航空发动机总体结构资料
航空发动机结构实训报告
一、实训目的本次实训旨在通过实际操作,使学生深入了解航空发动机的结构特点、工作原理及维修方法,提高学生的动手能力、分析问题和解决问题的能力,为今后从事航空发动机维修工作打下坚实基础。
二、实训内容1. 航空发动机概述(1)航空发动机的定义及分类航空发动机是飞行器的心脏,其主要作用是为飞行器提供推进力。
根据工作原理,航空发动机可分为喷气式发动机、涡轮螺旋桨发动机和活塞发动机等。
(2)航空发动机的发展历程从早期的活塞发动机到现在的涡扇发动机,航空发动机在性能、可靠性、燃油效率等方面取得了巨大进步。
2. 航空发动机结构分析(1)发动机总体结构航空发动机由进气系统、燃烧室、涡轮、压气机、尾喷管等部分组成。
进气系统负责吸入空气,燃烧室负责将空气与燃料混合燃烧,涡轮和压气机负责压缩和膨胀空气,尾喷管负责将高速气流排出,产生推力。
(2)主要部件结构1)进气道:进气道负责引导空气进入发动机,减少气流对发动机内部的影响。
2)压气机:压气机将吸入的空气压缩,提高空气密度,为燃烧提供必要条件。
3)燃烧室:燃烧室是发动机的核心部分,负责将压缩后的空气与燃料混合燃烧,产生高温高压气体。
4)涡轮:涡轮将燃烧产生的高温高压气体膨胀,驱动压气机和发动机其他部件。
5)尾喷管:尾喷管将高速气流排出,产生推力。
3. 航空发动机维修实训(1)发动机拆装实训1)拆装工具的使用在拆装发动机过程中,正确使用拆装工具至关重要。
实训中,学生需掌握各种拆装工具的使用方法,如扳手、钳子、螺丝刀等。
2)发动机拆装步骤发动机拆装步骤包括:拆卸进气道、压气机、燃烧室、涡轮、尾喷管等部件,检查各部件磨损情况,进行维修或更换。
(2)发动机故障诊断与排除1)故障诊断方法故障诊断是发动机维修的关键环节。
实训中,学生需掌握以下诊断方法:观察法、听觉法、振动法、温度法等。
2)故障排除根据故障诊断结果,采取相应的维修措施,如更换磨损部件、调整间隙、润滑等。
三、实训心得1. 提高动手能力通过本次实训,我掌握了航空发动机的拆装、维修等基本技能,提高了自己的动手能力。
介绍jt8d发动机总体结构
介绍jt8d发动机总体结构JT8D发动机是一种涡轮风扇发动机,由普惠公司(Pratt & Whitney)于上世纪50年代末至60年代初开发并投产。
该发动机广泛用于各种窄体客机和商用飞机上,如波音727、DC-9和MD-80系列。
JT8D发动机的总体结构主要由核心机、涡扇、再生器和推力反向装置组成。
核心机由高压压气机、高压燃烧室、高压涡轮和低压涡轮组成,起到压缩、燃烧和释放燃气的作用。
涡扇包括风扇和低压涡轮,通过将大量气流吸入并加速后喷出来提供额外的推力。
再生器是位于高压涡轮和低压涡轮之间的热交换器,用于回收高温燃气中的一部分能量以提高发动机效率。
推力反向装置则用于改变飞机的行进方向,提供刹车效果。
JT8D发动机的核心机采用双转子设计,既包括高压压缩机经由碳堆和气堆驱动的内轴转子,也包括低压涡轮通过外轴驱动的外转子。
高压压缩机由一系列可变截面叶片组成,通过快速旋转将空气压缩至高压燃烧室进行燃烧。
高压燃烧室采用环形状设计,其中燃烧发生在燃烧室环内,产生高温高压的燃气。
燃气源源不断地将能量输送到高压涡轮和低压涡轮驱动核心机和涡扇。
涡扇是JT8D发动机的一个重要组成部分,它通过吸入大量空气并通过喷气产生推力。
涡扇由一系列叶片组成,这些叶片连接到风扇盘上。
这些叶片把来自核心机前进的高速气流分流,并将其加速后喷出来,提供主要的推力。
再生器位于高压涡轮和低压涡轮之间,它是一个热交换器,用于回收高温燃气中的一部分能量。
在再生器中,发动机的尾流与燃烧室中的空气相混合,通过换热技术将烟气中的热能转移到燃气中,提高发动机的热效率。
JT8D发动机还配备了推力反向装置,用于改变飞机的行进方向,并提供刹车效果。
推力反向装置由一系列可伸缩的叶片组成,当飞机着陆时,这些叶片会被调整到发动机尾部,使喷气产生的推力向后,增加飞机的减速效果。
总体来说,JT8D发动机采用了先进的涡轮风扇技术和高效的燃烧系统,具有较高的推力和燃油效率。
CFM56系列发动机结构设计与研制特点
CFM56系列发动机结构设计与研制特点1概述1.1发展背景CFM56发动机是由美国通用电气公司(GE)和法国国营航空发动机研究制造公司(SNECMA)共同组成的CFM国际公司(CFMI),在F101核心机技术的基础上,为适应20世纪80年代后国际军、民用飞机市场的需要而研制的100 kN级高涵道比涡扇发动机。
从它的第1个型号CFM56-2于1979年11月取得适航证后,到2005年已发展了CFM56-3,CFM56-5A、cFM56-5B、CFM56-5c、CFM56-7等6个系列,共有28个型号,其推力覆盖了71~151 kN,已成为22个型号飞机的动力。
GE公司与SNECMA两家的合作是从20世纪70年代初开始的。
SNECMA公司一直是研制军用发动机的,从未涉及民用发动机的研制;但到了20世纪60年代末感到应该插手潜力极大的民用发动机市场,不仅可以开拓市场,积累资金;而且通过发展民用发动机,也可以提高技术水平。
当时,SNECMA 考虑70~90 kN推力级的高涵道比涡轮风扇发动机在市场上还是缺门,而它的应用前途却非常广泛。
它不仅可以用于民用飞机上,例如有相当数量的DC-8系列飞机、波音737系列飞机在航线上使用,但当时均采用小涵道比涡扇发动机,可以用新发动机取代这些耗油率高、噪声大的发动机;在军用飞机方面,例如E-3预警机、KC-135加油机也需用新发动机取代老一代的发动机。
在考虑到飞机的发展的需要后,SNECMA决定发展一种推力级为100 kN的高涵道比涡扇发动机来满足市场的需求。
但是,如何开展这一型号的民用发动机的发展研制工作,SNECMA公司经过认真分析研究后,抉定走与外国发动机公司合作研制的道路。
这是因为研制民用高涵道比发动机,要采用许多先进技术,才能使它的性能优越,有竞争力量;但是sNECMA当时还缺少这方面的技术储备。
另外,研制费用不仅高,而且具有较大的风险,由它自己一家公司是承担不起的。
航空发动机主要部件介绍
航空发动机主要部件介绍航空发动机是飞机的心脏,是实现飞行动力的关键部件。
它由众多主要部件组成,每个部件都发挥着重要的作用。
本文将从气缸、涡轮、燃烧室和喷嘴等几个方面介绍航空发动机的主要部件。
气缸是航空发动机中的重要组成部分之一。
气缸是发动机的燃烧室,通过气缸内的活塞来完成燃烧过程。
气缸内的燃料与空气混合后,被点燃产生高温高压气体,推动活塞运动,从而驱动发动机的转子。
气缸的材料通常采用高强度、高温耐受性的合金材料,以确保发动机在高温高压环境下的正常工作。
接下来是涡轮,也是航空发动机的重要组成部分之一。
涡轮是由多个叶片组成的旋转机构,通过高温高压气体的冲击,驱动涡轮旋转。
涡轮旋转时,带动压气机和涡轮机等部件的转动,从而实现发动机的工作。
涡轮的材料通常采用耐高温、高强度的合金材料,以确保发动机在高温环境下的可靠运转。
燃烧室是航空发动机中的关键部件之一。
燃烧室是将燃料和空气混合并点燃的场所,产生高温高压气体,推动活塞运动。
燃烧室需要具备高温耐受性和良好的密封性,以防止燃气泄漏和热量损失。
燃烧室的结构通常采用复杂的冷却系统和热隔离材料,以确保燃烧室内部的温度在可控范围内。
喷嘴是航空发动机中的重要部件之一。
喷嘴主要负责将高温高压气体排出发动机,并产生推力。
喷嘴的结构通常采用可调节的喷嘴喉道,使喷出的气体能够以最佳角度和速度排出,从而提高发动机的效率和推力。
喷嘴的材料通常采用高温耐受性和耐腐蚀性较好的合金材料。
除了以上介绍的部件外,航空发动机还包括压气机、燃油系统、冷却系统和控制系统等。
压气机用于将空气压缩,提供给燃烧室进行燃烧。
燃油系统负责将燃料供给燃烧室,确保燃料的正常燃烧。
冷却系统用于降低发动机中各部件的温度,保证其正常工作。
控制系统则负责监控和控制发动机的运行,确保其安全可靠。
航空发动机的主要部件包括气缸、涡轮、燃烧室和喷嘴等。
这些部件密切配合,共同完成发动机的工作。
它们的设计和制造需要考虑到高温高压的环境和复杂的工作条件,以确保发动机的性能和可靠性。
航空发动机结构-第七章-总体结构
一、发动机部件所受作用力
1.2 力的传递
发动机内力
❖ 不传给飞机的力:气动力矩、部分轴向力 。
发动机外传力
❖ 推力,重量,机动飞行时的惯性力 力矩。
二、轴向力和发动机的推力
2.1各部件轴向力分布及推力的计算
推力等于所有部件轴向力之和
2.2转子轴向力及卸(减)荷措施
卸荷为什么不会影响推力
2.3涡轮与压气机轴向力不同
RB199
2.4 滚珠轴承位置
❖ 一般原则
1.尽可能不放在涡轮附近; 2.相对安装节轴向位移最小处; 3.在双支点中均放在压气机之前; 4.在三支点中大多数放在压气机之后。
2.4 滚珠轴承位置
❖ F404
2.4 滚珠轴承位置
❖ V2500
2.4 滚珠轴承位置
❖ RB199
作业
❖ 根据图册或补充讲义附图 ❖ 分析F404和V2500发动机转子支承方案形式
❖ 叶片,进气道,喷口,火燃筒。
一、发动机部件所受作用力
1.1 作用力的分类
2 惯性力、力矩
❖ 旋转或机动飞行时由于质量所产生的力 ❖ 叶片,盘等旋转件上的惯性力 ❖ 作用在转子上的惯性力矩或力偶
一、发动机部件所受作用力
1.1 作用力的分类
3 热应力
❖ 相邻的不同材料在相同温度下; ❖ 工作环境温度梯度不同时可产生;
机匣的安装边处 火燃筒 加力燃烧室
一、发动机部件所受作用力
风扇叶片
一、发动机部件所受作用力
高压压气机盘
一、发动机部件所受作用力
尾喷口
一、发动机部件所受作用力
燃烧室
一、发动机部件所受作用力
1.2 力的传递
零件内力
❖ 零件内部平衡不向外传。热应力、轮盘应力等。
航空发动机的结构设计与优化
航空发动机的结构设计与优化航空发动机是飞机的核心部件之一,其性能的优劣直接影响到飞机的飞行安全和经济效益。
在航空发动机的结构设计和优化中,需要考虑多种因素,如性能要求、重量限制、安全要求、航程距离等。
本文将从航空发动机的构成要素、结构设计和优化方案三个方面进行论述。
一、航空发动机的构成要素航空发动机是由多个部件组成的复杂系统,其构成要素包括压气机、燃烧室、涡轮机、外壳等。
其中,压气机主要负责将大气压缩成高压气体,以提供到燃烧室的高温高压气体。
燃烧室则是将燃料与高压空气混合后点火燃烧,产生高温高压气体以推动涡轮机。
涡轮机则是将高压气体通过多级叶片的作用,在高速旋转过程中转化为机械能,推动飞机前进。
二、航空发动机的结构设计航空发动机的结构设计需要综合考虑多种因素,如重量、战斗效率、可靠性和使用寿命等。
其中,发动机零部件的材料和加工工艺、尺寸和形状等因素对其性能和寿命影响较大。
因此,在设计阶段需要考虑这些因素,并通过CAD/CAM技术模拟和优化设计,以确保发动机的性能和寿命满足要求。
发动机零部件材料的选择对发动机的性能和寿命影响较大。
常用的材料包括铝合金、镍基合金、钛合金等。
铝合金轻量化、强度高、成本低,是常用的零部件材料之一。
镍基合金在高温高压下具有良好的耐腐蚀性和抗氧化性能,适用于燃烧室和涡轮机部分。
钛合金轻巧、强度高、耐热性能好,适用于涡轮机外壳等部分。
在加工中,应选择合适的加工工艺,以达到最佳加工效果。
发动机零部件尺寸和形状的设计与优化也是发动机性能和寿命的重要因素之一。
常用的设计方法有一维模型、二维模型、三维模型等。
一维模型适用于对发动机总体设计的初步估算,可以建立发动机的数量、维度、重量等参数模型。
二维模型可以进一步优化零部件的尺寸和形状,以提高发动机的空气动力学性能。
三维模型可以对零部件进行全面、精细的优化设计,以确保其性能和寿命满足要求。
三、航空发动机的优化方案航空发动机的优化方案决定了其性能和寿命的提高。
航空活塞式发动机组成及工作原理
航空活塞式发动机组成及工作原理在活塞式发动机中,气缸是一个长形的金属筒体,通常由铝合金制成。
它是发动机内部燃烧室的一部分。
活塞是气缸内上下运动的金属筒体,通常由铝合金制成。
活塞通过一个连接杆与曲轴相连,当活塞上下运动时,连杆将运动转化为旋转运动。
工作原理:1.进气冲程:活塞向下运动,气缸内空气通过气门进入燃烧室。
通常情况下,每个活塞在工作周期内都会进行两个进气冲程。
2.压缩冲程:活塞向上运动,将气缸内的空气压缩。
同时,气门关闭,防止气体逆流。
3.点火和燃烧:当活塞达到最高点时,点火系统将火花引燃压缩的混合气体燃烧。
燃烧过程中,高温高压气体迅速膨胀,推动活塞向下运动。
4.排气冲程:活塞再次向上运动,将排出的废气通过排气门排出气缸。
上述四个冲程构成了活塞式发动机的工作周期,也被称为“四冲程循环”。
每个活塞每转一圈执行一次工作周期,将内燃能量转化为机械能。
这种工作原理使得活塞式发动机具有高效率和高功率输出的特点。
航空活塞式发动机的燃料供应系统通常采用喷射式供油系统,以确保燃料均匀喷入燃烧室。
点火系统负责在燃烧室内引燃燃料混合物,产生爆炸压力。
排气系统用于排出燃烧后的废气。
为了保持发动机的稳定性和高效性,活塞式发动机通常还配备有冷却系统和润滑系统。
总的来说,航空活塞式发动机通过将燃料燃烧产生的气体膨胀驱动活塞运动,将化学能转化为机械能。
它是航空领域中常见的发动机类型之一,具有重量轻、功率大、可靠性高的优点,被广泛应用于小型飞机、直升机和无人机等航空器上。
航空发动机燃烧室机匣的组成及选材分析
航空发动机燃烧室机匣的组成及选材分析3.1航空发动机的基本组成发动机是飞机的“心脏”,是推动飞机和整个航空工业蓬勃发展的源动力,20世纪下半叶世界航空动力呈加速发展态势,21世纪航空动力面临新的机遇,它将以更快的速度向前发展,并促使飞机和航空工业出现新的飞跃。
一般而言发动机由点火装置、燃烧室、装药和喷管四部分组成。
3.1.1点火装置发动机点火装置工作的基本要求是: 能保证主装药准确、可靠地点燃、点火延迟时间要短。
它的基本失效模式有发火失效和对发动机点火失效两种。
以往的型号研制经验表明,一般情况下,众多的结构可靠性评估续计变量中,以在规定时间内达到的点火压强为最佳统计变量。
3.1.2燃烧室燃烧室是燃料与空气混合并进行燃烧的地方,燃烧室工作的好坏直接影响发动机的性能,并关系到发动机的安全可靠性。
3.1.3装药一般选取受内压时的壳体应力为统计变量。
发动机药柱分为自由装填式和壳体粘接式两类。
对于自由装填式药柱,强度是足够的,通常不需要进行结构完整性分析。
对于壳体粘接式药柱,特别是内孔形状复杂的药柱,通常存在较严重的药柱强度问题,因为药柱从制造到使用的过程中,其内部会产生各种机械应力。
药柱失效的基本故障或基本机理,决定最终结果造成气体生成速率过低或过高。
在化学和结构两方面的损坏都表现为造成过高的壳体内压。
经验及分析表明,当壳体粘接式药柱受热载荷和工作压强载荷时,工作内压是应研究的主要载荷,以延伸率作为药柱结构可靠性评估的统计变量较为合理;而受加速度载荷和自重载荷时。
以强度作为药柱结构可靠性评估的统计变量较为合理。
上述观点已为多年来发动机的研制实践所证实。
3.1.4喷管航空发动机离心喷嘴主要有喷嘴壳体、旋流器、旋流室和喷口组成。
根据其自身工作条件及环境影响,其材料主要选用马氏体钢材2Cr13、3Cr13和4Cr13三种类型。
一般离心喷嘴有四种类型:单路、双路单室单喷口、双路双室单喷口及双路双室双喷口,分别具有不同的结构设计、性能和用途。
航空概论发动机全
研发与创新能力
我国在航空发动机研发方面取得了显著进展,但 在原始创新和关键核心技术突破方面仍需加强。 未来应加大研发投入,加强基础研究和前沿技术 研究,提升自主创新能力。
人才培养与引进
航空发动机领域需要高素质的研发人才和技能人 才。我国应加强航空发动机领域的人才培养和引 进工作,建立完善的人才激励机制和评价体系, 吸引和留住优秀人才。
运营表现与市场应用
GE90在市场上表现出色,以其高效率、低油耗和长维护周期赢得了航空公司的青睐。同 时,GE90的可靠性也得到了广泛认可,为航空安全提供了有力保障。
国内典型案例分析(如涡扇10等)
涡扇10发动机概述
涡扇10是我国自主研发的中等推力涡扇发动机,具有自主知识产权。该发动机在结构设计、材料应用、制造工艺等方 面取得了显著进展,推动了我国航空工业的发展。
关键技术与挑战
高温材料技术
发动机工作时需要承受极高的温
度,因此需要研发能够承受高温
的材料。
01
高效压气机设计
02 压气机的效率直接影响发动机的
性能,需要设计高效的压气机以
降低燃油消耗。
燃烧室稳定性
燃烧室的稳定性对于发动机的安
全和性能至关重要,需要采取措
03
施确保燃烧室的稳定工作。
涡轮冷却技术
04 涡轮工作时需要承受极高的温度
运输机发动机
大推力、高效率,注重经济性和可靠性。
无人机发动机
小型化、轻量化,追求长航时和隐身性能 。
民用航空领域应用现状及趋势
01
02
03
大型客机发动机
高安全性、低噪音、低排 放,追求舒适性和环保性 。
支线客机发动机
适中推力、高效率,注重 经济性和适应性。
螺旋桨飞机的发动机构造
螺旋桨飞机的发动机构造
首先是发动机本体,螺旋桨飞机通常采用活塞发动机或者涡轮
螺旋桨发动机。
活塞发动机是最常见的类型,它包括气缸、活塞、
曲轴、连杆等部件,通过往复运动将燃油和空气混合后压缩、点火、燃烧,产生推力。
涡轮螺旋桨发动机则包括压气机、燃烧室、涡轮、喷气管等部件,通过压缩空气、燃烧燃料产生高速气流驱动涡轮,
从而产生推力。
其次是燃油系统,包括燃油泵、燃油滤清器、燃油喷嘴等部件,用于将燃油输送到发动机内部,并在燃烧过程中实现燃油的混合和
点火。
点火系统是发动机的重要部分,包括点火线圈、火花塞等组件,用于在适当的时机点火,引燃混合气体,从而推动活塞运动或者点
燃燃料。
冷却系统通常由散热器、冷却液循环系统等组成,用于保持发
动机的工作温度在合适的范围内,防止过热损坏发动机。
最后是排气系统,包括排气管、涡轮增压器等部件,用于排出
燃烧后产生的废气,同时涡轮增压器可以提高发动机的功率输出。
总的来说,螺旋桨飞机的发动机构造是一个复杂的系统,各个部件相互配合,共同实现燃料燃烧、推力产生和废气排放等功能。
这些部件的精密设计和可靠性能对于飞机的飞行安全和性能至关重要。
大学生 自己制作 遄达XWB发动机结构分析
冠上不仅有叶尖封严用的蓖齿,还沿轴向有回收冷却空气能量的肋条。肋条做成涡
轮叶形, 2个叶冠的肋条组 成一个收敛通道,冷却叶片后的冷却空气由叶冠上的小 孔流到该通道,经转变、膨胀加速向尾缘流出,同时产生一个推动叶片转动的力可
回收冷却空气的一部分能量。叶片充分利用冷却空气能量的措施。
发展历程
总体特点
创新技术
370KN
3M
10.9
10.5
1.8M
XWB
LEAP-X
130KN
推力
风扇直径
涵道比
总结思考
The Summering Thinking
动力与能源 学院
小组成员
(ppt制作)(ppt校对) (资料收集)(资料整理)
(ppt制作)
(资料收集)(资料整理)
参考文献
1.遄达XWB发动机的创新性技术/李杰 2.遄达XWB发动机发展与设计特点/陈光
374、 430kN。
发展历程
总体特点
创新技术
对比讨论
总结思考
RR决定研发遄
2005 达XWB 发动机
进行第一次试 车与飞行试验 2010.6 —2012.2
首架配备XWB发
推力最大型号XWB-97
进行了试车,计划
2016年进行试验
2014.7
动机的客机开
2013.6 始飞行试验
正式启动了遄达 2006 XWB
1.5%。
遄达XWB发动机使用了新的轴承 系统,利用更大的轴承来提高载荷 能力,进而节约燃油消耗。
风扇后支点处采用大直径滚珠轴承。
对比讨论
The Compare Discussion
发展历程
总体特点
创新技术
各种飞机发动机原理
一、活塞式发动机航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。
活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。
所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的. 主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。
气缸是混合气(汽油和空气)进行燃烧的地方.气缸内容纳活塞作往复运动。
气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。
发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积.气缸在发动机壳体(机匣)上的排列形式多为星形或V形。
常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。
在单缸容积相同的情况下,气缸数目越多发动机功率越大。
活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动.连杆用来连接活塞和曲轴。
曲轴是发动机输出功率的部件。
曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。
除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。
气门机构用来控制进气门、排气门定时打开和关闭。
二、涡轮喷气发动机在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。
这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑. 到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上"。
问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。
航空燃气涡轮发动机结构
航空燃气涡轮发动机结构航空燃气涡轮发动机是现代飞机所使用的主要动力装置之一。
它的结构复杂且精密,由多个部件组成,各个部件相互配合,协同工作,以提供强大的推力和高效的燃烧效率。
本文将对航空燃气涡轮发动机的结构进行详细介绍。
一、总体结构航空燃气涡轮发动机的总体结构可以分为压气机、燃烧室和涡轮三大部分。
其中,压气机负责将空气压缩,提高空气密度;燃烧室将压缩后的空气与燃料混合并燃烧;涡轮则利用燃烧产生的高温高压气体的动能驱动压气机和燃烧室,并产生推力。
二、压气机压气机是航空燃气涡轮发动机的核心部件之一,它负责将空气进行压缩,提高空气密度,为燃烧提供充足的氧气。
压气机通常由多级叶轮和定子组成,通过叶轮的旋转将空气进行逐级压缩。
叶轮上的叶片形状精确设计,使得空气在经过时能够受到最大限度的压缩和加速。
定子则起到引导空气流动的作用,使得空气能够顺利通过叶轮。
三、燃烧室燃烧室是航空燃气涡轮发动机中进行燃烧的部分,它负责将压缩后的空气与燃料混合并燃烧,产生高温高压气体。
燃烧室通常由燃烧室壁、喷油器和火花塞等组件组成。
燃烧室壁采用耐高温材料制成,能够承受高温高压气体的冲击和腐蚀。
喷油器负责将燃料喷入燃烧室,确保燃烧过程的稳定和充分。
火花塞则用于点火,引燃燃料和空气的混合物。
四、涡轮涡轮是航空燃气涡轮发动机中的另一个重要部分,它负责将燃烧室中产生的高温高压气体的动能转化为机械能,驱动压气机和燃烧室。
涡轮通常由高压涡轮和低压涡轮组成,它们分别与压气机和燃烧室相连。
高压涡轮叶片上的喷嘴将高温高压气体喷向叶片,使其旋转;低压涡轮则通过高压涡轮的轴传递动力,进一步提供推力。
五、其他部件航空燃气涡轮发动机还包括多个其他重要的部件,如燃油系统、冷却系统、起动系统和控制系统等。
燃油系统负责将燃料供给给燃烧室,确保燃烧过程的持续和稳定。
冷却系统则通过向关键部件供给冷却剂,降低其温度,保护部件不受高温的影响。
起动系统用于启动发动机,提供起动能量。
发动机构造第7章 发动机总体结构
7.2.2 柔性联轴器 这种联轴器在压气机,涡轮两个转子的轴线不同 心时,仍能保证良好的工作。也就是说允许涡轮转子 轴相对于压气机轴有一定的偏斜角。
图7-16 柔性联轴器允许两轴线有一定的偏斜角
一、四支点用的浮动式套齿联轴器
图7-2 浮动套齿联轴器
二、带有球形接头的套齿联轴器
图7-17 涡喷8发动机联轴器
三、带有半球形接头的套齿联轴器
图7-18 涡喷6发动机联轴器
四、具有浮动球形垫圈的套齿联轴器
图7-19 涡喷7发动机低压转子联轴器
五、涡桨5发动机的联轴器
图7-20 涡桨5发动机的联轴器
六、斯贝发动机低压转子联轴器
图7-21 斯贝发动机低压转子联轴器
第7.3节 支承结构
发动机的转子通过支承结构支承于发动机承力 构件上,并将转子的各种负荷传递到承力机匣上。 支承结构包括轴承、对轴承进行冷却与润滑的滑油 供入及回油结构、防止滑油漏入气流通道以及防止 高温气体漏入轴承腔室的封严装置等。
图7-26 涡喷6发动机后支点结构
图7-27 JT3D发动机高压涡轮支点结构
四、中介支点结构 中介支点介于高压轴(外轴)与低压轴(内轴) 之间,径向空间小,轴承的滑油供人及回油、封严均 较困难。如果是止推支点(即滚珠轴承),装配也较 困难。前用于中介支点的轴承,其直径系列均较普通 支点的系列轻一级左右。例如普通支点采用了特轻系 列的滚棒轴承,则用于中介支点时,应采用超轻系列, 用于普通中点的滚珠轴承一般采用轻系列,而用于中 介支点的滚珠轴承则要使用特轻系列。
1. 涡喷7发动机低压压气机后中介支点 涡喷7发动机低压转子的中、后支点均系中介支 点, 2 支点的供油、回油方式基本类似。图 7-28 为中 支点(即低压压气机后支点)的结构图。
航空发动机原理与构造知识点总结
航空发动机原理1 概论航空动力装置的功能是为航空器提供动力,推进航空器前进,所以航空动力装置也称为航空推进系统。
它主要包括航空发动机,以及为保证其正常工作所必需的系统和附件,如燃油系统、滑油系统、起动系统和防火系统等,通常简称为航空发动机。
1.1航空燃气涡轮发动机的基本类型目前航空燃气涡轮发动机有五种基本类型:涡轮喷气发动机、涡轮螺桨发动机、涡轮风扇发动机、涡轮轴发动机和供垂直/短距离飞机用的发动机。
涡轮喷气发动机简称涡喷发动机(WP)。
从结构上讲,它由压气机、燃烧室、燃气涡轮和尾喷管四个主要部件组成(见图1-1),其特点是:涡轮只带动压气机压缩空气,发动机的全部推力来自高速喷出的燃起流所产生的反作用力。
涡轮喷气发动机经济性差高温、高速燃气由尾喷管排出,能量损失大,因此经济性差。
图1-1 涡轮喷气发动机涡轮螺桨发动机简称涡桨发动机(WJ)。
在这类发动机中,涡轮除带动压气机供给发动机所需的空气外,还带动螺桨,产生飞机前进的拉力。
由尾喷管喷出的燃起流所产生的推力只占飞机前进力的很少一部分(10%)。
从结构上讲,这类发动机还多一个部件——减速器。
涡轮风扇发动机简称涡扇发动机(WS),又称内外涵发动机。
它是介于涡喷和涡桨之间的一种发动机。
它由两个同心圆筒的内涵道和外涵道组成,在内涵道中装有涡喷发动机的部件——压气机、燃烧室和涡轮,在外涵道中装有由内涵转子带动的风扇(见图1-2)。
发动机的推力是内、外涵道气流反作用力的总和。
- 2 -外、内涵道空气流量之比称为流量比,又称涵道比。
涡扇发动机的优点是,推力大了,排出的能量小了,耗油率低。
图 1-2 涡轮风扇发动机若在涡桨发动机中,发动机输出轴不带动螺桨,而用来输出功率,例如带动直升机的旋翼、舰艇的推进器、或地面的发电机和油泵等,则这种燃气涡轮发动机称为涡轮轴发动机,简称涡轴发动机(WZ)。
1.2 航空燃气涡轮发动机性能指标涡轮发动机和涡扇发动机都是将燃气发生器的可用功用于增加流过发动机气流的动能并产生反作用推力。
航空发动机构造第3章燃烧室
涡 桨
5 发 动 机 的 环 形 燃 烧 室
火焰筒是用耐热钢钣焊接而成的(图3-13)。由 装有旋流器的头部、正面环、外环带、内环带、外罩 和内罩所组成。
旋流器用氢弧焊点焊在火焰筒头部上,旋流器上 沿圆周均匀钻有十二个孔,各孔与轴线成40°角,使 引入的第一股空气改变流动方向。在旋流器上还钻有 一系列斜气孔,用于引入气流吹除旋流器端面的积炭。 在旋流器内壁上钻有十二个气孔,用于引入空气吹除 喷嘴头部的积炭。
G f l0
Ga-实际空气流量;Gf-燃油流量;l0-1公斤燃油完全燃烧所需要的理论空气量。
2. 保证燃烧室内混合气稳定完全燃烧的基本措施
(1) 空气分股 (2) 反向回流 (3) 在燃烧室内形成非均一的混合气
二、燃烧室工作条件
航空燃气涡轮发动机上的燃烧室处在十分恶劣的 条件下工作。
(1) 燃烧室是在高速气流中及贫混合气情况下进行工 作的。
斯 贝 发 动 机 的 联 管 燃 烧 室
3.2.3 环形燃烧室
环形燃烧室的结构特点是在燃烧室内、外壳体之间的环形 腔内安装了一个共同的火焰筒内外壁构成的环形燃烧区和掺混 区。
根据气体在燃烧室内流动的情况,环形燃烧室可分为直流 环形燃烧室、回流环形燃烧室和折流环形燃烧室三种。
环形燃烧室由四个同心圆筒组成,最内、最外的两个圆筒 为燃烧室的内、外壳体,中间两个圆筒为火焰筒,在火焰筒的 头部装有一圈旋流器和喷油嘴。
3.4.2 火焰筒
一、火焰筒筒体
火焰筒筒体的结构应保证合理地进气。在前部使空气 与燃油混合,形成回流区,在此点燃混合气,稳定而完全 地进行燃烧;在后部使燃气得到掺混降温。由于筒体既承 受高温,又接触冷却空气,因此受热很不均匀,热应力很 大,所以,要特别注意筒壁的冷却和火焰筒各组成部分之 间的热变形协调。此外,筒体通常用板料焊接而成,因而 保证它具有足够的刚度也很重要,这对环形火焰筒尤为突 出。火焰筒在燃烧室中要有正确的定位支承,定位支承要 保证火焰筒受热时能自由膨胀。
航空发动机结构
桨扇由涡轮驱动,无涵 道外壳,装有减速器, 从这些来看它有一点象 螺旋桨;但是它的直径 比普通螺旋桨小,叶片 数目也多(一般有6-8 叶),叶片又薄又宽, 而且前缘后掠,这些又 有些类似于风扇叶片。
22:49
NPU--ZhaoMing
15
使用最广泛的燃气涡轮发动机:
• 加力的涡喷发动机 • 加力的涡扇发动机 燃气涡轮发动机的共同特点:
22:49
NPU--ZhaoMing
12
4、WZ发动机
主要部件:进气道、压气机、燃烧室、动力涡 轮、自由涡轮、尾喷管
特点:通常带有自由涡轮,而其他形式的涡轮 喷气发动机一般没有自由涡轮。
22:49
NPU--ZhaoMing
13
5 桨扇发动机
螺桨风扇发动机是一种介于涡扇发动机和涡桨 发动机之间的一种发动机形式。它既可看作带除去 外涵道的大涵道比涡扇发动机,又可看作高速先进 螺桨的涡桨发动机,因而兼有前者飞行速度高和后 者耗油率低的优点。目前正处于研究和实验阶段。
桨扇发动机的概念研 究始于70年代中期。80年 代后半期已完成地面和飞 行验证试验,基本达到预 期目标。由于航空公司的 综合经济因素和公众接受 心理等种种原因,桨扇发 动机尚未进入实用阶段。
22:49
NPU--ZhaoMing
14
桨扇发动机的关键部件是先进高速螺桨,它带有多个宽 弦、薄叶型的后掠桨叶,能在飞行马赫数0.8下保持较高的效 率,见图1-6。
22:49
NPU--ZhaoMing
19
燃气涡轮发动机的工作循环
22:49
NPU--ZhaoMing
20
压气机作用:
•用来提高进入发动机内的空气压力,供给发动机工 作时所需要的压缩空气。
18航空发动机产业链图
控制技术
气动技术
结构技术
燃烧技术
缸体
缸盖
曲轴箱
曲轴
连杆组件
活塞组件
活塞发动机
涡扇发动机
涡轴发动机
涡桨发动机
活塞发动机
涡扇发动机
涡轴发动机
适航取证服务
发动机维护与修理
通用航空发动机研发
支线飞机发动机研发
通用航空发动机制造
研发
制造
服务
共性技术研究
干线飞机发动机研发
干线飞机发动机制大涵道比涡扇发动机 大涵道比涡扇发动机 涡扇发动机 涡轴发动机 涡桨发动机
备件服务
总体技术
控制技术
气动技术
结构技术
燃烧技术
进气道
风扇
压气机
燃烧室
涡轮
机匣
尾喷管
沈阳审定中心 北航适航技术研究中心* 民航局安全技术中心*
北京航空航天大学*
中航工业606所、624所、中国商 用发动机公司
沈阳黎明发动机(集团)有限责任公司、成都发动机(集团)有限公司、贵州黎阳航空发动机公司、哈尔滨东安发动机(集团)有限公司、西安 航空发动机(集团)有限公司
中航技*
贵州红湖机械厂、 西安航空动力控制 工程有限责任公司
■ 航空发动机产业链共分4级,一级产业链环节3个,二级产业链环节11个,三级产业链环节14个,关键四级产业链环节23个。 ■ 其中,北京市重点选择的发展环节为:通用航空发动机研发、支线飞机发动机研发、适航技术研发、可靠性技术研发、通用航空发动机制造、适航取证服务和产品销售环节。 *标注是注册地在北京的机构
4-1 航空发动机产业链图
北京航空航天大学* 中航工业608所、626所 中航工业发动机研究院* 北京航空航天大学* 北京卓越发动机公司* 中航工业常州兰翔有限公司 金城集团、中国南方航空动力机械公司 沈阳审定中心、 北航适航技术研究中心* 民航局航空发动机审定中心* 成都发动机(集团) 有限公司
飞机发动机原理与结构—转子支承与附件传动
支撑结构
挤压油膜阻尼器
➢挤压油膜减振的工作原理 ✓ 类似于一般的液压减缓器或缓冲器 ✓ 轴承在转子的不平衡力作用下,外环挤压油膜 ✓ 外坏的移动受到油膜阻碍,同时滑油吸收了外环运动的能 量也即振动能量的大部分 ✓ 传到机匣的振动值与振幅均大减少
例如
✓ 最早使用挤压油膜的发动机,高压涡轮轴承在采用挤压油 膜后,使发动机的振幅由0.13毫米降为0.0465毫米,降低 了64%
多转子支撑方案
➢ 结构特点 1、支承方案与各部件的结构型式有关。 2、尽可能减少支承数目,简化结构和润滑系统,同时要考虑转子结构刚性。 3、各转子只能有一个止推支点,并位于温度较低、刚性较好、靠近主安装节、使转子
与静子产生相对位移较小处。 4、根据转子的结构刚性,考虑总体结构要求确定支承方案。 5、转子支承方案必须考虑发动机的装配与转子的平衡。 6、尽可能减少中介支承数和承力构件数,以简化结构。
封严的作用和形式 ➢目的:防止滑油从发动机轴承腔漏出,控制冷却气流和防止主气流的燃气进入封严腔。
➢封严方法:选择何种封严方法取决于周围的温度和压力、可磨蚀性、发热量、重量、可用的 空间,易于制造及安装和拆卸
➢封严方式分类 ✓ 接触式:涨圈式密封 ✓ 非接触式: 1. 篦齿封严 2. 浮动环封严 3. 液压封严 4. 石墨+篦齿 5. 刷式封严
✓ 这种封严装置较篦齿封严的封严效果好,长度小,且 无径向磨损问题;
✓ 但这种环形封严件不适于用在高温区,由于高温会使 滑油结焦,导致环形件卡在机匣中。
封严的作用和形式 液压封严件
✓ 这种方法常常用于两个旋转件之间来封严轴承腔; ✓ 液压封严件由一个封严齿浸在一个滑油环带中形成,这个滑油环带是由离心力造成的。
支撑结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用来压缩空气,提高空气压力。有轴流式压气机和离心式压气机。
3. 燃烧室 由喷嘴喷出适量燃料,同压气机流来的空气混合,组织燃烧,产生高温燃气。
4. 涡轮
在高压高温燃气推动下旋转,带动压充分膨胀,将部分热能转换为动能,高速向外喷出,产生反作 用推力。
1. 进气道
用来引导足够数量的空气顺利进入压气机,在飞行速度大于压气机进口气流 速度时,还可起到提高空气压力的作用(冲压作用)。
转子支承方案的表示方法(简图和代号):
在研究转子支承方案时,均将复杂的转子简化成能表
征其特点的转子支承方案简图,在简图中小
圆圈表示滚珠轴承,小方块表示滚棒轴承。
转子支承方案的表示方法(简图和代号):
转子支点的数目与位置,常用 转子支承方案
代号来表示。两条前后排列的横线分别代表压气机
转子和涡轮转子,两条横线前后及中间的数字表示支 点的数目。 例如:
2.2.2 止推支点在转子中的位置 转子上的止推支点除承受转子的轴向负荷、径向 负荷外,还决定了转子相对于机匣的轴向位置,因此 每个转子只能有一个止推支点。由于此支点所承受的 负荷较大,一般应置于温度较低的地方。例如,在两 支点的转子上,止推支点应是转子的前支点;在三支 点的发动机中,止推支点最好置于压气机之后。这种 安排,不仅可以使轴承在较低的温度环境下工作,也 使转子相对机匣的轴向膨胀分配在压气机与涡轮两端, 使两端的轴向错移量较小。
2. 压气机
用来压缩空气,提高空气压力。有轴流式压气机和离心式压气机。
3. 燃烧室
由喷嘴喷出适量燃料,同压气机流来的空气混合,组织燃烧, 产生高温燃气。
4. 涡轮
在高压高温燃气推动下旋转,带动压气机工作。
5. 尾喷管
高温高压燃气充分膨胀,将部分热能转换为动能,高速向外喷出,产生反作 用推力。
图2-7 0-2-0支承方案
图2-8 1-0-1支承方案
二、双转子和三转子支承方案
多转子发动机中,转子数多,支承数目多,而且低压转 子轴要从高压转子轴中心穿过,使结构复杂,但原则上仍以 每个转子分别进行处理。
与单转子发动机不同的是,有些支点不直接安装在承力 机匣上,而是装在另一个转子上,通过另一转子的支点将负 荷外传,由于这个支点是介于两个转子之间的,所以称为中 介支点。中介支点中的轴承,则称为中介轴承或轴间轴承。 在多数发动机中,采用中介支点,可使发动机长度缩短,承 力机匣数减少。但是轴间轴承的润滑较困难,轴承工作条件 较差,而且装拆也比较复杂。
低压转子:0-1-1 高压转子:1-1-0 图2-9 JT9D发动机的支承方案
低压转子:0-2-1 高压转子:1-1-0
图2-10 PW4000发动机的支承方案
低压转子:0-2-1 高压转子:1-0-1 图2-11 CFM56发动机转子支承方案简图
低压转子:0-2-1 中压转子:1-2-0 高压转子:1-0-1 图2-12 RB211三转子发动机的支承方案
第2章 发动机总体结构
第2.1节 航空燃气涡轮发动机的组成 第2.2节 转子支承方案 第2.3节 联轴器 第2.4节 支承结构
第2.5节 静子承力系统
2.1 航空燃气涡轮发动机的组成
2.1 航空燃气涡轮发动机的组成
2.1 航空燃气涡轮发动机的组成
2.1 航空燃气涡轮发动机的组成 1. 进气道 用来引导足够数量的空气顺利进入压气机,在飞行速度大于压气机进口气流 速度时,还可起到提高空气压力的作用(冲压作用)。进气道在结构上往往 属于飞机机体的一部分,但在作用上属于发动机的组成部分。 2. 压气机
1-3-0
表示:压气机转子前有一个支点,涡轮转子后无支点, 压气机与涡轮转子间有三个支点,整个转子共支承于 四个支点上。
一、单转子支承方案 1) 4支点方案
图2-1 1-3-0的四支点支承方案
在这种支承方案中,涡轮转子和压气机转子间的 联轴器仅传递扭矩,考虑到两个转子的四个支点很难 保证同心,因此采用了浮动套齿的联轴器结构。
第2.2节 转子支承方案
第2.2节 转子支承方案 2.2.1 转子支承方案 在燃气涡轮发动机中,发动机转子通过支承结 构支承 于发动 机机匣 上 。转 子上承 受的各 种负荷 (如气体轴向力、重力、惯性力及惯性力矩等)由 支承结构承受并传至发动机机匣上,最后由机匣通 过安装节传至飞机构件中。 在发动机中,转子采用几个支承结构(支点), 安排在何处,称为转子支承方案。
图2-2 浮动套齿联轴器
J47单转子涡轮喷气发动机转子的1-3-0四支点 支承方案。
图2-3 1-3-0的四支点支承方案
2) 3支点方案
图2-4 1-2-0的三支点支承方案
3) 2支点方案
点图 支 承 方 案 的 两 支 点图 支 承 方 案 的 两 支 2-6 1-1-0 2-5 1-0-1