高中数学解题基本方法 待定系数法

合集下载

待定系数法在高中数学中的应用

待定系数法在高中数学中的应用

待定系数法在高中数学中的应用
待定系数法是一种常见的解方程组方法,在高中数学中经常会用到。

待定系数法的基本思想是,假设方程组中未知量的系数为某个常数,然后通过代入等式的方式求解出该常数,从而得到未知量的解。

具体应用方面,待定系数法可用于解决各种类型的方程组问题,包括线性方程组、二次方程组、三次方程组等等。

同时,待定系数法还可用于求解各种函数的特殊形式,如分式函数、三角函数等。

在高中数学中,待定系数法通常是在学习解二次方程组的时候进行介绍和应用。

例如,对于一个二次方程组:
ax + by = m
cx + dy = n
可以假设其中某个系数为1,另一个系数为0,然后通过代入等式的方式求解出未知量的解。

若假设a=1,b=0,则有:
x = m
cx + dy = n
代入第二个等式中,可得:
c(m) + dy = n
解出y,即可得到未知量的解。

同理,若假设b=1,a=0,则可以通过同样的方法求解出x的值。

总之,待定系数法是高中数学中一个重要的解方程组方法,掌握其基本思想和应用技巧,可以有效提高解题能力和应试水平。

- 1 -。

2.2.3待定系数法 高中 数学 人教B版2003课标版

2.2.3待定系数法 高中 数学 人教B版2003课标版
1 2 1 x- 2 2 1 2,3)且经过点
(3,1)求这个二次函数的解析式.
解:因为二次函数的顶点坐标是(2,3),
所以设二次函数为 y a x 2 3
2
又因为图象经过点(3,1)
从而有 1 a 3 2 3 解得a=-2
2、方法提炼: (1)求二次函数设一般式是通法 (2)已知顶点(对称轴或最值),往往设顶点式 (3)已知图像与x轴有两交点,往往设两根式
作业:P62练习A练习B P63习题2-2A 习题2-2B
a 3 a 3 解得 b 2 或 b 4
所以一次函数为f(x)=3x+2或f(x)=-3x-4.
总结:
1、待定系数法解题的基本步骤是什么?
第一步:设出含有待定系数的解析式;
第二步:根据恒等的条件,列出含待定 系数的方程或方程组; 第三步:解方程或方程组,从而使问题 得到解决。
0 0 c 5 根据已知条件得方程组 a b c 4 4a 2b c 5 解方程组得a=2,b=1,c=-5.
中a,b,c待定,
因此,所求函数为f(x)=2x2+x-5.
待定系数法解题的基本步骤是什么? 第一步:设出含有待定系数的解析式; 第二步:根据恒等的条件,列出含待定系 数的方程或方程组; 第三步:解方程或方程组,从而使问题得 到解决。
k=- 2 .
所以所求的正比例函数是y=- 2 x.
待定系数法:
一般地,在求一个函数时,如果知道
这个函数的一般形式,可先把所求函数写
为一般形式,其中系数待定,然后再根据 题设条件求出这些待定系数. 这种通过求
待定系数来确定变量之间关系式的方法叫

高中数学因式分解待定系数法

高中数学因式分解待定系数法

高中数学因式分解待定系数法
高中数学中的因式分解待定系数法是一种重要的概念,它是用来解决多项式的方法。

在很多高中数学的考试中,考生都会接触到因式分解待定系数法,并需要熟练掌握它。

首先,让我们来介绍一下什么是因式分解待定系数法。

因式分解待定系数法是指把一个多项式分解为两个或多个因式的乘积,每个因式都有一个待定的系数。

为了保持多项式的结果不变,每个因式的待定系数必须满足一定的条件。

其次,让我们来看看因式分解待定系数法的具体步骤。

(1)首先,确定多项式的项数,然后按照乘除的顺序,将多项
式写成因式的乘积,每个因式有一个待定的系数。

(2)其次,写出每个因式对应的待定系数,并将这些待定系数
写成方程组形式。

(3)最后,运用高中数学中的知识,求解方程组,从而得出每
个因式的系数。

掌握因式分解待定系数法的重要性不言而喻。

只有全面掌握了因式分解待定系数法,才能在高中数学的学习和考试中取得优异的成绩。

因此,学习因式分解待定系数法时,应该从以下几个方面着手:(1)要熟练地掌握多项式的乘除法;
(2)要学会将多项式拆分成多个因式;
(3)要加强对高中数学知识的理解,熟悉方程组的解法;
(4)在学习和解题中要多加练习,增强解题能力。

因式分解待定系数法是一种基础的高中数学知识,它对考生的学习和考试有着重要的影响。

所以,考生在复习高中数学课程时,要重点学习因式分解待定系数法,加强这方面的知识,以期在高中数学的学习和考试中取得优异的成绩。

高中数学解题方法——待定系数法(一)微教案

高中数学解题方法——待定系数法(一)微教案

第8讲 基于数学核心素养的解题方法——待定系数法(一)待定系数法是一种常用的数学方法,对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程(组)或不等式(组),解之即得待定的系数.【例1】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为 ( )()A ()B ()C 4 ()D 8【答案】C .【解析】x y 162=的准线:4l x =-.∵C 与抛物线x y 162=的准线交于,A B 两点,AB =∴(4,A -,(4,B --.设222:(0)C x y a a -=>,则222(4)4a =--=,得2a =,24a =.故选C . 【反思】本题考察双曲线与抛物线的性质.【例2】已知等差数列{}n a 的前n 项和为55=5=15n S a S ,,,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为 ( )A .100101B .99101C .99100D .101100【答案】A.【解析】通过已知55=5=15a S ,,列式求解,得到公差与首项,从而得{}n a 的通项公式,进一步裂项求和:设等差数列{}n a 的公差为d ,则由55=5=15a S ,可得1114=5=1=54=15=152n a d a a n d a d +⎧⎧⎪⇒⇒⎨⎨⨯+⎩⎪⎩. ∴()11111==11n n a a n n n n +-++. ∴100111111100=1=1=223100*********S ⎛⎫⎛⎫⎛⎫-+-++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选A.【反思】考察等差数列的通项公式和前项和公式的运用,并涉及裂项求和的综合运用.【例3】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM =( )A 、 B、 C 、4 D 、【答案】B.【解析】设抛物线方程为()220y px p =>,则焦点坐标为(,02p ),准线方程为=2p x-.∵点M 在该抛物线上,∴点M 到该抛物线焦点的距离等于到准线的距离,即3==,解得,01,p y ==.∴M (.∴||OM ==故选B.【反思】本题是对抛物线定义的考察.【例4】已知椭圆经过点2)-和点(-,则椭圆的标准方程为( ) A.221515x y += B.221155x y += C.221412x y +=D.221124xy += 【答案】B.【解析】设椭圆的方程为221(0,0,)mx ny m n m n +=>>≠.由点2)-和点(-都在椭圆上,得2222(3)(2)1(23)11m n m n ⎧⋅+⋅-=⎪⎨⋅-+⋅=⎪⎩,解得11,155m n ==. 故所求椭圆的标准方程为221155x y += 【反思】待定系数法对于椭圆方程的设法具有一定的讲究,方程设的好,可以简化计算.待定系数法主要培养了学生的数学运算能力。

高中数学解题基本方法--待定系数法

高中数学解题基本方法--待定系数法

高中数学解题基本方法--待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

Ⅰ、再现性题组:1.设f(x)=x2+m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为_____。

A. 52, -2 B. -52, 2 C.52, 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____。

A. 10B. -10C. 14D. -143.在(1-x3)(1+x)10的展开式中,x5的系数是_____。

高中数学第二章函数2.2.3待定系数法课件新人教B版必修1

高中数学第二章函数2.2.3待定系数法课件新人教B版必修1

(C)y=-x-1 (D)y=-x+1
解析:可将点
P、Q
坐标代入验证,也可由
2 3k b, 2 k b,
解得
k b
1, 1.
3.(2018·北京通州期中)已知函数f(x)=x2+bx+c的图象的对称轴是x=1,并且 经过点A(3,0),则f(-1)等于( C ) (A)6 (B)2 (C)0 (D)-4
思路点拨:表示点 B,D 坐标→代入抛物线方程求解析式→求 D 点坐标→求时间
解:(1)由题意,设抛物线的解析式为 y=ax2(a<0), 点 D 的坐标为(5,y),点 B 的坐标为(10,y-3), 又 D,B 在抛物线 y=ax2 上,
所以有

y y

25a, 3 100a,
变式训练4-:如图所示,有一条双向公路隧道,其横断面由抛物线和矩形 ABCO的三边组成,隧道的最大高度为4.9 m,AB=10 m,BC=2.4 m.现把隧道的 横断面放在平面直角坐标系中,若有一辆装有集装箱的高为4 m,宽为2 m的 汽车要通过隧道.问:如果不考虑其他因素,汽车的右侧离隧道右壁多少才 不至于碰到隧道顶部(抛物线部分为隧道顶部,AO,BC为壁)?
即(x-5)2=9.解得 x1=8,x2=2. 显然 x2=2 不合题意,舍去.所以 x=8. OC-x=10-8=2. 故汽车应离开右壁至少 2 m,才不至于碰到隧道顶部.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
解析:f(x)=x2+bx+c,对称轴为 x= b =- b =1,得 b=-2, 21 2

谈谈待定系数法的应用

谈谈待定系数法的应用

知识导航待定系数法是一种求未知数的常用方法,在解答高中数学问题中应用广泛.在解题时,通过引入两个或者多个待定系数,建立方程或者方程组,求出待定的系数,便可快速求得问题的答案.下面,我们主要探讨一下如何运用待定系数法求函数的解析式、数列的通项公式、曲线的方程.一、运用待定系数法求函数的解析式待定系数法是求函数解析式的常用方法.在运用待定系数法求函数的解析式时,首先要明确问题中所求函数的类型,如一次函数、二次函数、指数函数、对数函数等,然后引入待定系数,设出函数的解析式,将函数解析式代入题设中进行求解,建立方程或者方程组,通过解方程或者方程组求出系数,进而得到函数的解析式.例1.已知f(x)是二次函数,满足f(x+1)-f(x)=2x,且f(0)=1.求f(x)的解析式.分析:由题意可知该函数为二次函数,可设f(x)=ax2+bx+c,然后根据已知条件建立关于a、b、c的方程组,通过解方程组得到a、b、c的值,进而求出f(x)的解析式.解:设f(x)=ax2+bx+c,由f(x+1)-f(x)=2x可得a(x+1)2+b(x+1)+c-ax2+bx+c=2x,化简得2ax+a+b=2x,而f(0)=1,则c=1,则2a=2ax,a+b=0,解得a=1,b=-1,所以f(x)=x2-x+1.二、运用待定系数求数列的通项公式有些非常规数列的递推式较为复杂,我们需用待定系数法,巧妙地将非常规的数列转化为等差数列或等比数列,从而快速求出数列的通项公式.在解题时,需根据已知递推式的特点引入待定系数,如将an+1=ka n+b(k,b为常数,且k、b≠0)型递推式设为an+1+A=k(a n+A)的形式,将a n+2=ka n+1+ba n(k,b为常数,且k,b≠0)型递推式设为a n+2+Aa n+1=B(a n+1+Aan)的形式等,再根据两个多项式的同类项系数相等的原理求出待定系数,从而构造出等差、等比数列,最后运用等差、等比数列的通项公式便可求得原数列的通项公式.例2.若数列{a n}满足a1=1,且a n+1=3a n+2×2n,求数列{a n}的通项公式.分析:我们可引入待定系数λ,将递推公式转化为an+1+λc n+1=k(a n+λc n)的形式,即设a n+1+λ2n+1=3(a n+λ2n),求出λ值,即可构造出等比数列{}an+λ2n,便能求得原数列的通项公式.解:设a n+1+λ2n+1=3()an+λ2n,即an+1=3a n+3λ2n-λ2n+1=3a n+λ2n,则λ=2,所以{}an+2n+1是首项为a1+22=5,公比为3的等比数列.则an+2n+1=5×3n-1,即a n=5×3n-1-2n+1,当n=1时,a1=5×30-22=1,满足上述通项公式,所以an=5×3n-1-2n+1.三、运用待定系数法求曲线的方程求曲线的方程主要是指求圆、直线、抛物线、椭圆、双曲线的方程.在求曲线的方程时,可以灵活运用待定系数法来求解.首先根据曲线的类型设出相应曲线的方程,然后根据题意列出关系式,求出待定系数,便可求得曲线的方程.例3.已知经过p(-2,1)点的圆与直线x-y=1相切,并且圆心在直线y=-2x上,求圆的方程.解:设圆的方程为(x-a)2+(y-b)2=r2,由圆经过p(-2,1)点可得(-2-a)2+(1-b)2=r2,①而直线x-y=1与圆相切,所以r=,②由圆心在直线y=-2x上可得b=-2a,③由①②③可得a=9,b=-18,r=142或a=1,b=-2,c=22.故圆的方程为(x-9)2+(y+18)2=392或(x-1)2+(y+2)2=8.总之,待定系数法是一种重要的解题方法.运用待定系数法解题的思路是构建模型——设出系数——建立方程或者关系式——求出系数.同学们在解题的过程中只要明确所求目标和已知条件之间的联系,适当地引入待定系数,建立方程或者关系式,便能使问题顺利获解.(作者单位:南京师范大学附属扬子中学)37。

高中数学解题基本方法——待定系数法

高中数学解题基本方法——待定系数法

三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

Ⅰ、再现性题组:1.设f(x)=x2+m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为_____。

A. 52, -2 B. -52, 2 C.52, 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____。

A. 10B. -10C. 14D. -143.在(1-x3)(1+x)10的展开式中,x5的系数是_____。

待定系数法在高中数学解题中的应用

待定系数法在高中数学解题中的应用

待定系数法在高中数学解题中的应用作者:封灵芳来源:《学校教育研究》2017年第19期待定系数法是一种基本的数学方法,也是解决数学问题最常用的数学方法之一。

那么什么是待定系数法?高中阶段的数学主要是以函数为主线来进行学习的,因此其定义是从函数的角度给出的:一般地,在求一个函数时,如果知道这个函数的一般形式,可以先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数。

这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法。

待定系数法的理论依据是多项式恒等原理,也就是依据了多项式的充要条件是:对于一个任意的值,都有。

或者两个标准多项式中各同类项的系数对应相等。

待定系数法解题的关键是依据已知条件,正确列出含有未定系数的等式。

运用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,只要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达式,所以都可以用待定系数法求解。

下面我们通过一些具体的例子来体会下待定系数法的应用。

一、利用待定系数法进行因式分解例1 分解因式:。

分析:这是一个关于的四次多项式,由于次数相对过高,不能使用十字相乘。

分组分解法又有困难。

经过验证由没有有理根。

但是次数是确定的,我们能够根据次数大概猜测其因式分解以后的形式,这个时候我们可以引进待定系数法进行因式分解。

解:设== ,比较等式两边的多项式对应项的系数,列出方程组,得,解该方程,得到,所以。

评析:与这个类型题相似解题的还有解方程、解不等式。

如把题目改成解方程,或者解不等式。

这两种类型的题型的做法跟本题因式分解方法相同。

二、利用待定系数法拆分分式例2将化为部分分式之和。

分析:这类型的问题思路基本上跟因式分解类似,首先用未知数表示化为部分分式和以后的形式,展开后,根据分子、分母的多项式分别相等可列出含有未知数的方程组,解方程组,代入所设的部分和即可得结果。

高中数学方法篇之待定系数法

高中数学方法篇之待定系数法

高中数学方法篇之待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

一、再现性题组:1.设f(x)=x2+m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为_____。

A. 52, -2 B. -52,2 C.52, 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____。

A. 10B. -10C. 14D. -143.在(1-x3)(1+x)10的展开式中,x5的系数是_____。

「第10讲待定系数法(高中版)」

「第10讲待定系数法(高中版)」

第 10 讲 待定系数法(高中版)(第课时)D重点:1.;2.;3.。

难点:1.;2.;3.;。

,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

待定系数法是中学数学常用的方法,它常用在求代数式的值、因式分解、恒等变形、求函数表达式、数列求和、求复数、求曲线方程等等方面。

使用待定系数法解题的基本步骤是:第一步,针对所求问题,确定含有待定系数的解析式;第二步,列出一组含待定系数的方程;第三步,解方程组确定待定系数或者消去待定系数。

确定待定系数的值常用比较系数法或特殊值法。

二次函数解析式有三种表达形式,1.一般式:y=ax 2+bx +c ;其中 a≠0, a, b, c 为常数2.顶点式:y =a(x-h)2+k ;其中a≠0, a, h, k 为常数,(h ,k)为顶点坐标。

3.交点式:y=a(x-x1)(x-x 2);其中a≠0, a, x 1,x 2 为常数,x 1,x 2是抛物线与横轴两交点的横坐标。

每种形式都有三个待定的系数,所以用待定系数法求二次函数解析式应注意以下几点:根据题目给定的条件注意选择适当的表达形式,一般已知抛物线的顶点,用顶点式;已知抛物线与x轴的两个交点(或与x 轴的一个交点及对称轴),用交点式。

解题过程中待定的系数越少,需构造的方程也越少,这样可以大大简化计算过程,故尽量由已知条件先行直接确定某些系数。

若题目给定二次函数解析式的某种形式(如y=ax 2+ bx +c=0 (a≠0)),那么最后的结果必须写成此种形式。

1.待定系数法在求数列通项中的应用例.(高三)数列{a n }满足a 1=1,an =21a 1 n +1(n ≥2),求数列{a n }的通项公式。

分析:一般地,形如a 1+n =p a n +q (p≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解,只要设 a 1+n +k=p(an +k)并与原式比较系数可得出 k,从而得等比数列{a n +k }。

待定系数法在高中数学解题中的应用

待定系数法在高中数学解题中的应用

待定系数法在高中数学解题中的应用作者:张雨嫣来源:《青年时代》2016年第21期摘要:高中数学题目逻辑性较强,在解题过程中一些常用的方法往往计算量过大或难以奏效。

因而需要针对不同的题型选用合适的解题方法,待定系数法是高中数学中一项常用的解题方法。

待定系数法在因式分解、求解函数解析式及数列的通项公式的求解等问题中应用广泛,通过待定系数法可以将复杂的问题简单化。

本文结合具体的例题就待定系数法的应用技巧进行了详细的论述。

关键词:待定系数法;高中数学;应用待定系数法师在高中数学阶段一种常用的解题手段,待定系数法是将一些具有某种特殊形式的数学问题,通过引入待定的系数,利用命题恒成立的条件得到一系列的方程组。

通过对这些方程组的求解得到待定系数的数值,从而解决相应的数学问题。

待定系数法在许多数学问题中都有运用,例如因式分解、曲线方程、数列及函数解析式等。

一、待定系数法在因式分解中的应用待定系数在因式分解中应用广泛,对一元三次、四次等较为复杂的多项式,用常规的因式分解方法往往难以解决,此时就可以选择用待定系数法进行求解。

对其它类型的多项式,在分解过程中也可以尝试用待定系数法解决。

下面结合实例对待定系数法在因式分解中的应用进行讨论。

例题1.对多项式x3+5x2+2x-8进行因式分解。

对例题进行分析:该多项式的最高次幂为3次方,该项的系数为1,因此可以假定该多项式可以分解为(x+A)(x2+Bx+C)的形式。

将该式子展开可得,(x+A)(x2+Bx+C)--x3+(A+B)x2+(AB+C)x+AC。

如果假设成立,则有:对该方程组进行求解,得:A=2;B=3;C=-4二、待定系数法在函数解析式待定系数法在函数解析式的求解中也有很多运用。

在解题过程中可以先设出函数解析式的一般形式,再根据已知条件利用待定系数法求得函数解析式。

对复杂函数解析式的求解这一过程可以综合函数的性质,选择合适的待定系数。

将函数解析式的求解化成对方程组的求解。

高中数学解题方法系列:待定系数法

高中数学解题方法系列:待定系数法

高中数学解题方法系列:待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

(≡表示恒等于)待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

待定系数法是中学数学中的一种重要方法,它在平面解析几何中有广泛的应用.(一)求直线和曲线的方程例1过直线x-2y-3=0与直线2x-3y-2=0的交点,使它与两坐标轴相交所成的三角形的面积为5,求此直线的方程.【解】设所求的直线方程为(x-2y-3)+λ(2x-3y-2)=0,整理,得依题意,列方程得于是所求的直线方程为8x-5y+20=0或2x-5y-10=0.【解说】(1)本解法用到过两直线交点的直线系方程,λ是待定系数.(2)待定系数法是求直线、圆和圆锥曲线方程的一种基本方法.例2如图2-9,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线C上的任一点到l2的距离与到点N的距离相等.若系,求曲线C的方程.【解】如图2-9,以l1为x轴,MN的垂直平分线为y轴,建立直角坐标系.由已知,得曲线C是以点N为焦点、l2为准线的抛物线的一段,其中点A、B为曲线C的端点.设曲线C的方程为y2=2px,p>0(x1≤x≤x2,y>0).其中,x1、x2分别是A、B的横坐标,p=|MN|.从而M、N解之,得p=4,x1=1.故曲线C的方程为y2=8x(1≤x≤4,y>0).(二)探讨二元二次方程(或高次方程)表示的直线的性质例3已知方程ax2+bxy+cy2=0表示两条不重合的直线L1、L2.求:(1)直线L1与L2交角的两条角平分线方程;(2)直线L1与L2的夹角的大小.【解】设L1、L2的方程分别为mx+ny=0、qx+py=0,则ax2+bxy+cy2=(mx+ny)(qx+py).从而由待定系数法,得a=mq,b=mp+nq,c=np.(1)由点到直线的距离公式,得所求的角平分线方程为即(m2+n2)(qx+py)2=(q2+p2)(mx+ny)2,化简、整理,得(nq-mp)[(nq+mp)x2+2(np-mq)xy-(nq+mp)y2]=0.∵L1、L2是两条不重合的直线∴b2-4ac=(mp+nq)2-4mnpq=(mp-nq)2>0.即mp-nq≠0.从而(nq+mp)x2+2(np-mq)xy-(nq+mp)y2=0.把mq=a,mp+nq=b,np=c代入上式,得bx2+2(c-a)xy-by2=0.即为所求的两条角平分线方程.(2)显然当mq+np=0,即a+c=0时,直线L1与L2垂直,即夹角为90°.当mq+np≠0即a+c≠0时,设L1与L2的夹角为α,则【解说】一般地说,研究二元二次(或高次)方程表示的直线的性质,用待定系数法较为简便.(三)探讨二次曲线的性质1.证明曲线系过定点例4求证:不论参数t取什么实数值,曲线系(4t2+t+1)x2+(t+1)y2+4t(t+1)y-(109t2+21t+31)=0都过两个定点,并求这两个定点的坐标.【证明】把原方程整理成参数t的方程,得(4x2+4y-109)t2+(x2+y2+4y-21)t+x2+y2-31=0.∵t是任意实数上式都成立,【解说】由本例可总结出,证明含有一个参数t的曲线系F(x,y,t)=0过定点的步骤是:(1)把F(x,y,t)=0整理成t的方程;(2)因t是任意实数,所以t的各项系数(包括常数项)都等于零,得x、y的方程组;(3)解这个方程组,即得定点坐标.2.求圆系的公切线或公切圆例5求圆系x2+y2-2(2m+1)x-2my+4m2+4m+1=0(m≠0)的公切线方程.【解】将圆系方程整理为[x-(2m+1)]2+(y-m)2=m2(m≠0)显然,平行于y轴的直线都不是圆系的公切线.设它的公切线方程为y=kx+b,则由圆心(2m+1,m)到切线的距离等于半径|m|,得从而[(1-2k)m-(k+b)]2=m2(1+k2),整理成m的方程,得(3k2-4k)m2-2(1-2k)(k+b)m+(k+b)2=0.∵m取零以外的任意实数上式都成立,【解说】由本例可总结出求圆系F(x,y,m)=0的公切线方程的步骤是:(1)把圆系方程化为标准方程,求出圆心和半径;(2)当公切线的斜率存在时,设其方程为y=kx+b,利用圆心到切线的距离等于半径,求出k、b、m 的关系式f(k,b,m)=0;(3)把f(k,b,m)=0整理成参数m的方程G(m)=0.由于m∈R,从而可得m的各项系数(包括常数项)都等于零,得k、b的方程组;(4)解这个方程组,求出k、b的值;(5)用同样的方法,可求出x=a型的公切线方程.3.化简二元二次方程例6求曲线9x2+4y2+18x-16y-11=0的焦点和准线.【分析】把平移公式x=x′+h,y=y′+k,代入原方程化简.【解】(略).例7.已知函数y =mx x n x 22431+++的最大值为7,最小值为-1,求此函数式。

待定系数法

待定系数法
2
3c . 2
b ) |) 2a | c| + | b | 2a

2a c = 3c , 所以 a2 = 3b 2 . 2 a + b 2
2
c=
a - b =
2
2
6a , 3
f ( 1) - f (- 1 ) | 4
故离心率 e = c = 6 . a 3 ( Ⅱ) 证明 : 由 ( Ⅰ) 知 a = 3 b , 所以椭圆
2 2 2
a= 1 b= 3
(- 5) + 24 = - 1 x = - 2.
由 f ( x ) = x + 4x + 3 = - 1, 即 f (- 2 ) = f (- 5a + b) = - 1. 5 a- b = 2, 故填 2.
评注: 方法 1 利用对应系数相等列方程 , 是解 决此类问题的基本方法 , 比较常用. 方法 2 任意值 法 , 解法灵活, 运算简捷, 但具有一定的思维能力. 例2 x x 已知二次函数 f ( x ) = ax + bx + c, 当 1 时, 有 - 1 2 时, 有 - 7 f ( x) f (x ) 1, 求证: 当 7.
2 2
2 + y 2 = 1 可化为 x 2 + 3y 2 = 3b 2 . 设 OM = ( x , y ) b
由已知得 ( x , y) = x= y= ( x1+ 即
2 2
( x 1, y 1) +
( x 2 , y 2)
x1 + y1+
2 2
x2 y2
2

M ( x , y ) 在椭圆上, y 2 ) = 3b

高中数学因式分解待定系数法

高中数学因式分解待定系数法

高中数学因式分解待定系数法在学习高中数学的过程中,因式分解待定系数法被广泛应用于解决一元多项式的根的问题。

学习这一方法,对理解和掌握数学的概念,解决实际问题具有重要的意义。

因式分解待定系数法是一种把一元多项式按照次幂递减的形式,把各项系数合并到因式中,然后求其系数的方法。

这一方法也被称为因式分解法,又叫解析法。

目的是让一元多项式的解更加清晰简单。

因式分解待定系数法的步骤:首先,我们需要将一元多项式按照次幂递减的形式分解开来,例如,把$ax^2+bx+c$分解为$ax^2+dx+e$,其中,$d$和$e$是未知系数。

其次,把$d$和$e$两个未知系数带入原来的一元多项式,得到:$ax^2+d (bx+c) +e=0$第三,解出$d$和$e$两个未知系数:$d=-{bc over a},e={bc^2over a^2}$最后,将$d$和$e$代入,得到$ax^2-{bc over a} ( bx+c ) + {bc^2over a^2}=0$,即$ax^2+{bc over a} ( -bx-c ) + {bc^2over a^2}=0$,此时,一元多项式已经被分解完毕。

通过因式分解待定系数法,可以把一元多项式的解更加清晰简单,理解和掌握数学概念更为容易。

因式分解待定系数法不仅可以用来求解一元多项式,还可以用来解决一元多次方程组,通过这一方法,可以更好地掌握研究方程的技巧。

此外,因式分解待定系数法也可以用来解决一般的二次方程,例如:$ax^2+bx+c=0$,我们可以把它分解为$ax^2+dx+e=0$,其中,$d=-{bc over a},e={bc^2over a^2}$总结:因式分解待定系数法是一个重要的数学方法,在学习高中数学的过程中,可以有效帮助学生理解和掌握数学概念,解决实际问题。

它可以解决一元多项式、一元多次方程组,以及一般的二次方程,使得数学更加清晰简单,解题技巧更易掌握。

高二数学解题技巧:待定系数法讲解

高二数学解题技巧:待定系数法讲解

高二数学解题技巧:待定系数法讲解
你还在为高中数学学习而苦恼吗?别担心,看了高二数学解题技巧:待定系数法讲解以后你会有很大的收获:
高二数学解题技巧:待定系数法讲解
按照一定规律,先写出问题的解的形式(一般是指一个算式、表达式或方程),其中含有若干尚待确定的未知系数的值,从而得到问题的解。

这种解题方法,通常称为待定系数法;其中尚待确定的未知系数,称为待定系数。

确定待定系数的值,有两种常用方法:比较系数法和特殊值法。

(一)比较系数法
比较系数法,是指通过比较恒等式两边多项式的对应项系数,得到关于待定系数的若干关系式(通常是多元方程组),由此求得待定系数的值。

比较系数法的理论根据,是多项式的恒等定理:两个多项式恒等的充分必要条件是对应项系数相等,即a0xn+a1xn-1+ +anb0xn+b1xn-1+ +bn 的充分必要条件是 a0=b0, a1=b1, an=bn 。

(二)特殊值法
特殊值法,是指通过取字母的一些特定数据值代入恒等式,由左右两边数值相等得到关于待定系数的若干关系式,由此
求得待定系数的值。

特殊值法的理论根据,是表达式恒等的定义:两个表达式恒等,是指用字母容许值集内的任意值代替表达式中的字母,恒等式左右两边的值总是相等的。

待定系数法是一种常用的数学方法,主要用于处理涉及多项式恒等变形问题,如分解因式、证明恒等式、解方程、将分式表示为部分分式、确定函数的解析式和圆锥曲线的方程等。

通过阅读高二数学解题技巧:待定系数法讲解这篇文章,小编相信大家对高中数学的学习又有了更进一步的了解,希望大家学习轻松愉快!。

数列求和待定系数法

数列求和待定系数法

数列求和待定系数法数列求和是高中数学中的一个非常重要的知识点,它在数学和物理的学习中都有着广泛的应用。

而其中,数列求和待定系数法,则是其中一种非常常用的求和方法。

本文将从以下几个方面对这种方法进行详细介绍:1. 数列求和的定义与性质2. 数列求和常用的方法3. 数列求和待定系数法的原理4. 数列求和待定系数法的步骤与例题5. 数列求和待定系数法的应用1. 数列求和的定义与性质数列求和,是指对数列中的每一项进行求和,得到最终的结果。

其中,数列的通项公式一般会给出。

而数列求和的性质主要包括:1)数列求和可以分为有限求和与无限求和两类。

有限求和是将数列的前n项进行求和,得到一具体的数值。

而无限求和则是将数列无限延伸下去,将其所有项的和表示为一个极限值。

2)数列求和的结果可以使用等差数列或等比数列的求和公式来计算。

3)数列求和的结果具有可加性,即对于两个数列,它们各自的前n项或无穷项的和相加再求和,等于它们的总和的前n项或无穷项的和。

2. 数列求和常用的方法对于不同的数列类型,其求和方法也多样化。

下面列出几种常用的方法:1)等差数列的求和公式:对于一般的等差数列a1,a2,a3,……,an,其前n项和S(n)可以表示为S(n) = n/2[(a1 + an)]2)等比数列的求和公式:对于一般的等比数列a1,a2,a3,……,an,其前n项和S(n)可以表示为:S(n)=(a1*(1-q^n))/(1-q),其中q是公比。

3)差分法:对于某些具有递推关系的数列,它们可以通过差分法转化为等差数列。

4)待定系数法:对于一些具有多项式系数的数列,可以通过待定系数法来求和。

3. 数列求和待定系数法的原理待定系数法是一种通过假定数列求和的结果为P(n)为某一多元函数,然后通过构造P(n)的一个线性方程组来求解多项式系数的方法。

假设数列{an}的通项公式为:an = f(n),其中f(n)是一个关于n的多项式函数,P(n)表示数列{an}的前n项和,则有:P(n) = a0 + a1f(1) + a2f(2) + … + anf(n)通过将n分别带入以上式子,可以得到n+1个方程:P(1) = a0 + a1f(1)P(2) = a0 + a1f(1) + a2f(2)…P(n) = a0 + a1f(1) + a2f(2) + … + anf(n)P(n+1) = a0 + a1f(1) + a2f(2) + … + anf(n) + (n+1)f(n+1)其中,a0,a1,a2,…,an为待定系数。

高中数学常见解题思想方法——方法篇(高三适用)二、待定系数法 含解析

高中数学常见解题思想方法——方法篇(高三适用)二、待定系数法 含解析

待定系数法在初中数学就已经涉及,主要应用其来求解函数解析式。

在高中阶段,仍然是数学解题的重要方法,接下来主要研究待定系数法在解题中的应用。

一、什么是待定系数法:待定系数法就是把具有某种确定形式的数学问题,引入一些待定的系数,然后列出系数相关的方程组来解出系数,从而求得相关答案.二、待定系数法的使用:如果所求解的数学问题具有某种确定的数学表达式,当未知表达式时,就可以用待定系数法求解表达式.例如很常见的:求函数解析式,数列通项、求和,解析几何中直线、圆以及圆锥曲线的方程,等这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

当然,在其他的内容当中也会涉及到待定系数法.三、使用待定系数法解题的基本步骤是:第一步,确定所求问题的表达式,列出含有待定系数的表达式;第二步,根据已知的恒等条件,列出一组含待定系数的方程;第三步,解方程组得出系数的值或者消去待定系数,从而使问题得到解决.下面来看几个常见的习题:来体会是如何利用待定系数法来解决的。

(一)求函数解析式:例1:已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x 。

解:设()(0)f x ax b a =+≠,则3(1)2(1)333222f x f x ax a b ax a b +--=++-+-,5217ax b a x =++=+,2,517a b a =⎧∴⎨+=⎩,得2,7a b =⎧⎨=⎩,∴()27f x x =+.待定系数法求函数解析式,就是已知函数类型,设出待有未知系数的解析式,根据已知列出关于未知系数的方程或方程组,进行求解。

(二)求平面解析几何中曲线的方程:例2:已知中心在原点的双曲线C 的一个焦点是1(3,0)F -,一条渐20y -=.求双曲线C 的方程。

对于直线、圆、圆锥曲线,它们都有确定的方程表示,求解这些曲线的方程,就是求解当中系数的值,所以如同求函数解析式,根据已知列出关于未知系数的方程或方程组进行求解。

待定系数法-高考理科数学解题方法讲义

待定系数法-高考理科数学解题方法讲义

方法三待定系数法一、待定系数法:待定系数法是根据已知条件,建立起给定的算式和所求的结果之间的恒等式,得到以需要待定的系数为未知数的方程或方程组,解方程或方程组得到待定的系数的一种数学方法.待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解.例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解.二、待定系数法解题的基本步骤:使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决.本文在分析研究近几年高考题及各地模拟题的基础上,从以下四个方面总结高考中的待定系数法.1.用待定系数法求曲线方程确定曲线方程常用的方法有定义法、直接法、待定系数法等,当已知曲线类型及曲线的几何性质时,往往利用待定系数法,通过设出方程形式,布列方程(组),使问题得到解决. 例1.【2018届江苏省镇江市高三上学期期末】已知圆与圆相切于原点,且过点,则圆的标准方程为__________.【答案】【解析】设圆的标准方程为,其圆心为,半径为∵可化简为∴其圆心为,半径为∵两圆相切于原点,且圆过点∴解得∴圆的标准方程为故答案为例2.【2018届山西省孝义市高三下学期名校最新高考模拟卷(一)】已知椭圆的左、右焦点分别为、,且点到椭圆上任意一点的最大距离为3,椭圆的离心率为.(1)求椭圆的标准方程;(2)是否存在斜率为的直线与以线段为直径的圆相交于、两点,与椭圆相交于、,且?若存在,求出直线的方程;若不存在,说明理由.【答案】(1);(2).解析:(1)设,的坐标分别为,,根据椭圆的几何性质可得,解得,,则,故椭圆的方程为.(2)假设存在斜率为的直线,那么可设为,则由(1)知,的坐标分别为,,可得以线段为直径的圆为,圆心到直线的距离,得,,联立得,设,,则,得,,,解得,得.即存在符合条件的直线.2.用待定系数法求函数解析式利用待定系数法确定一次函数、二次函数的解析式,在教材中有系统的介绍,通过练习应学会“迁移”,灵活应用于同类问题解答之中.例3.【2018届湖南省长沙市长郡中学高三】已知函数的图象过点,且点是其对称中心,将函数的图象向右平移个单位得到函数的图象,则函数的解析式为()A. B. C. D.【答案】A【解析】由函数f(x)过点(,2),(﹣,0)得:解得:∴f(x)=sin2x+cos2x=2sin(2x+),∴g(x)=2sin2x,故答案为:A.例4.【2018届天津市耀华中学高三上学期第三次月考】若幂函数在上为增函数,则实数的值为_________.【答案】2例5.设是二次函数,方程有两个相等的实根,且.(Ⅰ)的表达式;(Ⅱ)若直线把的图象与两坐标轴所围成图形的面积二等分,求的值.【答案】(I);(II).【解析】试题分析:(1)由已知设,由,求出的值,由有两个相等实根有,求出的值,得出的表达式;(2)由题意有,解方程求出的值。

高中数学待定系数法

高中数学待定系数法

高中数学待定系数法【最新版】目录一、高中数学待定系数法概述二、待定系数法的应用举例三、待定系数法的解题技巧和方法四、待定系数法在函数问题中的应用五、待定系数法的实际意义和作用正文一、高中数学待定系数法概述高中数学待定系数法是一种解决函数问题的有效方法。

它是一种通过假设函数中的某些系数,然后根据题目所给条件,通过一系列的运算和化简,最终求解出这些系数的值的方法。

待定系数法在高中数学中被广泛应用,是解决函数问题的一种重要手段。

二、待定系数法的应用举例举例来说,如果我们要解决一个二次函数的问题,即 f(x) = ax^2 + bx + c,其中 a、b、c 是待求的系数。

我们可以通过待定系数法,假设 a、b、c 的值,然后根据题目所给条件,如函数的零点、极值点等,求解出这些系数的值。

三、待定系数法的解题技巧和方法待定系数法的解题技巧和方法主要包括以下几个步骤:1.假设系数:根据题目所给条件,假设函数中的某些系数,如 a、b、c 等。

2.列方程:根据题目所给条件,列出关于假设系数的方程或不等式。

3.化简:通过一系列的运算和化简,将方程或不等式化为简单的形式。

4.求解:解出方程或不等式,得到假设系数的值。

5.验证:将求得的系数带入原函数,验证是否满足题目所给条件。

四、待定系数法在函数问题中的应用待定系数法在函数问题中的应用非常广泛,如求解二次函数的问题、三角函数的问题、指数函数的问题等。

它可以有效地解决各种复杂的函数问题,提高解题效率和准确度。

五、待定系数法的实际意义和作用待定系数法在实际问题中的意义和作用非常重要。

它可以帮助我们解决各种复杂的函数问题,提高我们的解题能力和技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解题基本方法--待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

Ⅰ、再现性题组:1.设f(x)=x2+m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为_____。

A. 52, -2 B. -52, 2 C.52, 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____。

A. 10B. -10C. 14D. -143.在(1-x3)(1+x)10的展开式中,x5的系数是_____。

A. -297B.-252C. 297D. 2074.函数y=a-bcos3x (b<0)的最大值为32,最小值为-12,则y=-4asin3bx的最小正周期是_____。

5.与直线L:2x+3y+5=0平行且过点A(1,-4)的直线L’的方程是_______________。

6.与双曲线x2-y24=1有共同的渐近线,且过点(2,2)的双曲线的方程是____________。

【简解】1小题:由f(x)=x 2+m 求出f -1(x)=2x -2m ,比较系数易求,选C ; 2小题:由不等式解集(-12,13),可知-12、13是方程ax 2+bx +2=0的两根,代入两根,列出关于系数a 、b 的方程组,易求得a +b ,选D ;3小题:分析x 5的系数由C 105与(-1)C 102两项组成,相加后得x 5的系数,选D ;4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案23π; 5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0;6小题:设双曲线方程x 2-y 24=λ,点(2,2)代入求得λ=3,即得方程x 23-y 212=1。

Ⅱ、示范性题组:例1. 已知函数y =mx x n x 22431+++的最大值为7,最小值为-1,求此函数式。

【分析】求函数的表达式,实际上就是确定系数m 、n 的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。

【解】 函数式变形为: (y -m)x 2-43x +(y -n)=0, x ∈R, 由已知得y -m ≠0 ∴ △=(-43)2-4(y -m)(y -n)≥0 即: y 2-(m +n)y +(mn -12)≤0 ① 不等式①的解集为(-1,7),则-1、7是方程y 2-(m +n)y +(mn -12)=0的两根, 代入两根得:1120497120+++-=-++-=⎧⎨⎩()()m n mn m n mn 解得:m n ==⎧⎨⎩51或m n ==⎧⎨⎩15 ∴ y =5431122x x x +++或者y =x x x 224351+++ 此题也可由解集(-1,7)而设(y +1)(y -7)≤0,即y 2-6y -7≤0,然后与不等式①比较系数而得:m n mn +=-=-⎧⎨⎩6127,解出m 、n 而求得函数式y 。

【注】 在所求函数式中有两个系数m 、n 需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m 、n 的关于y 的一元二次不等式,且知道了它的解集,求参数m 、n 。

两种方法可以求解,一是视为方程两根,代入后列出m 、n 的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m 、n 的方程组求解。

本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y 视为参数,函数式化成含参数y 的关于x 的一元二次方程,可知其有解,利用△≥0,建立了关于参数y 的不等式,解出y 的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。

例2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程。

【分析】求椭圆方程,根据所给条件,确定几何数据a、b、c之值,问题就全部解决了。

设a、b、c后,由已知垂直关系而联想到勾股定理建立一个方程,再将焦点与长轴较近端点的距离转化为a-c的值后列出第二个方程。

【解】设椭圆长轴2a、短轴2b、焦距2c,则|BF’|=a∴a b ca a ba c2222222105=++=-=-⎧⎨⎪⎩⎪()解得:ab==⎧⎨⎪⎩⎪105∴所求椭圆方程是:x210+y25=1也可有垂直关系推证出等腰Rt△BB’F’后,由其性质推证出等腰Rt△B’O’F’,再进行如下列式:b ca ca b c=-=-=+⎧⎨⎪⎩⎪105222,更容易求出a、b的值。

【注】圆锥曲线中,参数(a、b、c、e、p)的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式。

在曲线的平移中,几何数据(a、b、c、e)不变,本题就利用了这一特征,列出关于a-c的等式。

一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入。

例3. 是否存在常数a、b、c,使得等式1·22+2·32+…+n(n+1)2=n n()+112(an2+bn+c)对一切自然数n都成立?并证明你的结论。

(89年全国高考题)【分析】是否存在,不妨假设存在。

由已知等式对一切自然数n都成立,取特殊值n=1、2、3列出关于a、b、c的方程组,解方程组求出a、b、c的值,再用数学归纳法证明等式对所有自然数n都成立。

【解】假设存在a、b、c使得等式成立,令:n=1,得4=16(a+b+c);n=2,得22=12(4a+2b+c);n=3,得70=9a+3b+c。

整理得:a b ca b ca b C++=++=++=⎧⎨⎪⎩⎪2442449370,解得abc===⎧⎨⎪⎩⎪31110,于是对n=1、2、3,等式1·22+2·32+…+n(n+1)2=n n()+112(3n2+11n+10)成立,下面用数学归纳法证明对任意自然数n,该等式都成立:假设对n=k时等式成立,即1·22+2·32+…+k(k+1)2=k k()+112(3k2+11k+10);当n=k+1时,1·22+2·32+…+k(k+1)2+(k+1)(k+2)2=k k()+112(3k2+11k+10) +(k+1)(k+2)2=k k()+112(k+2)(3k+5)+(k+1)(k+2)2=()()k k++1212(3k2+5k+12k+24)=()()k k++1212[3(k+1)2+11(k+1)+10],也就是说,等式对n=k+1也成立。

综上所述,当a=8、b=11、c=10时,题设的等式对一切自然数n都成立。

【注】建立关于待定系数的方程组,在于由几个特殊值代入而得到。

此种解法中,也体现了方程思想和特殊值法。

对于是否存在性问题待定系数时,可以按照先试值、再猜想、最后归纳证明的步骤进行。

本题如果记得两个特殊数列13+23+…+n3、12+22+…+n2求和的公式,也可以抓住通项的拆开,运用数列求和公式而直接求解:由n(n+1)2=n3+2n2+n得Sn=1·22+2·32+…+n(n+1)2=(13+23+…+n3)+2(12+22+…+n2)+(1+2+…+n)=n n2214()++2×n n n()()++1216+n n()+12=n n()+112(3n2+11n+10),综上所述,当a=8、b=11、c=10时,题设的等式对一切自然数n都成立。

例4. 有矩形的铁皮,其长为30cm,宽为14cm,要从四角上剪掉边长为xcm的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问x为何值时,矩形盒子容积最大,最大容积是多少?【分析】实际问题中,最大值、最小值的研究,先由已知条件选取合适的变量建立目标函数,将实际问题转化为函数最大值和最小值的研究。

【解】依题意,矩形盒子底边边长为(30-2x)cm,底边宽为(14-2x)cm,高为xcm。

∴盒子容积 V=(30-2x)(14-2x)x=4(15-x)(7-x)x ,显然:15-x>0,7-x>0,x>0。

设V=4ab(15a-ax)(7b-bx)x (a>0,b>0)要使用均值不等式,则--+=-=-=⎧⎨⎩a ba axb bx x10157解得:a=14, b=34, x=3 。

从而V=643(154-x4)(214-34x)x≤643(1542143+)3=643×27=576。

所以当x=3时,矩形盒子的容积最大,最大容积是576cm3。

【注】均值不等式应用时要注意等号成立的条件,当条件不满足时要凑配系数,可以用“待定系数法”求。

本题解答中也可以令V =4ab (15a -ax)(7-x)bx 或 4ab(15-x)(7a -ax)bx ,再由使用均值不等式的最佳条件而列出方程组,求出三项该进行凑配的系数,本题也体现了“凑配法”和“函数思想”。

Ⅲ、巩固性题组:1. 函数y =log a x 的x ∈[2,+∞)上恒有|y|>1,则a 的取值范围是_____。

相关文档
最新文档