第七章假设检验

合集下载

第七章 假设检验

第七章 假设检验
5 2 1 c 0 .0 5 3
5 c 0 .9 7 5 3
5 3
c 1 .9 6

所以
c 1 . 176

总目录
上一页
下一页
返回
退出
§7.2 参数假设检验 本节我们介绍母体ξ的分布是正态分布的几种显著性
{ ( x1 , x 2 , , x n ) : u ( x1 , x 2 , , x n ) u0 }
总目录 上一页 下一页 返回 退出
构造检验统计量
设 则
U
1 , 2 , , 25
是取自母体ξ的一组子样,
x1 , x 2 , , x 25
是子样观测值
1500
51.5 53.5 5 3
总目录
上一页
下一页
返回
退出
t-检验例题7.3(3-2)
假设母体服从正态分布,
检验假设
H 0 : 0 65
H 1 : 0 65
由子样算得
Sn
*
x 4 5 .0 6
n
n 1
1
( xi x )
2
5 .8 1 8
i 1
给定显著水平α=0.05,查自由度为99的t分布表得
xiaobugs
第七章 假设检验
第七章目录 §7.1 假设检验的基本思想和概念 §7.2 参数假设检验 §7.3 正态母体参数的置信区间 §7.4 非参数假设检验 (简介) *§7.5 奈曼-皮尔逊基本引理 和一致最优势检验 (略)
总目录
上一页
下一页
返回
退出
§7.1 假设检验的基本思想和概念 名词解释:

教育统计学第七章假设检验

教育统计学第七章假设检验

THANKS
感谢观看
和假设。
合理选择样本
选择具有代表性的样本是假设 检验的重要前提,样本的选择 应基于研究目的和研究对象的 特征。
正确理解数据
对收集到的数据进行正确理解 和分析,确保数据的准确性和 可靠性。
正确解读结果
对假设检验的结果进行正确解 读,避免误导或过度解读。
假设检验的局限性
样本代表性
由于样本是从总体中随机抽取的,因此可能存在样本代表性不足的问 题,导致假设检验的结果存在误差。
用于比较实际观测频数与期望 频数之间的差异。
回归分析
用于研究变量之间的关系,并 检验回归方程是否显著。
03
参数假设检验
单个总体参数的假设检验
定义
对单个总体参数的假设检验是检 验一个总体参数是否等于某个特
定值。
步骤
1. 提出假设;2. 确定检验统计量; 3. 确定临界值;4. 做出推断结论。
示例
检验某班级学生的平均成绩是否为 80分。
提高假设检验准确性的方法
增加样本量
增加样本量可以提高假设检验的准确性,降 低误差率。
考虑使用交叉验证
交叉验证可以减少模型过拟合和欠拟合问题, 提高假设检验的准确性。
选择适当的统计方法
根据研究目的和数据特征选择适当的统计方 法,可以更准确地检验假设。
注意控制实验误差
在实验过程中,应采取措施控制实验误差, 确保数据的准确性和可Байду номын сангаас性。
两个样本非参数检验
1 2 3
曼-惠特尼U检验
用于比较两个独立样本的平均值是否存在显著差 异。
威尔科克森符号秩检验
适用于比较两个独立样本的平均值是否存在显著 差异,特别是当其中一个样本的观测值不能进行 四则运算时。

第七章假设检验

第七章假设检验
第七章 假设检验
第一节 第二节 检验 假设检验的一般问题 总体均值, 总体均值,比例和方差的假设
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 能对实际问题作假设检验
第一节 假设检验的一般问题
一,假设检验的概念 二,假设检验的步骤 三,假设检验中的小概率原理 四,假设检验中的两类错误 五,双侧检验和单侧检验
拒绝域 置信水平
α
1-α 接受域 H0值 样本统计量
临界值
6,右侧检验(显著性水平与拒绝域 ) 右侧检验( 抽样分布
置信水平 拒绝域 1-α 接受域 H0值 观察到的样本统计量 样本统计量
α
临界值
抽样分布
1-α 接受域 H0值
置信水平 拒绝域
α
临界值
样本统计量
第二节 总体均值,比例和方差的假设检验
1,原假设为真时拒绝原假设 , 2,会产生一系列后果 , 3,第一类错误的概率为α ,第一类错误的概率为α
被称为显著性水平 第二类错误(取伪错误) (二)第二类错误(取伪错误)
1,原假设为假时接受原假设 , 2,第二类错误的概率为β ,第二类错误的概率为β
(三)列表
H0: 无罪
假设检验就好 像一场审判过程
2,确定假设的步骤 例如问题为: 检验该企业生产的零件平均长度为4厘米 步骤: (1)从统计角度陈述问题 ( = 4) 1 (2)从统计角度提出相反的问题 ( ≠ 4) 必需互斥和穷尽 (3)提出原假设 ( = 4) (4)提出备择假设 ( ≠ 4) 有 ≠ 符号
3,双侧检验(例子) 双侧检验(例子)
1,原假设与备择假设是一个完整事件组. 2,通常先确定备择假设,再定原假设. 3,等号总放在原假设. 4,两者的选择本质上带有主观色彩. 5,假设检验的目的主要是收集证据拒绝原 假设.

第七章 假设检验

第七章  假设检验

第七章假设检验第一节假设检验的基本知识一、假设陈述1、原假设/虚无假设:用H表示,常常是根据已有资料得出的,稳定、保守的经验性看法,没有充分根据是不会被推翻的。

2、备选假设/研究假设:与原假设对立的假设,用H1表示,经过抽样调查后,获得证据希望予以支持的假设。

二、假设检验的基本原理——小概率原理小概率原理:一次观察中小概率事件被认为不可能发生;如果一次观察出现了小概率事件,合理的想法应该是否定原有事件具有小概率的说法。

小概率原理在假设检验中的运用:抽取一个样本并计算出检验统计量,如果在原假设成立的条件下这个统计量几乎不可能发生,则拒绝原假设而接受备选假设。

反之,如果计算出的统计量发生的可能性不太小,则接受原假设。

即在原假设下,检验统计量是小概率事件则拒绝原假设。

例1:某市场有100位摊贩,根据以往统计,其中非本地居民占10%,现随机抽取10人调查,发现5个都不是本地人,则原有统计结果是否成立?解:H:100人中10个是非本地人。

计算在原假设成立的情况下,抽取5人都是非本地人的概率:P= C105 C905/C10010<10-4可见,出现5名非本地人的结果概率极其小,但一次实验就出现了,所以怀疑原假设的真实性,拒绝原假设。

三、拒绝域与显著性水平1、显著性水平α,在原假设成立条件下,统计检验中规定的小概率的数量界限,常用的有α=0.10,0.05,0.01。

2、接受域和拒绝域根据原假设画出统计量的分布,以Z分布为例。

如果把拒绝原假设的小概率α事件定在分布的右侧尾部,则右侧面积代表的概率即显著性水平,Zα是临界值。

如果检验统计量值Z>Zα,则应拒绝原假设;如Z<Zα,则接受原假设。

以Zα为临界值,左边为接受域,右边为拒绝域。

也可把α定在左边或两边。

α1、双边检验如果拒绝域放在抽样分布的两侧,每侧拒绝域的概率分别为α/2,假设抽样本分布以0为对称,则P(|Z|>Z α/2)= α;双边检验的假设如下:H 0: μ=μ0H 1: μ≠-Z α/2 Z α/2如果检验统计量|Z|>Z α/2,则拒绝原假设,否则接受。

07 假设检验

07 假设检验

2=02
202
2
2=()02 2>02 2=()02 2<02
2 n 1 S

2 0
单个正态总体均值已知的方差检验——2检验
问题:总体 X~N(,2),已知 假设
H0 : ; H1 : ;
2 2 0 2
构造2统计量 2
概率论与数理统计
第七章 假设检验
主要内容
假设检验的基本概念 正态总体参数的假设检验 *多个正态总体均值的比较——单因素方差 分析 *2拟合优度检验
§7.1 假设检验的基本概念
一、统计假设与统计假设检验 统计假设:通过实际观察或理论分析对总体分布形式 或对总体分布形式中的某些参数作出某种假设。 同一问题中的统计假设有两个:原假设和备择假设
基本原则——小概率事件在一次试验中是不可能发生的。 思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。
• 假设检验的推理用到概率性质的反证法:先假设
H0正确,看由此可以推出什么结果。如果样本观 测值导致了一个不合理现象的出现,则有理由否 定原假设H0,而接受备择假设H1;否则,只能将 原假设H0当做真的保留下来。
故T统计量的观测值为
x 99.978 100 T 0.0545 S n 1.212 9
因为0.0545<1.86 ,即观测值落在接受域内 所以接受原假设,即可认为这天的包装机工作正常。
单边检验
H0:=0;H1:0
拒绝域为
X 0 P t (n 1) S n
X

第七章假设检验

第七章假设检验
5-2
引言
结论:企图肯定什么事情很难, 结论:企图肯定什么事情很难,而否定就容 易得多。 还记得上次那个例子吗? 易得多。 (还记得上次那个例子吗?两个人 住一起,其中有一个人病了, 住一起,其中有一个人病了,另一个人天天 给他熬药还端到他床前,三个月过去了, 给他熬药还端到他床前,三个月过去了,突 然有一天那个人忙得很, 然有一天那个人忙得很,把药熬好了就对卧 病在床的人说,你自己去喝吧, 病在床的人说,你自己去喝吧,卧病的人心 里想: 这个人怎么这么坏呢? 里想:“这个人怎么这么坏呢?”,他倒忘 了这个人对他的好, 了这个人对他的好,记住一个人的好总比记 住一个人的坏好,有时候想想, 住一个人的坏好,有时候想想,老师就像端 药的人,学生就是喝药的人,良药苦口, 药的人,学生就是喝药的人,良药苦口,我 也许一直是你们背后说你们的那个烂人, 也许一直是你们背后说你们的那个烂人,老 师也是弱势群体啊!!) 师也是弱势群体啊!!)
α
H 0 : µ ≤ 2% ↔ H 1 : µ > 2%
5-10
二、两种类型的错误
两类错误发生的概率 α与β之间是此消彼长的关系 接受
H0
拒绝
H0
H0
真实
判断正确 (1-α) ) 取伪错误( 取伪错误(第二类 错误或β 错误或 错误)
弃真错误( 弃真错误(第一 类错误或α 类错误或 错误 ) 判断正确 (1-β) )
第七章 假设检验
第一节 假设检验概述 第二节 总体参数检验 第三节 卡方检验
参数估计是利用样本信息推断未知的总体参数, 参数估计是利用样本信息推断未知的总体参数, 而假设检验是先对总体参数提出一个假设, 而假设检验是先对总体参数提出一个假设,然后利 用样本信息判断这一假设是否成立。 用样本信息判断这一假设是否成立。

应用统计学第7章 假设检验

应用统计学第7章 假设检验


μp
(1 )
σp
n
7.3 几种常见的假设检验
• p的抽样分布接近于 正态分布,所以检
验统计量是ZSTAT 值:
p的假设检验
Z STAT

nπ 5和 n(1-π) 5
π(1 π)
n
nπ < 5或 n(1-π) < 5
本章不讨论
7.3 几种常见的假设检验
关于总体比例,可建立如下假设:
提出原假设和备择假设 选择显著性水平 确定检验统计量 建立决策准则 做出决策
7.2 假设检验的五个步骤
7.2.1提出原假设和备择假设 原假设,H0
检验的声称或断言
例:在美国每个家庭平均有3台电视机
(H0 : μ 3)
是总体参数,不是样本统计量
H0 : μ 3
H0 : X 3
7.2 假设检验的五个步骤
的假设检验
σK已n知own (Z 检验)
检验统计量是:
σ Un未kn知own (t 检验)
7.3 几种常见的假设检验
根据抽样分布原理,当总体服从正态分布N(μ,2)时,那
么从中抽取(重复抽样)容量为n 的样本,其样本均值
服从正态分布
N , 2 / n ,而统计量
Z
x
服从标
准正态分布。
n
对于双侧检验,对给定的显著性水平α,当
解:由题意知,这是左单侧检验问题,可建立如下假设:
H0 : 0.9
H1 : 0.9
样本比例
p 82 0.82 ,检验统计量的值为:
100
Z
p
= 0.82 0.9 2.67
(1 )
0.9 0.1
n
100

第七章 假设检验

第七章 假设检验

|u| = x 0 2.2 1.96, 0 / n
于是根据小概率事件实际不可能性原理,拒绝假设 H0 ,
认为包装机工作不正常.
(2)若取定 0.01,
则 k u / 2 u0.005 2.58,
|u|= x 0 2.2 2.58, 于是 0 / n
接受假设 H0 , 认为包装机工作正常.
注:上述 称为显著性水平.此例表明假设检验的结论与选取的显著性水平 有 密切的关系.所以,必须说明假设检验的结论是在怎样的显著水平 下作出的.
ch3-8
2.假设检验的基本思想及推理方法
1)假设检验基本思想 (1) 在假设检验中,提出要求检验的假设,称为原假设或零假设,
记为 H0 ,原假设如果不成立,就要接受另一个假设,这另一 个假设称为备择假设或对立假设,记为 H1 。 (2) 假设检验的依据——小概率原理:小概率事件在一次试验中 实际上不会发生。 (3) 假设检验的思路是概率性质的反证法。即首先假设成立,然 后根据一次抽样所得的样本值信息,若导致小概率事件发生, 则拒绝原假设,否则接受原假设。
C3 12
p3 (1
p)9
0.0097
0.01
这是 小概率事件 , 一般在一次试验中
是不会发生的, 现一次试验竟然发生, 故认
为原假设不成立, 即该批产品次品率p 0.04
则该批产品不能出厂.
P12 (1)
C1 12
p1 (1
p)11
0.306
0.3
ch3-12
这不是小概率事件,没理由拒绝原假设,
因为 X 是 的无偏估计量,所以,若 H 0 为真,则 X 0 不ch应3-6X 太大, Nhomakorabea0
0 / n

第七章假设检验

第七章假设检验

或者对立假设,用表示 H1

第二,希望通过已经获得的一个样本实现
x1 , x2 ,, xn ,
对 H 0 做出成立还是不成立的判断(或者决策)。
© 概率统计教研室
2012
概率论与数理统计 The Probability Theory and Mathematical Statistics
上述各例的零假设与备择假设
这类问题称作假设检验问题 .
假设检验

参数假设检验 非参数假设检验
总体分布已 知,统计假设 仅涉及未知参 数
对总体分布类型做的统计假设
© 概率统计教研室
2012
概率论与数理统计 The Probability Theory and Mathematical Statistics
统计假设
例7.1 某车间生产的滚球直径X服从正态分布 N (15.1,(0.05)2 ) 。 现从某天生产的滚球中随机抽取6个,测得直径(单位:mm)为 14.6, 15.1, 14.9, 14.8, 15.2, 15.1,
所谓小概率原理是指“概率很小的事件在一次试验中 几乎不可能发生”。通常认为概率为0.05或0.01的事件为小 概率事件,有时也把概率为0.10的事件当作小概率事件。小 概率的标准在假设检验中又称之为显著水平,记为

小概率事件在一次试验中并非绝对不能发生,只不过是发 生的概率很小,以至于我们在实际统计推断中认为小概率事件 在一次抽样(试验)中不会发生。所以建立在小概率原理基础 上的带有概率性质的反证法所得结论是有一定风险的,即有可 能犯错误。
由于样本的随机性,可能发生两种类型的错误。 客观上零假设H 是正确的,而由于样本的随机性, 0 做出了拒绝零假设的决策,因而犯了错误,在统计学上 称为第一类错误,也称为“弃真”错误。显然,犯第一

东华大学《概率论与数理统计》课件 第七章 假设检验

东华大学《概率论与数理统计》课件 第七章 假设检验

1. 2为已知, 关于的检验(U 检验 )
在上节中讨论过正态总体 N ( , 2 ) 当 2为已知时, 关于 = 0的检验问题 :
假设检验 H0 : = 0 , H1 : 0 ;
我们引入统计量U
=
− 0 0
,则U服从N(0,1)
n
对于给定的检验水平 (0 1)
由标准正态分布分位数定义知,
~
N (0,1),
由标准正态分布分位点的定义得 k = u1− / 2 ,
当 x − 0 / n
u1− / 2时, 拒绝H0 ,
x − 0 / n
u1− / 2时,
接受H0.
假设检验过程如下:
在实例中若取定 = 0.05, 则 k = u1− / 2 = u0.975 = 1.96, 又已知 n = 9, = 0.015, 由样本算得 x = 0.511, 即有 x − 0 = 2.2 1.96,
临界点为 − u1− / 2及u1− / 2.
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原
理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错
误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
设 1,2, ,n 为来自总体 的样本,
因为 2 未知, 不能利用 − 0 来确定拒绝域. / n
因为 Sn*2 是 2 的无偏估计, 故用 Sn* 来取代 ,
即采用 T = − 0 来作为检验统计量.
Sn* / n
当H0为真时,
− 0 ~ t(n −1),
Sn* / n
由t分布分位数的定义知

第七章-假设检验PPT

第七章-假设检验PPT

(Xi X )2
i 1

n
[例7-5]某制药厂试制某种安定神经的新药,给10个病人 试服,结果各病人增加睡眠量如表7-2所示。
表7-1 病人服用新药增加睡眠量表
病人号码
1
2
34
5 6 7 8 9 10
增加睡眠(小时) 0.7 -1.1 -0.2 1.2 0.1 3.4 3.7 0.8 1.8 2.0
n N 1
其中, 是假设的总体比例,p 是样本比例
7.3.1 单个总体比例检验
❖ 这个检验统计量近似服从标准正态分布。如果抽样比例n/N 很小时,也可以使用下列形式:
Z p (1 )
n
[例7-7]某企业的产品畅销国内市场。据以往调查,购买该 产品的顾客有50%是30岁以上的男子。该企业负责人关心这 个比例是否发生了变化,而无论是增加还是减少。于是,该企 业委托了一家咨询机构进行调查,这家咨询机构从众多的购买 者中随机抽选了400名进行调查,结果有210名为30岁以上的 男子。该厂负责人希望在显著性水平0.05下检验“50%的顾客 是30岁以上的男子”这个假设。
解:从题意可知,X =1.36米,0=1. 32米, =0.12米。 (1)建立假设:H0: =1.32,H1: 1.32
(2)确定统计量:
Z X 1.36 1.32 1.67 / n 0.12 / 25
(3)Z的分布:Z~N(0,1)
(4)对给定的 =0.05确定临界值。因为是双侧备择假设所以
动生产率的标准差相等.问:在显著性水平0.05下,改革前、 后平均劳动生产率有无显著差异? 解:(1)建立假设H0:1 2 (没有差别)。
H1:1 2 (有差别)(左单侧备择假设) (2)计算统计量:

第七章 假设检验

第七章 假设检验

若统计量的值落在否定域内(包括临界 值),说明H0与样本描述的情况有显著差异, 应该否定原假设;若该值落在接受域内,就 说明H0与样本描述的情况无显著差异,则应 接受原假设。 本例Z值为2.5落入拒绝域,故拒绝原假设, 认为08年国有单位职工月平均工资与07年相 比有显著差异。
15
end
三、假设检验中的两类错误 假设检验是依据样本信息进行判断,是由部 分来推断整体,因而不可能绝对准确,可能 犯错误。
end
0.55 0.60
三、总体方差的假设检验 ( 2检验)
1. 检验一个总体的方差或标准差 2. 假设总体近似服从正态分布 3. 检验统计量服从 2分布
( n 1) s 2 ~ ( n 1) 2 0
Байду номын сангаас2 2
假设的总体方差
34
end
【例 6-9】啤酒生产企业采用自动生产线灌 装啤酒,每瓶的装填量为 640ml ,但由于 受某些不可控因素的影响,每瓶的装填量 会有差异。此时,不仅每瓶的平均装填量 很重要,装填量的方差同样很重要。如果 方差很大,会出现装填量太多或太少的情 况,这样要么生产企业不划算,要么消费 者不满意。假定生产标准规定每瓶装填量 的标准差不应超过 4ml 。企业质检部门抽 取了10瓶啤酒进行检验,得到的样本标准 差为s=3.8ml。试以0.05的显著性水平检验 装填量的标准差是否符合要求? 方差检验经常是右侧检验
17
end
第二节总体参数的假设检验
总体参数假设检验就是检验已知分布形 式的总体某些参数是否与事先所做的假 设存在显著性差异,又称为显著性检验。 主要包括对总体均值、总体比例和总体 方差的假设检验。
18
end
一、总体均值的假设检验

心理统计学 第七章假设检验

心理统计学 第七章假设检验
α和β 的关系就像翘翘板, 的关系就像翘翘板, 就大, α小β 就大, α大β 就小
β
α
四、单侧与双侧检验
• 1.双侧检验:只强调差异 1.双侧检验: 双侧检验 而不强调方向性的检验。 而不强调方向性的检验。
H 0 : µ = µ0
• 2.单侧检验:既强调差异 2.单侧检验: 单侧检验 又强调方向性的检验。 又强调方向性的检验。
• (二)两类错误的关系
• • • • • 1. α+β不等于1 不等于1 是在两个不同前提下的概率。 α和β是在两个不同前提下的概率。 2. α和β不可能同时增大或减小 增大样本容量n 可同时减小两类错误。 增大样本容量n,可同时减小两类错误。 3.统计检验力 统计检验力1 3.统计检验力1-β。
解: 提出假设:用μ1表示受过早期教育的儿童的平均智商。单侧检验,提出假设: ⑴提出假设 Ho: H1: Ho:μ1≤μo=100 H1:μ1>μo=100 选择并计算统计量: ⑵选择并计算统计量:由于总体方差已知,样本平均数服从正态分布。
⑶查表确定临界值:Z0.05=1.645 查表确定临界值: 统计决断: p<0.05。 ⑷统计决断:Z=1.84> Z0.05=1.645 ,p<0.05。 p<0.05 落在拒绝区域,所以拒绝零假设,接受备择假设。 即应该认为受过良好早期教育的儿童智力高于一般水平。 即应该认为受过良好早期教育的儿童智力高于一般水平。
Ⅰ型错误:也称α型错误或弃真错误,即H0为真拒绝H0(拒 为真拒绝H 型错误:也称α型错误或弃真错误, 绝了一个本应接受的假设); 绝了一个本应接受的假设); 型错误:也称β型错误或取伪错误, 为假接受H Ⅱ型错误:也称β型错误或取伪错误,即H0为假接受H0(接 受了一个本应拒绝的假设)。 受了一个本应拒绝的假设)。 负责任的态度是无论做出什么决策, 负责任的态度是无论做出什么决策, 都应该给出该决策可能犯错误的概率。 都应该给出该决策可能犯错误的概率。

07第七章 假设检验

07第七章 假设检验
23
{Z z0.01}是
一小概率事件
拒绝域 W Z : Z z0.01 2.33 .
X 给定显著水平 =0.01,若使得 P k =, n X 21 则有 P k , ( 2) n 由式()得:k z . 1
20
四、求解参数假设检验问题的步骤
1、根据实际问题的要求,提出原假设 H 0 及备选 假设 H1 . 选择 H 0 , H1 使得两类错误中导致后果严重的 错误成为第一类错误. 2、给出显著水平 拒绝域.
,选择合适的统计量,确定
3、根据样本值,求出检验统计量的值,作出决策.
21
提出 假设
根据统计调查的目的, 提出 原假设H0 和备选假设H1 作出 决策
因此,衡量 x 0 的大小,可归结为衡量 x 0 的大小.
8

n
选择适当的正数k,使样本的观察值 x满足 x 0 U k n 时,就接受原假设H 0 . 否则,即当 U k时,就拒绝原假设H 0 .
应该用什么原则来确定这个量的合理界限?即怎样求k?
注意到,
不等式 x 0
2
拒绝 域
2
假设检验的步骤
Step1 提出假设. Step2 构造拒绝域,依据假设和常用的统计量. Step3 进行检验.
注意:不否定H0并不是肯定H0一定对,而只是说差 异还不够显著,还没有达到足以否定H0的程度.
所以假设检验又叫 “显著性检验” 如果显著性水平α取得很小,则拒绝域也会比较小, 其产生的后果是: H 0难于被拒绝. 如果在α很小的情况下, H0仍被拒绝了, 则说明实 际情况很可能与之有显著差异.
可用x与0的差距 x 0 来判断原假设H 0是否成立.

第七章假设检验

第七章假设检验

第三节
u检验
u检验(u test ),亦称z检验(z test) 大样本均数(率)与总体均数(率)比较的u检 验、 两个大样本均数(率)比较的u检验 一、大样本均数比较的u检验 二、大样本率的u检验
一、大样本均数比较的u检验
假定样本数据服从正态分布 ,当总体标准差 未知时,可用样本标准差作为估计值 这里的总体均数一般是指已知的理论值、标准 值或经过大量观察所得到的稳定值,记作µ 0 (或记为 )
两个样本率p1、p2的差值服从正态分布
u p1 p2
1 2
p p
2 2 p p p p 1 (1 1 ) / n1 2 (1 2 ) / n2
1 2 1 2
样本率p介于0.1~0.9之间,每组例数大于60 例
n1 p1 n2 p2 ˆ0 n1 n2
两样本均数比较的u检验
该检验方法适用于完全随机设计中两组 计量资料差别的比较 两样本均数差值服从正态分布
u Leabharlann 1 X 2X1X2
X
1X2
2 2 2 2 X / n 1 1 2 / n2 X2 1

当总体标准差未知,两组例数均超过30
ˆX
1X2
亦称样本率与总体率的比较的u检验,这里的 总体率一般是指已知的理论值、标准值或经大 量观察所获得的稳定值。
例7–3 全国调查的调查结果,学龄前儿童营 养性贫血患病率为23.5%。某医院为了解当
地学龄前儿童能够营养性贫血患病情况,对
当地1396例学龄前儿童进行了抽样调查,查
出营养性贫血患儿363例,患病率为26.0%。
ˆp p
1
2
1 1 ˆ0 (1 ˆ0 )( ) n1 n2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k
,
n
也就是说,事件“|
U
|
z
”2
2
2
是一个小概率事件.
由标准正态分布的上分位点的定义知:
k z 2 ,
17
故可以取拒绝域为 W: | U | z 2
如果由样本值算得该统计量的实测值落
入区域W,则拒绝H0 ;否则,不能拒绝H0 .
这是因为,如果H0 是对的,那么衡量差 异大小的某个统计量落入区域 W(拒绝域) 是 个小概率事件. 如果该统计量的实测值落入 W,也就是说, H0 成立下的小概率事件发生 了, 那么就认为H0不可信而否定它. 否则就不 能否定H0 (只好接受它).
n
体N (, 2 )的样本. 且设是已知常数.
12
现在要检验的假设是:
H0 : 0 (0 355),
它的对立假设是:
H1 : 0,
在实际工作中, 往往把不轻易 否定的命题作 为原假设.
称H0为原假设(或零假设); 称H1为备选假设(或对立假设). 那么,如何判断原假设H0 是否成立呢?
13
H0 : 新技术未提高效益,H1 : 新技术提高效益.
30
•假设检验 —基本概念
原 把需要检验的
假 假设称为原假
关于总体
假 设
分布的某 个命题
设 设,记为H0.
备 在拒绝原假设后,可供 择 选择的一个命题称为
假 备择假设,它是原假设
设 的对立假设,记为H1.
31
•假设检验 —基本概念
检验统计量 用于判断原假设成立与否的统计量
P{第二类错误}= P{接受H0|H0不真}= .
26
•假设检验的两类错误
显著性水平 为犯第一类错误的概率.
两类错误是互相关联的, 当样本容量 固定时,一类错误概率的减少导致另一类 错误概率的增加.
要同时降低两类错误的概率, ,或 者要在 不变的条件下降低 ,需要增加
样本容量.
27
•关于假设
| t |=2.997<4.0322
没有落入
故不能拒绝H0 .
拒绝域
这并不意味着H0一定对,只是差异
还不够显著, 不足以否定H0 .
23
•假设检验的两类错误
假设检验会不会犯错误呢? 由于作出结论的依据是 不是一定不发生
小概率原理 小概率事件在一次试验中基本上不会发生
24
•假设检验的两类错误
如果H0成立,但统计量的实测值落入 否定域,从而作出否定H0的结论,那就犯 了“弃真”的错误 .
U 检验 t 检验
2 检验
用正态分布
用 t 分布 用 2 分布
F 检验 用 F分布
按照对立假设的提法,分为 双侧检验 它的拒绝域取在两侧
单侧检验 它的拒绝域取在左侧或右侧
37
例2
某织物强力指标X的均值0=21公斤. 改
进工艺后生产一批织物,今从中取30件,测 得 X=21.55公斤. 假设强力指标服从正态分
n
且 x x 0 应该较小.
而衡量
x
0
的大小,可归结为衡量
x
0
n
的大小.
15
选择适当的正数k, 使样本的观察值x满足
x 0 n
k时,就拒绝原假设H

0
反之,若样本的观察值 x满足
x 0 n
k时,就接受原假设H0 .
怎样求数 k 呢?
16
给定一个很小的数:0 1, 使得
P
X
度是32.5毫米. 实际生产的产品,其长度X
假定服从正态分布N , 2 , 2未知,现从
该厂生产的一批产品中抽取6件, 得尺寸数 据如下:
32.56, 29.66, 31.64 30.00, 31.87, 31.03
问这批产品是否合格?

20
分析:这批产品(螺钉长度)的全体组成问题的 总体X. 现在要检验E(X)是否为32.5.
代入 =1.2, n=30,
并由样本值计算得统计
{U u0.01}是
一小概率事件
量U的实测值
布N(, 2), 且已知 =1.2公斤, 问在显著性 水平 =0.01下,新生产织物比过去的织物
强力是否有提高?
解 提出假设:
H0 : 21, H1 : 21.
38
取统计量 U X 21 ~ N (0,1)
n
确定k,使得
P
X
21 n
k
,
k z
o k z x
39
拒绝域为 W : U u0.01 =2.33
假设其中真有99个白球, 摸出红球的概率只有1/100, 这是小概率事件. 小概率事件在一次试验中竟然发生了,不 能不使人怀疑所作的假设. 这个例子中所使用的推理方法,可以称为 带概率性质的反证法 不妨称为概率反证法.
7
小概率事件原理
小概率事件在一次试验中基本上不会发生
它不同于一般的反证法 一般的反证法要求在原假设成立的条件 下导出的结论是绝对成立的,如果事实与之 矛盾,则完全绝对地否定原假设. 概率反证法的逻辑是:如果小概率事件 在一次试验中居然发生,我们就以很大的把 握否定原假设.
称为检验统计量. 显著水平
控制 P (拒绝H0 | H0为真 ) 中的 称为检验的显著水平.
32
•假设检验 —基本概念
拒绝域 使原假设H0被拒绝的样本观测值所
组成的区域称为检验的拒绝域. 接受域
保留原假设H0的样本观测值所组成 的区域称为检验的接受域.
33
•假设检验 —基本概念
显著性检验 只对犯第一类错误的概率加以控制,
18
不否定H0并不是肯定H0一定对,而只 是说差异还不够显著,还没有达到足以否 定H0的程度 . 所以假设检验又叫 “显著性检验”
如果显著性水平取得很小,则拒绝
域也会比较小. 其产生的后果是: H0难于
被拒绝. 如果在α很小的情况下H0仍被拒
绝了,则说明实际情况很可能与之有显著 差异.
19
例1
某工厂生产的一种螺钉,标准要求长
4
小概率事件原理
小概率事件在一次试验中基本上不会发生
现从两盒中随机取出一个盒子,问这个 盒子里是白球99个还是红球99个?
5
小概率事件原理
小概率事件在一次试验中基本上不会发生
不妨假设:这个盒子里有99个白球. 现在从中随机摸出一个球,发现是 此时如何判断这个假设是否成立呢?
6
小概率事件原理
小概率事件在一次试验中基本上不会发生
而不考虑犯第二类错误的概率的检验.
双边假设检验
显著性检验 单边假设检验
34
提出 假设
总 结
抽取 样本
P(T W)=
-----犯第一
类错误的概率, W为拒绝域
根据统计调查的目的, 提出 原假设H0 和备选假设H1
检验 假设
显著性 水平
作出 决策
拒绝还是不 能拒绝H0
对差异进行定量的分析, 确定其性质(是随机误差
t 2(5) t0.005(5) 4.0322,
使
P{| t | t 2(5)} 2
2
即“ | t | t 2(5)”
是一个小概率事件 .
x
o k t 2 n 1
小概率事件在
得拒绝域 W: |t |>4.0322 一次试验中基
本上不会发生
22
拒绝域 W: |t |>4.0322
第四步 将样本值代入算出统计量 t 的 实测值,
代入 =1.2, n=30,
并由样本值计算得统计
{U u0.01}是
一小概率事件
量U的实测值
U=2.51>2.33
落入拒绝域
故拒绝原假设H0 .
这认时为可新能生犯产第织一物类比错过误去,的犯织错物误强的力概 率是不有超所过提0高.01..
40
作业
P178 2
41
正态总体均值的假设检验
X1, X2,L , Xn : N , 2 ,
由于是正态分布的期望值,它的估计量是
样本均值X,因此可以根据X与0的差距
X 0 来判断H0 是否成立.

X
0
较小时,可以认为H
是成立的;
0

X
0
较大时,应该认为H
不成立的,
0
即生产已不正常.
较大、较小是一个相对的概念,合理的
界限在何处?应由什么原则来确定?
14
问题是:如何给出这个量的界限?
在原假设为真时, U @X 0 : N 0,1 ,
如果H0不成立,但统计量的实测值未 落入否定域,从而没有作出否定H0的结论, 即接受了错误的H0,那就犯了“取伪”的 错误 .
25
•假设检验的两类错误
假设检验的两类错误
实际情况
决定
拒绝H0 接受H0
H0为真 第一类错误
正确
H0不真 正确
第二类错误
犯两类错误的概率
P{第一类错误}= P{拒绝H0|H0为真}= ,
假设检验 非参数假设检验 总体分布未知时的
假设检验问题
2
第七章 假设检验
❖假设检验 ❖一个正态总体均值与方差的假设检验 ❖两个正态总体均值或方差的比较 ❖置信区间与假设检验
3
小概率事件原理
小概率事件在一次试验中基本上不会发生 设有两个盒子,各装有100个球.
…99个
99个红白球 一个白红球
另一一盒盒中中的的白白球球和和红红球球数数
种错误. (1)将假药误作真药,则冒着伤害病人的健 康甚至生命的风险. (2)将真药误作假药,则冒着造成经济损失 的风险.
显然,犯错误(1)比犯错误(2)的后果 很严重. 所以选取
相关文档
最新文档