运筹学全套PPT课件364p

合集下载

运筹学PPT完整版胡运权

运筹学PPT完整版胡运权

C
m n
基可行解:满足变量非负约束条件的基本解,简称基可
行解。
可行基:对应于基可行解的基称为可行基。
可 行 解
非可行解
基解
基可行解
线性规划问题的数学模型
例1.4 求线性规划问题的所有基矩阵。
Page 30
解: 约束方程的系数矩阵为2×5矩阵 r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。
aij x j bi
aij x j xni bi
xni 0 称为松弛变量
aij x j bi
aij x j xni bi
xni 0 称为剩余变量
变量 x j 的变0换 可令 xj x,j 显x然j 0
Page 23
用 x3 x3 替换 x3 ,且 x3 , x3 0
线性规划问题的数学模型
Page 25
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0

《运筹学总复习》课件

《运筹学总复习》课件
应用领域:物流、供应链管理、路径规划等。
难点:计算复杂度高,难以找到最优解。
生产与存储问题
问题描述:生产与存储问题是指在给定时间内,如何安排生产计划和存储策略,以最小化生产成本和存 储成本。 经典模型:经济批量模型(EOQ)、生产存储模型(P-S模型)、生产存储模型(P-S模型)等。
求解方法:动态规划、线性规划、整数规划等。
非线性规划的求解方法:非线性规划的求解方法包括梯度下降法、牛顿法、遗传算法等。
整数规划
定义:整数规划是一种特殊的线性规划,其中所有变量都必须是整数
目标函数:整数规划的目标函数通常是线性的,表示为决策变量的 线性组合 约束条件:整数规划的约束条件通常是线性的,表示为决策变量的线 性不等式或不等式 求解方法:整数规划的求解方法包括分支定界法、割平面法、遗传 算法等
MATL AB在运筹学中的应 用包括优化问题、决策问题、
排队论等
Python在运筹学中的应用
Python语言简介:一种广泛应用于科学计算、数据分析和机器学习等领域的编程语言 Python在运筹学中的应用:可以用于求解线性规划、整数规划、非线性规划等运筹学问题 Python库介绍:如scipy、numpy、pandas等,可以用于进行运筹学计算和可视化 Python代码示例:展示如何使用Python编写运筹学问题的求解代码
Gurobi优化器介绍与使用
Gurobi优化器是一款功能强大的优化工具,广泛应用于运筹学、数学规划等领域。
Gurobi优化器支持多种编程语言,如Python、C++、Java等,方便用户进行编程实 现。
Gurobi优化器提供了丰富的优化算法,如线性规划、非线性规划、整数规划等,满足 不同问题的求解需求。

运筹学基础及应用(全套课件296P) ppt课件

运筹学基础及应用(全套课件296P)  ppt课件

我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论

《运筹学》课件

《运筹学》课件

cj→
CB
XB
31
x1
0
x4
0
x5
-z
b
30 280 120 -930
31 22 0 0 0
ห้องสมุดไป่ตู้
x1
x2
x3
x4
x5
1 1/3 1/6 0 0
约束条件:≥,=,≤
∑aijxj ≤(=, ≥) bi (i=1,2, …n)
变量符号:≥0,unr,≤0 xj ≥0
(j=1,2, …n)
线性规划的标准形式 目标函数:max 约束条件 := 变量符号 :≥0
max z=∑cjxj ∑aijxj = bi (i=1,2, …n) xj ≥0 (j=1,2, …n)
x2
50
当z的值增加时,目
标函数与约束条件:
40
4x1+3x2 120
30
重合,Q1与Q2之间都
是最优解。
20
Q2(15,20)
可行域
10
Q1(25,0)
10
20
30
40
x1
解的讨论:
无界解:
例:max z=x1+x2 s.t. -2x1+x2 40 x1-x2 20 x1,x2 0
取目标函数最大正系数对应的非基变量为入基变量;取最小比值所对应 方程的基变量为出基变量。本例中,取 x1为入基变量, x3为出基变量。
x1+ 1/3x2 +1/6x3 26/3x2 -2/3x3 +x4 4x2 -1/2x3 +x5
= 30 =280 =120
令 非 基 变 量 x2=x3=0,z(1)=930, 相 应 的 基 可 行 解 为 x(1)=(30,0,0,280,120)T

运筹学ppt课件

运筹学ppt课件
– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划

整数规划

动态规划

多目标规划

双层规划
最优计数问题

组 合
网络优化

优 排序问题 化 统筹图

对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

运筹课件PPT课件

运筹课件PPT课件

它涉及到的问题包括最短路径、 最小生成树、最大流等。
图论与网络优化在计算机科学、 交通运输、通信网络等领域有 广泛应用,如路由算法、网络 设计等。
03 运筹学在现实生活中的应 用
生产与库存管理
01
02
03
生产计划
运筹学通过数学模型和算 法,帮助企业制定生产计 划,优化资源配置,提高 生产效率。
库存控制
Excel Solver的特点
Excel Solver易于使用
它提供了一个直观的用户界面,用户可以通过简单的拖放操作来定义问题。
Excel Solver具有广泛的适用性
它可以处理各种类型的优化问题,包括线性规划、整数规划、目标规划、非线性规划等。
Excel Solver具有高效性
它使用了多种优化算法,可以快速求解大规模问题。
它使用了高效的算法和优化的数据结构,可以快速地处理大规模数据和计算任务。
05 案例分析与实践
生产计划优化案例
总结词
生产计划是企业管理中的重要环节,通过优化生产计划可以提高企业的生产效率 和资源利用率。
详细描述
生产计划优化案例主要涉及如何根据市场需求、产品特性、生产能力等因素制定 合理的生产计划,以实现生产效益的最大化。具体包括对生产计划的制定、执行 、调整等环节进行优化,提高生产计划的准确性和灵活性。
运筹学的重要性
01
提高效率
降低成本
02
03
增强决策科学性
运筹学能够通过优化资源配置和 流程,提高系统的效率和生产力。
通过合理的资源配置和计划安排, 运筹学可以帮助企业降低成本和 资源消耗。
运筹学提供的数据分析和模型预 测等方法,有助于增强决策的科 学性和准确性。

运筹学教学课件(全)

运筹学教学课件(全)

实用举例
某公司通过市场调研,决定生产高中档新型拉杆箱。 某分销商决定买进该公司3个月内的全部产品。拉杆箱生 产需经过原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用 7/10小时剪裁、5/10小时缝合、1小时定型、1/10小时检 验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时缝合、 2/3小时定型、1/4小时检验包装。由于公司生产能力有限, 3月内各部的最大生产时间为剪裁部630小时、缝合部600 小时、定型部708小时、检验包装部135小时。
D {x | Ax b, x (x1,, xi ,, xn ) 0}
是凸集(凸多面体)。
引理2.1:线性规划的可行解 x (x1 ,, xn )T 为基本可行解的 充分必要条件是x的正分量所对应的系数列向量是线性无关的, 即每个正分量都是一个基变量。
定理2.2:线性规划问题的基本可行解x对应于可行域的顶点
通过分析生产过程,得出:生产中档拉杆箱需要用
7/10小时可剪裁以、通5/1过0小线时性缝合规、划1小求时定解型!、1/10小时
检验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时 缝合、2/3小时定型、1/4小时检验包装。由于公司生产 能力有限,3月内各部的最大生产时间为剪裁部630小时、 缝合部600小时、定型部708小时、检验包装部135小时。
x2
L1:x1=6 L3:2x1+3x2=18
B 可行域
L2:x2=4 最优解
x1
4x1+3x2
解的特殊情况——解的特殊情况——无界解
线性规划的基本性质
若线性规划有最 优解,则最优解必在可 行域的顶点上达到。
X
可行域内部的点 • 可行解? 是 • 最优解? 不

运筹学PPT完整版

运筹学PPT完整版

线性规划问题的数学模型
4. 建模步骤
(1) 确定决策变量:即需要我们作出决策或选择的量。一般 情况下,题目问什么就设什么为决策变量;
(2) 找出所有限定条件:即决策变量受到的所有的约束; (3) 写出目标函数:即问题所要达到的目标,并明确是max 还是 min。
线性规划问题的数学模型
5. 线性规划数学模型的一般形式
2x1 + 2x2 ≤ 12
A 2
B 1
C 4
D 0
利润 (元)

2

有效台时
2
12
2
8
0
16
4
12
3
x1 + 2x2 ≤ 8
4x1 ≤ 16 4x2 ≤ 12 x1 ≥ 0 , x2 ≥ 0
线性规划问题的数学模型
例1.4 某厂生产三种药物, 这些药物可以从四种不同的 原料中提取。下表给出了单 位原料可提取的药物量
项目 设备 A(h) 设备 B(h) 调试工序(h) 利润(元) Ⅰ 0 6 1 2 Ⅱ 5 2 1 1 每天可用能力 15 24 5
解: 1.决策变量:设产品I、II的产量
分别为 x1、x2
2.目标函数:设总利润为z,则有: max z = 2 x1 + x2 3.约束条件: 5x2 ≤ 15 6x1+ 2x2 ≤ 24 x1+ x2 ≤ 5 x1, x2≥0
9、决策分析(Decision Analysis) :主要研究定量化决策。
本课程的教材及参考书
选用教材

《运筹学教程》胡运权主编 (第3版)清华出版社 《运筹学基础及应用》胡运权主编 哈工大出版社
参考教材

《运筹学》全套课件(完整版)

《运筹学》全套课件(完整版)
负指数分布、几何分布、爱尔朗分布等。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。

运筹学PPT完整版

运筹学PPT完整版
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
s.t

n j1
aij
xj
bi
(i 1,2,,m)
(2)
xj 0, j 1,2,,n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 28
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
maxZ 2x1 x2 3(x3 x3)0x4 0x5
5x1 x2 (x3 x3) x4 7
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
线性规划问题的数学模型
Page 17
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法 单纯形法 单纯形法的进一步讨论-人工变量法 LP模型的应用
线性规划问题的数学模型
Page 13
1. 规划问题 生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
运筹学简述
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
优化配置上千个国内航线航班来实现利润 每年节约成本1亿美元 最大化
“管理运筹学”软件介绍
Page 11
“管理运筹学”2.0版包括:线性规划、运输问题、整数规划(0-1整数 规划、纯整数规划和混合整数规划)、目标规划、对策论、最短路径、 最小生成树、最大流量、最小费用最大流、关键路径、存储论、排队论、 决策分析、预测问题和层次分析法,共15个子模块。
设备 产品
A
BCຫໍສະໝຸດ D 利润(元)甲2
1
4
0
2

2
2
0
4
3
有效台时
12
8
16 12
线性规划问题的数学模型
Page 16
解:设x1、x2分别为甲、乙两种产品的产量,则数学模型为:
max Z = 2x1 + 3x2 2x1 + 2x2 ≤ 12
x1 + 2x2 ≤ 8
s.t.
4x1
≤ 16
4x2 ≤ 12 x1 ≥ 0 , x2 ≥ 0
另外,还应用于设备维修、更新和可靠性分析,项目的选择 与评价,工程优化设计等。
运筹学在工商管理中的应用
Page 10
组织 联合航空公司 Citgo石油公司 AT&T 标准品牌公司 法国国家铁路公司 Taco Bell Delta航空公司
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
经济学核心课程
运筹学
( Operations Research )
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 3
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
Page 8
运筹学在工商管理中的应用
Page 9
运筹学在工商管理中的应用涉及几个方面: 1. 生产计划 2. 运输问题 3. 人事管理 4. 库存管理 5. 市场营销 6. 财务和会计
参考教材 《运筹学教程》胡运权主编 (第2版)清华出版社 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 《运筹学》(修订版) 钱颂迪主编 清华出版社
本课程的特点和要求
Page 7
先修课:高等数学,基础概率、线性代数 特点:系统整体优化;多学科的配合;模型方法的应用 运筹学的研究的主要步骤:
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
运筹学的主要内容
Page 5
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 6
选用教材 《运筹学基础及应用》胡运权主编 哈工大出版社
线性规划问题的数学模型
Page 17
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
怎样辨别一个模型是线性规划模型?
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0
x a 6
Page 14
线性规划问题的数学模型
Page 15
例1.2 某企业计划生产甲、乙两种产品。这些产品分 别要在A、B、C、D、四种不同的设备上加工。按工 艺资料规定,单件产品在不同设备上加工所需要的台 时如下表所示,企业决策者应如何安排生产计划,使 企业总的利润最大?
线性规划问题的数学模型
Page 18
3. 线性规划数学模型的一般形式
目标函数: max (min) z c1 x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn ( ) b1




约束条件:
am1 x1 am2 x2 amn xn ( ) bm
相关文档
最新文档