较小。

七、实验总结本次实验对金属箔式应变片进行了性能测试,了解了其工作原理和结构特点。

通过实验,掌握了金属箔式应变片的安装方法及注意事项。

实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度,适用于各种应变测量场合。

实验一 金属箔式应变片实验报告

实验一 金属箔式应变片实验报告

厦门大学嘉庚学院传感器实验报告实验项目:实验一、二、三 金属箔式应变片——单臂、半桥、全桥实验台号:专 业: 物联网工程 年 级: 2014级 班 级: 1班 学生学号: ITT4004 学生姓名: 黄曾斌实验时间: 2016 年 5 月 20 日实验一 金属箔式应变片——单臂电桥性能实验一.实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二.基本原理金属电阻丝在未受力时,原始电阻值为R=ρL/S 。

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

输出电压:1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出UO14/εEK =。

2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出UO22/εEK =。

3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。

全桥电压输出U O3εEK =。

三.需用器件与单元CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。

()()ER R R R R R R R U O 43213241++-=四.实验步骤1.根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的BF 1、BF 2、BF 3、BF 4。

加热丝也接于模块上,可用万用表进行测量判别,R BF1= R BF2= R BF3= R BF4=350Ω,加热丝阻值为50Ω左右。

2.差放调零 3.电桥调零4.在电子秤上放置一只砝码,读取电压表数值,依次增加砝码和读取相应的电压表值,直到200g 砝码加完。

金属箔式应变片实验

金属箔式应变片实验
五、实验数据处理
表1-1电桥输出电压与所加负载重量值 重 20 40 60 80 100 120 140 160 180 200 量 (g)
电压 19.6 39.0 58.9 78.8 98.6 118.3 137.8 157.2 176.7 196.5 (mV)
重 20 40 60 80 100 120 140 160 180 200 量 (g)
实验一 金属箔式应变片实验
1、 实验目的
了解金属箔式应变片的应பைடு நூலகம்效应,掌握直流全桥电桥的工作原理及
工作性能,理解电阻式传感器的工作原理与工作特性,加深实际测量系
统设计中桥式电路应用的认识。
二、实验仪器
应变式传感器实验单元、砝码、直流电压表、±15V电源、±4V电 源,传感器调理电路挂件。
三、实验原理
四、实验内容与步骤
1.应变片的安装位置如图1-1所示,应变式传感器已装在传感器实 验箱(一)上,传感器中各应变片已接入模板的左上方的R1、R2、R3、 R4,可用万用表测量R1=R2=R3=R4=350Ω。
图1-1 应变式传感器安装示意图
图1-2 应变式传感器全桥实验接线图 2.把直流稳压电源接入“传感器调理电路”实验挂箱,检查无误 后,开启实验台面板上的直流稳压电源开关,调节Rw3使之大致位于中 间位置(Rw3为10圈电位器),再进行差动放大器调零,方法为:将差 动放大器的正、负输入端与地短接,输出端Uo2接直流电压表,调节实 验模板上调零电位器Rw4,使直流电压表显示为零,关闭直流稳压电源 开关。(注意:当Rw4的位置一旦确定,就不能改变。)
金属的电阻表达式为: (1) 当金属电阻丝受到轴向拉力F作用时,将伸长,横截面积相应减 小,电阻率因晶格变化等因素的影响而改变,故引起电阻值变化。对式 (1)全微分,并用相对变化量来表示,则有: (2) 若径向应变为,电阻丝的纵向伸长和横向收缩的关系用泊松比表示为, 因为=2(),则(2)式可以写成: (3) 式(3)为“应变效应”的表达式。称金属电阻的灵敏系数,从式 (3)可见,受两个因素影响,一个是(1+),它是材料的几何尺寸变 化引起的,另一个是,是材料的电阻率随应变引起的。对于金属材料而 言,以前者为主,则,对半导体,值主要是由电阻率相对变化所决定。 实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比 例。通常金属丝的灵敏系数=2左右。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作 用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形, 其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变 化,根据(3)式,可以得到被测对象的应变值,而根据应力应变关 系: (4) 可以测得应力值σ。通过弹性敏感元件,将位移、力、力矩、加速度、 压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成 各种应变式传感器。

金属箔式应变片

金属箔式应变片

实验一 传感器综合实验-金属箔式应变片一、实验目的1、了解金属箔式应变片,单臂单桥的工作原理和工作情况。

2、验证单臂、半桥、全桥的性能及相互之间关系。

二、所需模块及仪器设备:直流恒压源 DH-VC2、电桥模块(只提供器件)、差动放大器(含调零模块)、电桥模 块、测微头及连接件、应变片、万用表、九孔板接口平台和传感器实验台一。

旋钮初始位置:直流恒压源 DH-VC2±4V 档,万用表打到 2V 档,差动放大增益中间位置。

三.实验原理:传感器是实验测量获取信息的重要环节,通常传感器是指一个完整的测量系统或者装置,他能感受规定的被测量的信号并按一定的规律转化成输出信号。

传感器给出的是电信号。

传感器的组成传感器由图1-1所示的几部分组成。

其中,敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。

图1-1 传感器的组成由半导体材料制成的物性性传感器基本是敏感元件与转换元件二合一,直接能将被测量转换为电量输出,如压电传感器、光电池。

热敏电阻等。

传感器的静态特性传感器的静态特性是指当被测量的值处于稳定状态时的输入输出关系。

只考虑传感器的静态特性时,输入量与输出量之间的关系式中不含有时间变量。

衡量静态特性的重要指标是线性度、 灵敏度,迟滞和重复性等。

1.线性度传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。

输出与输入关系可分为线性特性和非线性特性。

从传感器的性能看,希望具有线性关系,即具有理想的输出输入关系。

但实际遇到的传感器大多为非线性,如果不考虑迟滞和蠕变等因素,传感器的输出与输入关系可用一个多项式表示:01122n n y a a x a x ...a x =++++ (1-1)式中:a 0——输入量x 为零时的输出量;a 1,a 2,…,a n ——非线性项系数。

各项系数不同,决定了特性曲线的具体形状各不相同。

传感器实验1_金属箔式应变片性能

传感器实验1_金属箔式应变片性能

一、实验目的:了解金属箔式应变片,单臂、半桥、全桥电桥的工作原理。

二、实验原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。

它可用于能转化成形变的的各种物理量的检测。

贴片式应变片的应用:在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片半导体应变片很少应用(温漂、稳定性、线性度不好且易损坏),一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。

箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或者金属箔制成,如下图所示:金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件。

电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为△R/R=Kε。

式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数,ε=△L/L为电阻丝长度相对变化。

电桥是完成电阻到电压的比例变化,测取电压值。

(1)单臂电桥: 输出电压U01=EKε/4,输出信号最小,线性、稳定性较差。

(2)半桥:选用不同受力方向的应变片接入电桥作为邻边。

当两片应变片阻值和应变量相同时,其桥路输出电压U02=EKε/2,整体性能比单臂有所改善。

(3)全桥:将受力性质相同的两应变片接入电桥对边,不同的接入邻边,其桥路输出电压U03=KEε。

输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

(4)比较:量程不同,精度不同,选用比较多的是半桥或全桥。

三、使用仪器、材料:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源;准备导线;副电源管下面电路部分。

实验一 金属箔式应变片

实验一  金属箔式应变片
实验一金属箔式应变片——电子秤实验
一、实验目的:
了解金属箔式应变片的应变效应,直流全桥工作原理和性能,了解电路的定标。
二、实验仪器:
应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表(自备)。
三、实验原理:
电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为
(1-1)
式中 为电阻丝电阻相对变化;
为应变灵敏系数;
为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。如图1-1所示,将四个金属箔应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。
图1-1双孔悬臂梁式称重传感器结构图
6.重复4、5步骤,直到精确为止,把电压量纲V改为重量量纲Kg即可以称重。
5.将砝码依次放到托盘上并读取相应的数显表值,直到200g砝码加完,记下实验结果,填入下表。
6.去除砝码,托盘上加一个未知的重物(不要超过1Kg),记录电压表的读数。根据实验数据,求出重物的重量。
7.实验结束后,关闭实验台电源,整理好实验设备。
五、实验结果
实验结果记录如下表:
重量(g)
20
40
60
80
100
120
140
160
180
电压(mV)
19
38
58
75
93
112
129
147
165
从上式可以看出重量与电压呈线性关系
U=0.91(g/mv)*W
由所得数据绘出单臂电桥的传感器特性曲线如下:
(1)计算系统灵敏度:
ΔV=[(38-19)+(58-38)+……+(165-147)]/8=146/8=18.25mv

山东交通学院实验一 金属箔式应变片性能一单臂电桥

山东交通学院实验一 金属箔式应变片性能一单臂电桥

实验一金属箔式应变片性能一单臂电桥一、实验目的:了解金属箔式应变片及单臂电桥的工作原理。

二、实验原理:本实验说明箔式应变片及单臂直流电桥工作原理:箔式应变片是最常用的测力传感元件,使用时应变片要牢固地粘贴在测试体表面,当测试体受力发生形变时,应变片的敏感栅长度也随同发生变形,其电阻也随之发生相应的变化,通过测量电路,将应变片电阻的变化变成电信号输出,完成力(非电量)与电量的转换。

差动电桥电路是应变片最常用的测量电路,当桥路4个电阻处于对臂阻值乘积相等时,电桥平衡,输出为零。

设:桥臂四个电阻分别是R1、R2、R3、R4,各电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/R3、ΔR4/R4,如:R1=R2=R3=R4=R、ΔR1=ΔR2=ΔR3=ΔR4=ΔR、ΔR<<R, 则:桥路输出电压(Vo)为:Vo=Vi×(ΔR1/R1+ΔR2/R2+ΔR3/R3+ΔR4/R4)/4 = Vi×(ΔR/R)/4,注:Vi——供桥电压,由此可知当使用一个应变片(单臂电桥)时:Vo=Vi(ΔR/R)/4;当使用二个应变片(半桥)时:Vo=Vi(ΔR/R)/2;当使用四个应变片(全桥)时:Vo=Vi(ΔR/R);因此在差动电桥电路中单臂、半桥、全桥电路的灵敏度依次增大。

三、所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器(998A 和N型适用)或应变悬臂梁(998B型适用)、砝码、F/V表。

四、旋钮初始位置:直流稳压电源置±4V档,F/V表置2V档,差动放大增益最大。

五、实验步骤:1、了解所需单元、部件在实验仪上的所在位置,观察称重传感器(998A和N型适用)或应变悬臂梁(998B型适用)上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表各贴二片受力应变片。

2、将差动放大器调零:用连线将差动放大器正(+)、负(-)端对地短接。

差动放大器输出端与F/V表的输入插口Vi相连;差动放大器增益旋至最大,开启主电源,然后调整差动放大器调零旋钮使F/V表显示为零,关闭主电源。

实验一金属箔式应变片实验报告

实验一金属箔式应变片实验报告

实验一金属箔式应变片实验报告一、引言金属箔式应变片是一种常用的测量材料应变的传感器。

它由一层金属箔制成,可以通过测量箔片在外力作用下的形变来推算出材料的应力和应变。

本实验旨在通过使用金属箔式应变片,了解其原理并掌握测量材料应力和应变的方法。

二、实验目的1.了解金属箔式应变片的原理和使用方法;2.熟悉测量材料应变的实验步骤和操作技巧;3.通过实验,掌握金属箔式应变片的线性度和稳定性。

三、实验器材1.金属箔式应变片2.可调节力臂的托盘3.数字万用表4.检测电缆5.基板四、实验步骤1.准备工作(1)将金属箔式应变片粘贴在基板上,确保其与基板良好接触。

(2)将检测电缆与金属箔式应变片焊接连接,确保连接良好。

(3)将托盘放在平稳的台面上,并将托盘的力臂调整至合适位置。

2.实验测量(1)将标准质量放置在托盘的力臂上,记录下其质量数值。

(2)通过将标准质量增加或减小,使得金属箔式应变片在不同的载荷下产生不同的应变。

(3)使用数字万用表测量金属箔式应变片上的电压输出值,并记录。

3.实验数据处理(1)将实验得到的电压输出值与标准质量进行对应,得到应变值。

(2)通过计算应变的变化率,得到材料的应力和应变关系。

(3)绘制应力-应变曲线,并用最小二乘法拟合出线性程度。

五、实验结果与讨论在实验中我们得到了金属箔式应变片的电压输出值和标准质量的对应关系,并通过计算得出了应变的变化率。

将应力与应变关系绘制成图表,通过拟合得出了线性程度。

在实验中,我们还观察了金属箔式应变片的稳定性,并分析了其受到外界条件变化的影响。

六、实验结论通过实验,我们了解了金属箔式应变片的原理和使用方法,并掌握了测量材料应变的实验步骤和操作技巧。

通过对实验数据的处理和分析,我们得出了金属箔式应变片的线性程度和稳定性,并得出了应力与应变的关系。

实验结果表明,金属箔式应变片可以有效测量材料的应变,并具有较好的线性度和稳定性,适用于材料应变的测量。

实验一金属箔式应变片实验报告

实验一金属箔式应变片实验报告

实验一-金属箔式应变片实验报告金属箔式应变片实验报告一、实验目的1.学习和了解金属箔式应变片的基本原理和应用。

2.掌握应变片的粘贴和测试方法。

3.通过实验数据分析,理解应变、应力和弹性模量的关系。

二、实验原理金属箔式应变片是一种用于测量物体应变的传感器,其工作原理基于电阻的应变效应。

当金属导体受到拉伸或压缩时,其电阻值会发生变化。

这种现象称为“应变效应”。

利用这一原理,可以将应变片粘贴在待测物体上,通过测量电阻值的变化来推算物体的应变。

三、实验步骤1.准备材料:金属箔式应变片、放大镜、砂纸、酒精、丙酮、吹风机、应变计、电阻表、加载装置(如砝码或液压缸)。

2.选定待测物体并清理表面。

对待测物体表面进行打磨、清洁和干燥处理,确保表面无油污和杂质。

3.粘贴应变片:将金属箔式应变片粘贴在待测物体表面,确保应变片与物体表面完全贴合,无气泡和褶皱。

使用放大镜观察应变片的位置和贴合程度。

4.连接电阻表:将应变片的引脚连接到电阻表上,确保连接稳定可靠。

5.加载待测物体:采用适当的加载装置对待测物体进行加载,使物体产生应变。

记录加载过程中电阻表读数的变化。

6.数据记录:在加载过程中,每隔一定时间记录一次电阻表读数,并观察应变片应变的规律。

当应变达到最大值时,停止加载并记录最终的电阻值。

7.数据处理和分析:根据记录的电阻值和已知的应变系数,计算出物体的应变值。

分析应变、应力和弹性模量之间的关系。

四、实验结果与分析1.应变测量结果:通过电阻表测量得到应变片的电阻值变化量,根据应变系数计算得到物体的应变值。

2.应力和弹性模量之间的关系:根据弹性力学的基本原理,应力和弹性模量之间存在一定的关系。

本实验中,通过测量物体的应变和应力,可以进一步计算出物体的弹性模量。

3.应变片灵敏度的分析:通过比较不同应变片在同一物体上的测量结果,可以分析应变片的灵敏度和精度。

五、实验总结通过本次实验,我们学习和了解了金属箔式应变片的基本原理和应用,掌握了应变片的粘贴和测试方法,并通过实验数据分析,理解了应变、应力和弹性模量的关系。

应变实验

应变实验

综合实验一金属箔式应变片实验(一)金属箔式应变片――高精度单臂电桥性能实验一、实验目的利用CSY2000型应变式传感器实验模板,了解由金属箔式应变片构成的高精度单臂电桥的应变效应,工作原理和性能。

二、基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相= EKε/4。

应的受力状态。

对单臂电桥输出电压 Uo1三、需用器件与单元主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、412位数显万用表(自备)。

图2-1 应变片单臂电桥性能实验安装、接线示意图四、实验步骤应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1.根据图2-1安装接线。

应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用表进行测量判别。

常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。

2.放大器输出调零:将图4-1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi =0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V挡,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。

实验一 金属箔式应变片

实验一  金属箔式应变片

实验一 金属箔式应变片——单臂电桥性能实验一、 实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、 基本原理金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。

金属的电阻表达式为:l R Sρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。

对式(1)全微分,并用相对变化量来表示,则有:R l S R l S ρρ∆∆∆∆=-+ (2) 式中的l l ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×610mm mm-)。

若径向应变为r r∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为l r r l μ∆∆=-(),因为S S ∆=2(r r ∆),则(2)式可以写成: 01212R l l l k R l l l l lρρρμμρ∆∆∆∆∆=++=++=∆()() (3) 式(3)为“应变效应”的表达式。

0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是ρρε∆(),是材料的电阻率ρ随应变引起的(称“压阻效应”)。

对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。

实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。

通常金属丝的灵敏系数0k =2左右。

用应变片测量受力时,将应变片粘贴于被测对象表面上。

在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。

通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系:εσE = (4)式中 σ——测试的应力;E ——材料弹性模量。

可以测得应力值σ。

通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。

金属箔式应变片实验

金属箔式应变片实验

实验步骤
2、电桥输出凋零:将JP1~JP6依次短接为: “RA”、“R2”、“R3”、“R4”、“RW1” 、“R24”(JP6可根据实验情况调整),接通模 块电源,调节电桥单元中的RW1电位器,使电压 表显示为0。
实验步骤
3、在托盘中放入一只砝码(20g/只),读
取数显电压值,依次增加砝码和读取相对应
实验原理
05 实验步骤
实验步骤
1、差分放大器调零:实验模块电源单元 的±15V、±4V接主台体电源,差分放大 单元的输出接至台体电压表,选择2V档, 短接Vin1、Vin2至GND,接通模块电源, 将RW3调至中间位置,调节RW4使电压 表显示为0,断开模块电源,断开Vin1、 Vin2与GND的连接。
实验要求
完成实验报告,根据表1数据画出实验 曲线并计算灵敏度S=ΔV/ΔW 比较单臂、半桥、全桥输出时灵敏度的 关系并得出相应的结论
03 实验仪器
实验仪器
实验仪器
04 实验原理
实验原理
电阻丝在外力作用下发生机械形变时,其 电阻值发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为: ΔR/R=Kε
式中:ΔR/R 为电阻丝电阻相对变化, K 为应变灵敏系数, ε=ΔL/L为电阻丝长度相对变化
实验原理Biblioteka RA+△RA R3
目录 | CONTENT
1
实验目的
2
实验内容
3
实验仪器
4
实验原理
5
实验步骤
6
实验要求
01 实验目的
实验目的
了解金属箔式应变片的应变效应,单臂电桥工作 原理和性能 了解应变片半桥(双臂)、全桥工作特点及性能
比较单臂、半桥、全桥输出时灵敏度的关系并得 出相应的结论

【精品】实验一 金属箔式应变片性能

【精品】实验一 金属箔式应变片性能

【精品】实验一金属箔式应变片性能实验目的:探究金属箔式应变片的性能,包括灵敏度、线性性以及温度特性。

实验步骤:1. 准备实验所需材料和仪器:金属箔式应变片、应变测量仪、电阻箱、电流表、交流电源、温度计。

2. 将金属箔式应变片放置在被测物体上,确保箔片与测量物体紧密接触。

3. 将应变测量仪连接到金属箔式应变片上,并设置合适的测量范围。

4. 通过电阻箱和电流表连接一个稳定的电流源,并将电流流过金属箔式应变片。

5. 记录应变测量仪显示的电压值,并结合电流和电阻计算出应变值。

6. 测量不同应变下的电压和应变值,并记录数据。

7. 分析数据,计算出金属箔式应变片的灵敏度,即电压与应变之间的比例关系。

8. 进行线性性测试,通过改变电流大小,测量不同应变下的电压,并绘制电压-应变曲线。

9. 测量金属箔式应变片在不同温度下的性能,并记录数据。

10. 计算出温度对金属箔式应变片性能的影响。

实验注意事项:1. 在进行实验前,保证仪器和设备正常工作,测量范围和设置正确。

2. 实验过程中应注意安全,谨防电流过大导致触电风险。

3. 在记录数据时要准确无误,避免误差产生。

4. 在测量温度时,使用合适的温度计,并保证测量准确。

5. 实验结束后要及时关闭电源并安全处理实验废弃物。

实验结果分析:通过实验可以得出金属箔式应变片的灵敏度、线性性以及温度特性等性能。

根据实验数据,可以计算出灵敏度,并绘制出电压-应变曲线。

同时,通过测量不同温度下的性能数据,可以分析温度对金属箔式应变片性能的影响。

这些结果对于金属箔式应变片在工程应用中的选择和设计具有重要的指导作用。

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告金属箔式应变片是一种常见的测量物体变形的仪器,主要用于测量实验中材料的力学特性和应变分布。

本实验通过对金属箔式应变片的性能进行测试,旨在探究其力学性能并评估其应用的可行性。

以下是关于金属箔式应变片性能实验的报告。

一、实验目的:1.掌握金属箔式应变片的基本原理和工作方式;2.了解金属箔式应变片的力学性能,如线性范围、敏感系数等;3.研究金属箔式应变片的应变分布,并评估其应用可行性。

二、实验器材:1.金属箔式应变片;2.电桥;3.高精度电压源;4.五步电压变阻箱;5.数字万用表;6.计算机及相应软件。

三、实验步骤:1.将金属箔式应变片安装在待测物体上,并确保其平整、牢固;2.通过电桥连接金属箔式应变片的导线,并设置适当的电压源;3.将五步电压变阻箱设置为规定的输出电压,并通过电流表测量电压源的电流;4.使用数字万用表测量金属箔式应变片的输出电压,并记录测量值;5.重复步骤3和步骤4,改变电阻箱的输出电压,并记录相应的电流和电压值;6.使用计算机及相应软件进行数据处理,并计算金属箔式应变片的力学性能指标。

四、实验结果与讨论:通过实验测量得到的数据可以用于评估金属箔式应变片的力学性能。

其中,线性范围是指金属箔式应变片能够线性响应的应变范围,即在该范围内,输出的电压与应变呈线性关系;敏感系数是指单位应变的变化引起的电压变化,可以通过计算斜率得到。

五、实验结论:六、实验心得:通过本次实验,我进一步了解了金属箔式应变片的原理和工作方式,并学习了其性能测试的方法和步骤。

同时,实验过程中,我也体会到了仪器的正确使用和数据处理的重要性,这对于实验结果的准确性和可靠性至关重要。

通过本次实验,我不仅增加了实验操作技能,还加深了对材料力学性能的理解,提高了实验设计和数据分析的能力。

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告金属箔式应变片性能实验报告引言:金属箔式应变片是一种常用的测量应变的工具,广泛应用于工程领域。

本实验旨在研究不同材料、不同厚度的金属箔式应变片的性能,并探讨其在实际应用中的优缺点。

一、实验目的通过对金属箔式应变片的性能测试,了解其应变灵敏度、线性范围、温度影响等特性,为其在工程实践中的应用提供参考。

二、实验材料与方法1. 实验材料:选取了不同材料的金属箔式应变片,包括铜、铝和钢等常见金属材料,并分别制备了不同厚度的应变片。

2. 实验仪器:使用电子拉伸试验机进行拉伸实验,并配备应变片固定装置和应变片读数装置。

3. 实验方法:a) 将不同材料、不同厚度的金属箔式应变片固定在试样上,并连接至电子拉伸试验机。

b) 在一定拉伸速率下,进行拉伸实验,并记录应变片的电阻变化。

c) 根据拉伸实验得到的电阻变化数据,计算得到应变值,并与拉伸试验机的应变计进行对比。

三、实验结果与分析1. 应变灵敏度:通过实验发现,不同材料、不同厚度的金属箔式应变片对应变的灵敏度存在差异。

以铜材料为例,当厚度相同时,应变灵敏度随着拉伸速率的增加而增加。

而当拉伸速率相同时,厚度较薄的应变片具有更高的灵敏度。

这说明金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。

2. 线性范围:实验结果显示,金属箔式应变片的线性范围与其材料和厚度密切相关。

以钢材料为例,当厚度较小时,其线性范围较宽,能够准确测量较小的应变值。

然而,当厚度较大时,线性范围会受到限制,无法测量较大的应变值。

因此,在实际应用中,需根据测量需求选择合适的金属箔式应变片材料和厚度。

3. 温度影响:温度是影响金属箔式应变片性能的重要因素之一。

实验结果表明,金属箔式应变片的电阻值随温度的变化而变化,从而影响应变值的计算。

在实际应用中,需对金属箔式应变片进行温度补偿,以提高测量的准确性。

四、实验结论通过对金属箔式应变片的性能测试,可以得出以下结论:1. 金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。

国家开放大学-传感器与测试技术-实验一金属箔式应变片一电桥性能实验

国家开放大学-传感器与测试技术-实验一金属箔式应变片一电桥性能实验

实验一金属箔式应变片一电桥性能实验一、实验目的1、了解金属箔式应变片的应变效应,电桥工作原理、基本结构及应用。

2、比较单臂、半桥、全桥输出的灵敏度和非线性度,得出相应结论。

3、了解温度对应变测试系统的影响以及补偿方法。

4、掌握应变片在工程测试中的典型应用。

二、基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为:△R/R =kε式中:△R/R 为电阻丝电阻相对变化,k 为应变灵敏系数,ε=△L/L 为电阻丝长度相对变化。

同时,由于应变片敏感栅丝的温度系数的影响,以及应变栅线膨胀系数与被测试件的线膨胀系数不一致,产生附加应变,因此当温度变化时,在被测体受力状态不变时,由于温度影响,输出会有变化。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压 U01=EKε/4。

当应变片阻值和应变量相同时,半桥输出电压 U02=EKε/2。

全桥输出电压 U03=EK ε,其输出灵敏度比半桥又提高了一倍,非线性度和温度误差均得到改善。

三、需用器件与单元应变式传感器实验模板、应变式传感器、砝码(每只约 20g)、数显表、±15V 电源、±4V 电源、万用表。

四、实验方法与步骤(一)应变传感器实验模板电路调试及说明1、实验模板说明实验模板如图 1.1 所示,Ri、R2、Ra、R4 为应变片,没有文字标记的 5 个电阻符号下面是空的,其中 4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗红曲线表示连接线。

根据图 1. 1 应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中 4 片应变片和加热电阻已连接在实验模板左上方的 R1、R2、Ra、R4 和加热器上。

传感器左下角应变片为 R1; 右下角为 R4;右上角为 Ra、左上角为 R2。

应变片实验报告

应变片实验报告

一、实验目的1. 了解应变片的工作原理和性能特点。

2. 掌握应变片在电桥电路中的应用。

3. 学习如何通过电桥电路测量应变片的电阻变化。

4. 分析应变片的线性度、灵敏度等性能指标。

二、实验原理应变片是一种将力学量(如应力、应变等)转换为电阻变化的传感器。

其工作原理基于应变片材料的电阻应变效应,即当材料受到外力作用时,其电阻值会发生相应的变化。

本实验采用金属箔式应变片,通过电桥电路将应变片的电阻变化转换为电压输出。

三、实验器材1. 金属箔式应变片2. 电桥电路3. 测量电路4. 稳压电源5. 数字多用表6. 负载(砝码)7. 支架四、实验步骤1. 将金属箔式应变片粘贴在支架上,确保其受力均匀。

2. 搭建电桥电路,将应变片接入电桥电路中。

3. 调整电桥电路,使电桥处于平衡状态。

4. 在应变片上施加不同大小的力,观察电桥电路输出电压的变化。

5. 记录不同力值下电桥电路的输出电压。

6. 分析应变片的线性度、灵敏度等性能指标。

五、实验结果与分析1. 线性度分析通过实验数据,绘制应变片电阻值与应变值的关系曲线,观察曲线的线性度。

实验结果表明,金属箔式应变片的线性度较好,满足实际应用需求。

2. 灵敏度分析计算应变片在不同应变值下的电阻变化率,即灵敏度。

实验结果表明,金属箔式应变片的灵敏度较高,能够有效地将力学量转换为电阻变化。

3. 温度影响分析观察应变片在不同温度下的电阻变化,分析温度对应变片性能的影响。

实验结果表明,金属箔式应变片对温度的敏感性较高,需要考虑温度补偿。

六、实验结论1. 金属箔式应变片是一种将力学量转换为电阻变化的传感器,具有较好的线性度和灵敏度。

2. 电桥电路能够有效地将应变片的电阻变化转换为电压输出,适用于实际应用。

3. 需要考虑温度对应变片性能的影响,采取相应的补偿措施。

七、实验拓展1. 研究不同类型应变片的性能特点,比较其优缺点。

2. 探讨应变片在不同领域的应用,如力传感器、位移传感器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一金属箔式应变片
一、实验目的:
1.了解应变的基本概念和物理意义;
2.掌握应变片的安装方法和使用原理;
3.了解测试数据的处理方法。

二、实验原理
应变是物体在外力作用下产生的形变量与物体原来长度或形状的比值。

在力学中,应变定义为一个物体相对于初始状态的形变量与初始状态的形状或尺寸的比值。

表示应变的符号为ε。

应变与应力是材料力学中的两个重要参数。

应力是指材料在受外力作用下,单位面积内所受的力,表示材料的强度;而应变则是指材料在承受力的作用下所发生的变形。

应变片又称应变计,是一种能够测量物体表面应变量的精密传感器。

在应变片上会产生一定的电势差,这个电势差与应变有直接的关系。

应变片是一种基于皮尔森效应的电性传感器,其基本原理是:挽联金属箔条被粘贴(或沉积)在被测介质物体表面上,外接电路中流过的电流及周期特征决定着挽联箔片上测量出的电势差,由这个电势差可以反推出应变值。

三、实验材料和装置
材料:金属箔式应变片、模拟应变片、贴纸。

装置:计算机、应变数据采集卡、信号调理器、电源、电压表、安装工具等。

四、实验步骤
1.测量项选择
打开计算机,在数据采集卡软件界面上选择“应变片”项,并进入“加工”功能界面。

2.应变片安装
用贴纸将金属箔式应变片贴在一块平整的金属表面上,注意箔片两端的导线应向空间内侧引出,以避免外界剪切力影响测量结果。

保护箔片贴在表面时,必须防止其脱落和移位,必要时可利用胶水将其牢固地固定在表面上。

3.参数配置
在软件界面的“参数配置”中,设置好所测对象的参数,包括应变片的灵敏度、桥路电阻、补偿电阻、预加重系数,以便进行数据采集和信号处理。

4.调零和推力校准
在应变片和设备的接线均正确的前提下,点选“联校”功能,进行调零和推力校准。

通过增大或减小推力,使“预测值”尽量接近真实值,以达到最佳测量效果。

5.检验测量结果
打开软件界面的“数据列表”、“数据曲线”等功能,以检验实验结果,并进行数据筛选和分析处理。

五、实验注意事项
1.应变片在安装时,应尽量避免受到外力的干扰和损坏,以保证测量准确度;
2.应变数据采集和信号处理,要同时进行调零和推力校准,这是保证实验结果准确的一项重要措施;
3.在实验中要仔细检查设备的接线和软件的参数设置,以保证工作和结果的可靠性;
4.实验结束后,应及时完成数据分析和处理,并注意保存测量结果。

六、实验结论
通过本实验,我们已经了解了应变的基本概念和物理意义,掌握了应变片的安装方法和使用原理,掌握了测试数据的处理方法。

实验结果表明:金属箔式应变片是一种可靠的物理测试工具,可以精确地测量物体表面的应变量,对于机械制造、冶金工程、建筑工程等领域的研究和应用具有重要的参考和指导作用。

相关文档
最新文档