Fluentgambit网格划分分析
离心泵全流场分析教程(一)---Gambit网格划分与边界设置
![离心泵全流场分析教程(一)---Gambit网格划分与边界设置](https://img.taocdn.com/s3/m/5f278607844769eae109ed05.png)
离心泵全流场分析教程(一)---Gambit 网格划分与边界设置Gambit 是fluent 的一款前处理软件,可以生成Fluent 所需要的模型和网格文件。
Gambit 除了自身可以绘图之外,也可以导入各种通用格式的二维或三维图形,例如Iges、Parasolid、Step 等格式。
由于一般的三维绘图软件(UG、Pro/E、Catia、solidworks 等)功能都比较强大而且易用,所以建议先在三维软件里面做好曲面或实体,再转换成Gambit 可读入的格式,最后导入Gambit 进行网格划分。
本节教程就是基于以上思想进行的,使用的三维软件是Solidworks2010。
一、 导入实体文件打开Gambit 如图(1),点击Run → 进入Gambit 界面(如图2) → 点击File → 点击Import → 选择要导入的文件的格式(图3) → 点击Brose或直接输入文件所在的地址 (图4)→ 在Filter 下面输入文件存放的根目录(图5) → 点击Filter(图6) → 找到文件后点击Accept → 点击Accept → 导入的文件如图(7)→ 点击solver → 选择fluent5/6,如图(8)(1)m ue rxi aoC FD(2)(3) (4)m ue r xi a oC FD(5) (6)(7)(8)m ue r xi aoC FD二、曲面合并从导入文件可以看到实体有许多小面,而这些小面会影响到网格的划分,所以在网格划分之前要把那些小面合并到一起,还有一些狭长的面。
如图(9)(9)由于导入的实体是从装配图转化过来的,所以图形分了三部分,划分网格也要分三次进行,在划分网格是可以把不需要划分的部分隐藏起来,这样也有利于边界条件的设置。
隐藏实体的步骤如下:点击右下角的显示图标,会出现对话框如下对话框,如图(10)。
点击Volumes 后面的白框,白框变黄色,Volumes 前面的小框变红色。
fluent命令介绍、网格划分、参数使用
![fluent命令介绍、网格划分、参数使用](https://img.taocdn.com/s3/m/1b8fda4a0b1c59eef8c7b4ce.png)
第一章Fluent 软件的介绍fluent 软件的组成:软件功能介绍:GAMBIT 专用的CFD 前置处理器(几何/网格生成) Fluent4.5 基于结构化网格的通用CFD 求解器 Fluent6.0 基于非结构化网格的通用CFD 求解器 Fidap 基于有限元方法的通用CFD 求解器 Polyflow 针对粘弹性流动的专用CFD 求解器 Mixsim 针对搅拌混合问题的专用CFD 软件 Icepak专用的热控分析CFD 软件软件安装步骤:step 1: 首先安装exceed软件,推荐是exceed6.2版本,再装exceed3d,按提示步骤完成即可,提问设定密码等,可忽略或随便填写。
step 2: 点击gambit文件夹的setup.exe,按步骤安装;step 3: FLUENT和GAMBIT需要把相应license.dat文件拷贝到FLUENT.INC/license目录下;step 4:安装完之后,把x:\FLUENT.INC\ntbin\ntx86\gambit.exe命令符拖到桌面(x为安装的盘符);step 5: 点击fluent源文件夹的setup.exe,按步骤安装;step 6: 从程序里找到fluent应用程序,发到桌面上。
注:安装可能出现的几个问题:1.出错信息“unable find/open license.dat",第三步没执行;2.gambit在使用过程中出现非正常退出时可能会产生*.lok文件,下次使用不能打开该工作文件时,进入x:\FLUENT.INC\ntbin\ntx86\,把*.lok文件删除即可;3.安装好FLUENT和GAMBIT最好设置一下用户默认路径,推荐设置办法,在非系统分区建一个目录,如d:\usersa) win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改;b) xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式在快捷方式-起始位置加入D:\users,重起检查。
gambit网格类型
![gambit网格类型](https://img.taocdn.com/s3/m/78cc3ae54793daef5ef7ba0d4a7302768e996f2c.png)
gambit网格划分基本类型:(一)Mesh Face :面划分Element :Quad:四边形网格Tri:三角形网格Quad/Tri:四边形和三角形网格混合Type :1、map:建立规则的四边形结构性网格2、submap:将不规则的区域划分为几个规则的区域3、pave:非结构性网格4、Tri Primitive:将一个三角形区域划分为三个四边形区域,并同时划分为四边形网格5、Wedge Primitive:将一个楔形的尖端划分为三角形网格,沿着楔形向外辐射,划分为四边形网格(二)Mesh Volume:体划分Element :Hex:六面体网格Hex/Wedge:以六面体为主,在适当的位置包括楔形网格Tet/Hybrid:以四面体为主,在适当的位置上包括六面体、锥形和楔形网格Type :1、map:建立规则的结构化六面体网格2、submap:将不可结构化划分的体积进行分割,再建立map网格3、tet primitive:将四面体分成多个六面体,再对各区域建立map网格4、cooper:通过源面对整个体进行网格样式的扫描,适用于逻辑圆柱体5、stairstep:建立规则六面体网格和相应的微小体积来近似原来的几何体形状,椭圆体。
6、tgrid:将网格指定为四面体元素,但是在适当处可能包括六面体、金字塔形和楔形网格划分方法:(一)MESH FACE FORM1、Map Scheme:4*End+N*Side(1)Periodic(周期性) map Scheme: N*Side,针对圆柱面(2)Face(面)Mapple操作方法:(1)打开“Face Vertex form”对话框,选择用圆圈标注的点,将其修改为“S”类型;然后,打开“Mesh Face Form”对话框,划分网格。
或者(2)在“Mesh Face Form”对话框中,直接将schemme(框架)修改为“Map”。
4*End+L*Side+M*End+Corner+N*2*End+Reverse2、Submap:()()修改方法同2:“E ”改成“S ”。
离心泵全流场分析教程(一)---Gambit网格划分与边界设置
![离心泵全流场分析教程(一)---Gambit网格划分与边界设置](https://img.taocdn.com/s3/m/5f278607844769eae109ed05.png)
离心泵全流场分析教程(一)---Gambit 网格划分与边界设置Gambit 是fluent 的一款前处理软件,可以生成Fluent 所需要的模型和网格文件。
Gambit 除了自身可以绘图之外,也可以导入各种通用格式的二维或三维图形,例如Iges、Parasolid、Step 等格式。
由于一般的三维绘图软件(UG、Pro/E、Catia、solidworks 等)功能都比较强大而且易用,所以建议先在三维软件里面做好曲面或实体,再转换成Gambit 可读入的格式,最后导入Gambit 进行网格划分。
本节教程就是基于以上思想进行的,使用的三维软件是Solidworks2010。
一、 导入实体文件打开Gambit 如图(1),点击Run → 进入Gambit 界面(如图2) → 点击File → 点击Import → 选择要导入的文件的格式(图3) → 点击Brose或直接输入文件所在的地址 (图4)→ 在Filter 下面输入文件存放的根目录(图5) → 点击Filter(图6) → 找到文件后点击Accept → 点击Accept → 导入的文件如图(7)→ 点击solver → 选择fluent5/6,如图(8)(1)m ue rxi aoC FD(2)(3) (4)m ue r xi a oC FD(5) (6)(7)(8)m ue r xi aoC FD二、曲面合并从导入文件可以看到实体有许多小面,而这些小面会影响到网格的划分,所以在网格划分之前要把那些小面合并到一起,还有一些狭长的面。
如图(9)(9)由于导入的实体是从装配图转化过来的,所以图形分了三部分,划分网格也要分三次进行,在划分网格是可以把不需要划分的部分隐藏起来,这样也有利于边界条件的设置。
隐藏实体的步骤如下:点击右下角的显示图标,会出现对话框如下对话框,如图(10)。
点击Volumes 后面的白框,白框变黄色,Volumes 前面的小框变红色。
第二章 Gambit划分网格
![第二章 Gambit划分网格](https://img.taocdn.com/s3/m/927c27fbf61fb7360b4c65cc.png)
1)应用分级设定的边
2)分级方案
3)网格节点步长(间隔数目) 4)边网格划分选项
线网格划分
2)分级方案 Gambit 提供了以下类型的边网格划分分级方案:
• • • • • •
•
Successive Ratio First Length Last Length First Last Ratio Last First Ratio Exponent Bi-exponent Bell Shaped
非对称格式,产生的分级 形式不需要关于边的中心对称
对称格式,限制关于边 中心对称的分级类型
•
线网格划分
• 狭长型网格长宽比不要超过5; • 燃烧反应的区域网格尽量细化。
3、面网格划分
进行一个面网格划分,用户必须 设定以下参数:
1)要网格划分的面
2)网格划分的形式 3)网格节点的间距 4)面网格划分选项
体网格光顺化
• Smooth Volume Meshes 在一个或多个体积上光顺化网格节点。 1、选择要光顺化的体积; 2、光顺化方案 L-W Lapiacian:使每个节点 周围单元平均边长; Equipotential:使节点周围单元体积相等。
体网格划分技巧
• 首先画线网格和部分面网格; • 尽量采用五面体和六面体网格,以控制网 格数量; • 复杂结构考虑分块画网格,避免把所有几 何组合成一个整体;
平整面网格
Smooth Faces Meshes命令 将调整一个或者多个面网格节点的位置 用户需设定以下参数: 1)要平整的网格面 2)平整方式 L-W Laplalian :在每个节点周围使用单元的平均变长(趋向平 均单元 边长)
Centroid Area :平衡相邻单元的面积
(完整版)Gambit及Fluent操作步骤图解
![(完整版)Gambit及Fluent操作步骤图解](https://img.taocdn.com/s3/m/7d2f6f0611a6f524ccbff121dd36a32d7375c7b2.png)
(完整版)Gambit及Fluent操作步骤图解现在PRO/E软件中建立燃烧室和气缸工作容积的三维图,并且以*.stp格式输出,在磁盘建立一个文件夹(比如在D盘建立一个名称为step的文件夹),将刚才的*.stp文件放在此文件夹下面。
桌面上打开Gambit图标,见图1。
图1在菜单File下,点击Import > STEP,见图2。
打开Import STEP File窗口,见图3。
图2图3 找到并打开刚才的*.stp文件,如图4所示。
图4 使用2条边建立一个面,见图5。
图5可以将本模型划分为两部分,打开Split V olume窗口,使用刚才建立的面将模型划分为2个部分,见图6。
图6进行网格划分,先对上面的体积进行网格划分,由于其形状比较规则,所以可以使用6面体网格单元,见图7。
然后对下面的体积进行网格划分,由于其形状不规则,所以选用4面体网格单元,见图8。
全部网格划分完后,见图9。
图7图8图9点击右下方的SPECIFY MODEL DISPLAY ATTRIBUTES,在其面板上的Mesh选项后点击off,即可关闭网格显示,但是此时模型网格已经划分了。
图10边界条件的设置,分别选中需要设置的面,如本例中选中face4,将其名称设为movwall,类型设为wall,见图11. 选中face12,将其名称设为middle,类型设为INTERIOR,见图12. 选择face2和face3,将其名称设为cylinder,类型设为wall。
图11图12图13指定体,分别设置模型的上部和下部为V2和V1,如图14和15.图14图15以上模型网格设置好之后,将模型以*.msh格式输出,本例子以cylinder.msh输出,见图16。
图16打开FLUENT图标,在FLUENT Versions窗口中选择3d,见图17。
图17分别选择File>Read>Case,找到前面输出的cylinder.msh文件,选择并打开,见图18。
fluent_gambit网格检查及优化方法
![fluent_gambit网格检查及优化方法](https://img.taocdn.com/s3/m/9fd85b25647d27284b73515b.png)
Fluent计算对网格质量的几个主要要求:1)网格质量参数:Skewness (不能高于0.95,最好在0.90以下;越小越好)Change in Cell-Size (也是Growth Rate,最好在1.20以内,最高不能超过1.40)Aspect Ratio (一般控制在5:1以内,边界层网格可以适当放宽)Alignment with the Flow(就是估计一下网格线与流动方向是否一致,要求尽量一致,以减少假扩散)2)网格质量对于计算收敛的影响:高Skewness的单元对计算收敛影响很大,很多时候计算发散的原因就是网格中的仅仅几个高Skewness的单元。
高长宽比的单元使离散方程刚性增加,使迭代收敛减慢,甚至困难。
也就是说,Aspect Ratio尽量控制在推荐值之内。
3)网格质量对精度的影响:相邻网格单元尺寸变化较大,会大大降低计算精度,这也是为什么连续方程高残差的原因。
网格线与流动是否一致也会影响计算精度。
4)网格单元形状的影响:你在fluent里面用grid quality命令看下,相关的东西可以百度一下;以下为我百度搜索到的东西:可以作为参考:如何检查网格质量,用什么指标来说明网格好不好呢?怎么控制?一般是什么原因造成的? 一般也就是,网格的角度,网格变形的梯度等等吧判断网格质量的方面有很多,不知你用的是什么软件,下面总结的是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。
Area单元面积,适用于2D单元,较为基本的单元质量特征。
Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1. Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。
Gambit建模相关问题总结
![Gambit建模相关问题总结](https://img.taocdn.com/s3/m/dc803122453610661ed9f4aa.png)
Gambit网格划分,交界面的处理简单说分块划分网格,如果不定义边界,gambit会默认为interior。
interior是公共面(两个"体"共用)interface是接触面(两个面,分别属于不同的"体"):interface是处理滑移网格,静止部分与滑动部分的交接,也用于流体与固体耦合的时候用;还可以用来连接粗细不同的网格体。
若用split剖分体时,要选择“connected”选项,否则FLUENT会将交界面默认为壁面(wall)。
两个体的交界面重合的部分需要有流体流通,即不能用wall处理。
这种情况有两种解决办法。
1:交界面重合部位有两个面,一个属于A,一个属于B,然后分别定义为interface(如名称为interface1和interface2),这两个面的网格不需要一致,然后到fluent里define/grid interface里将两个交界面create成一个。
2:(交界面必须一样大小)在gambit中选择geometry/face/connect faces 命令,激活virtual(Tolerance),激活T—Junctions,选择两个体的交界面,点击Apply。
两个体的重合面线条颜色为粉红色,OK。
然后可以进行体的网格划分。
这样两个体的交界面重合部分网格一致,默认为interior,允许流体通过。
下面是CFD-Online上的一些说法,仅供参考。
the interface condition is needed for connecting different grid in a model, non matching interface, sliding mesh interface, and so on.Sliding mesh interface : use in the sliding mesh model, one part of the mesh will move regarding to the other.Different grid interface : for connecting different kind of grid without transition. for exemple, hexa with tetra without pyramidal element. Fluent interpolate the result a mesh interface from one grid to the other.Non matching interface : grid with diferent shape and/or with different position of their nodes. If you have the fluent tutorials take a look at the film cooling exemple.the interior condition is usefull if you have surfaces in you model which are part of the fluid. If you don't use interior condition gambit can considerer them as wall.the internal condition is quite the same as interior but it will be merge in the adjacent interiors in the final mesh if you use tgrid. I think that this condition is useless if you use gambit.粉红色表明:有一个剖面,是体的分界面。
Gambit网格划分的一点技巧(二)---分块网格
![Gambit网格划分的一点技巧(二)---分块网格](https://img.taocdn.com/s3/m/b4b2d0f3f705cc175527096a.png)
图(48)
图(49)
D 进水段边界条件设置要注意的问题:1)选择如图(50)所示两个面做 interface 。
CF 2)同时选择三块实体做流体域。
rxiao图(50) ue 2、叶轮 m 叶轮是离心泵的心脏,叶轮网格的质量、数量和分布对计算精度的影响是很
大的。虽然利用 Gambit 对整个叶轮划分六面体网格是困难的,但是我们可以通
图(66)
图(67)
CF 至此分块网格的一些技巧和命令的应用分享到这里。总结分块网格,有几个
问题是大家要注意的:第一,在划分网格之前要清楚知道想要怎样的分块,就是 要在哪里把实体分割,分割成怎样的形状,这样的形状适合于什么形状的网格。
圆平面
点3
图(30)
图(31)
创建一个圆面 → 点击体命令 → 点击分割实体
图(32)
CFD→ 选择要分割的实体→
在 Split with 后面选择 Faces(real),如图(32)→ 选择前面创建的圆平面 → 点击 Apply,如图(33)。至此,圆柱段和锥段已经分开了。
ao 注意:用这种方法分割的两个实体是相互有联系的,在划分网格的时候,公共面 muerxi 上的节点是一一对齐的。
选择要分割的面
在 Split with 选择
选择直线 12
点击 Apply,如图(18)。
此时图形变成了蓝色,如图(19)。按此方法利用其他边分割平面,最后分割好
之后如图(20)。
5
图(18)
图(19)
CFD
iao图(20)
rx 点击划分网格 mue 四个面 网格大小填 5
点击面网格
选择图(21)所示的
分割用的平面 4 分割用的平面 3
最新GAMBIT软件网格的划分
![最新GAMBIT软件网格的划分](https://img.taocdn.com/s3/m/cba1fe3cb9d528ea80c779a7.png)
G A M B I T软件网格的划分模型的网格划分当用户点击Operation工具框中的Mesh命令按钮时,GAMBIT将打开Mesh 子工具框。
Mesh子工具框包含的命令按钮允许用户对于包括边界层、边、面、体积和组进行网格划分操作。
与每个Mesh子工具框命令设置相关的图标如下。
图标命令设置Boundary LayerEdgeFaceVolumeGroup本章以下部分将详细说明与上面列举的每个命令按钮相关的命令。
3.1 边界层3.1.1 概述边界层确定在与边和/或者面紧邻的区域的网格节点的步长。
它们用于初步控制网格密度从而控制相交区域计算模型中有效信息的数量。
示例作为边界层应用的一个示例,考虑包括一个代表流体流过管内的圆柱的计算模型。
在正常环境下,很可能在紧靠管道壁面的区域内流体速度梯度很大,而靠近管路中心很小。
通过对壁面加入一个边界层,用户可以增大靠近壁面区域的网格密度并减小靠近圆柱中心的网格密度——从而获得表征两个区域的足够的信息而不过分的增大模型中网格节点的总数。
一般参数要确定一个边界层,用户必须设定以下信息:•边界层附着的边或者面•确定边界层方向的面或者体积•第一列网格单元的高度•确定接下来每一列单元高度的扩大因子•确定边界层厚度的总列数用户还可以设定生成过渡边界层——也就是说,边界层的网格节点类型随着每个后续层而变化。
如果用户设定了这样一个边界层,用户必须同时设定以下信息:•边界层过渡类型•过度的列数3.1.2 边界层命令以下命令在Mesh/Boundary Layer子工具框中有效。
图标命令详细说明Create Boundary Layer建立附着于一条边或者一个面上的边界层Modify Boundary Layer更改一个现有边界层的定义Modify Boundary LayerLabel更改边界层标签Summarize BoundaryLayers在图形窗口中显示现有边界层Delete BoundaryLayers删除边界层生成边界层Create Boundary Layer命令允许用户在一条边或者一个面附近定义网格节点步长。
FLUENT实例-搅拌桨-动网格讲解
![FLUENT实例-搅拌桨-动网格讲解](https://img.taocdn.com/s3/m/851bfe0ef18583d04964594e.png)
搅拌桨底部十字挡板流场分析动网格实例教程搅拌设备在各个行业运用的十分广泛,搅拌就是为了更够更快速更高效的将物质与介质充分混合,发生充分的反应,而搅拌中存在着许多不利于混合的情况,比如液体旋流。
为了解决这个问题,之前很多人提出在罐体的侧壁上增加挡板,可以抵消大部分旋流,然后大部分都是研究侧挡板的,对于底部挡板的研究十分少,本文就在椭圆底部挡板增加十字型挡板,对罐体中进行流场分析。
1.Gambit建模首先用Gambit建模图形如下:图1:Gambit建立的模型分为两个区域,里面的圆柱为动区域,外面包着的大圆柱设为静区域,静区域划分网格大,划分粗糙,内部动区域划分网格小,划分精细。
边界条件主要设置了轴,搅拌桨,底部挡板,上层液面。
以下就是fluent进行数值模拟。
2.fluent数值模拟2.1导入case文件2.2对网格进行检查Minimum volume的数值大于0即可。
图2网格检查2.3调节比例单位选择mm单位。
图3比例调节2.4定义求解器参数设置如图4所示图4设置求解器参数2.5设置能量线图5能量线2.6设置粘度模型,选择k-e模型k-e模型对该模型模拟十分实用。
图6粘度模型2.7定义材料介质选择液体水。
图7介质选择2.8定义操作条件由于存在着终于,建模时的方向向上,所以在Z轴增加一个重力加速度。
图8操作条件2.9定义边界条件在边界设置重,动区域如图所示,将材料设成水,motion type设成moving reference frame (相对滑动),转速设为10rad/s,单位可在Define中的set unit中的angular-velocity设置。
而在在轴的设置中,如上图所示,将wall motion设成moving wall,motion设成Absolute,速度设成-10,由于轴跟动区域速度是相对的,所以设成反的。
图9动区域边界条件图10轴边界条件2.10设置求解器求解器的设置如图11需将momentum改成0.5即可图11求解器2.11初值初始化在Slove中选择solution initialiation设置一下,初值全为0.2.12设置残留控制将plot点上,其他参数如图12所示。
fluent_gambit网格检查及优化方法
![fluent_gambit网格检查及优化方法](https://img.taocdn.com/s3/m/3bad1f9d84868762caaed5ec.png)
Fluent计算对网格质量的几个主要要求:1)网格质量参数:Skewness(不能高于0.95,最好在0.90以下;越小越好)Change in Cell-Size (也是Growth Rate,最好在1.20以内,最高不能超过1.40)Aspect Ratio (一般控制在5:1以内,边界层网格可以适当放宽)Alignment with the Flow(就是估计一下网格线与流动方向是否一致,要求尽量一致,以减少假扩散)2)网格质量对于计算收敛的影响:高Skewness的单元对计算收敛影响很大,很多时候计算发散的原因就是网格中的仅仅几个高Skewness的单元。
高长宽比的单元使离散方程刚性增加,使迭代收敛减慢,甚至困难。
也就是说,Aspect Ratio尽量控制在推荐值之内。
3)网格质量对精度的影响:相邻网格单元尺寸变化较大,会大大降低计算精度,这也是为什么连续方程高残差的原因。
网格线与流动是否一致也会影响计算精度。
4)网格单元形状的影响:非结构网格比结构网格的截断误差大,因此,为提高计算精度计,请大家尽量使用结构网格,对于复杂几何,在近壁这些对流动影响较大的地方尽量使用结构网格,在其他次要区域使用非结构网格。
2. 不要使用那些书上写的y+与yp的计算公式,那个公式一般只能提供数量级上的参考。
推荐大家使用NASA的粘性网格间距计算器,设定你想要的y+值,它就能给你计算出第一层网格高度,与计算结果的y+很接近。
3.Fluent检查网格质量的方法,网格导入Fluent中之后,grid->check,可以看看网格大致情况,有无负体积,等等;在Fluent窗口输入,grid quality然后回车,Fluent会显示最主要的几个网格质量。
3. 关于边界层网格高度与长度的比例,有本CFD书上说,大概在1/sqrt(Re)就可以;另外,也有这种说法,在做粘性计算时,这个比值可以在100-1000之间,无粘有激波计算时,这个比值要相应小点儿,在10-100之间,因为要考虑激波捕捉精度问题。
《gambit建模网格划分-CFD数值模拟教程》fluent仿真模拟
![《gambit建模网格划分-CFD数值模拟教程》fluent仿真模拟](https://img.taocdn.com/s3/m/d9f97de631126edb6e1a10c0.png)
《Gambit 建模和网格划分-CFD数值模拟训练营》Gambit modeling and Mesh generation-CFD numerical simulation training camp| CFD理论知识 | 软件操作 | 案例实操 | 操作技巧 | 答疑服务 |模型素材|VIP群|主 讲 人第七代师兄01020304基础操作篇案例操作篇技巧操作篇课程总结篇软件介绍、基础操作、界面介绍、命令、视图窗口二维模型处理、网格生成、边界条件三维模型处理、局部加密网格生成、边界条件复杂模型生成、网格生成、边界条件设置、格式COMPANY 05 界条件设置、模拟后处理、结果输出知识理论篇操作界面建立模型教室空调自然通风模型建筑室外风环境管外绕流网格划分详解网格质量改CFD后处理结果善网格质量检查套管模型迭代求解计算搅拌器网格模型理论知识讲解网格模型Airpak数据接口导Txt和excel数据接口0102模型建立Model generation 网格生成Grid generation 边界设置Boundary condition setting迭代计算/后处理Iterative calculation03041423two-dimensional model二位模型The three dimensional grid三位网格ITERATIVE postprocessing迭代后处理Engineering simulation example工程模拟案例理论知识1软件简介、建模思想、网格划分、网格类型工程案例2二维绕流模型、管道模型、建筑室外风环境模型、室内通风空调模型操作技巧3数据接口、CAD导入方法、txt/excel操作、坐标系统公众号:七师兄课堂自主学习网络在线观看、下载观看、模拟对照练习。
适合人群小白入门到精通、基础教学、精通教学、适合不同水平层次。
售后答疑加入VIP群、专业导师免费答疑、小伙伴一起讨论,共同成长。
gambit网格划分祥解
![gambit网格划分祥解](https://img.taocdn.com/s3/m/97553e54c281e53a5802ff4b.png)
Gambit介绍网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit <filemane>,文件名如果已经存在,要加上参数-old。
一.Gambit的操作界面如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。
文件栏文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。
这些命令的使用和一般的软件一样。
Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件(file/export)。
视图和视图控制面板Gambit中可显示四个视图,以便于建立三维模型。
同时我们也可以只显示一个视图。
视图的坐标轴由视图控制面板来决定。
图2显示的是视图控制面板。
图2 视图控制面板视图控制面板中的命令可分为两个部分,上面的一排四个图标表示的是四个视图,当激活视图图标时,视图控制面板中下方十个命令才会作用于该视图。
视图控制面板中常用的命令有:全图显示、选择显示视图、选择视图坐标、选择显示项目、渲染方式。
同时,我们还可以使用鼠标来控制视图中的模型显示。
其中按住左键拖曳鼠标可以旋转视图,按住中键拖动鼠标则可以在视图中移动物体,按住右键上下拖动鼠标可以缩放视图中的物体。
命令面板命令面板是Gambit的核心部分,通过命令面板上的命令图标,我们可以完成绝大部分网格划分的工作。
图3显示的就是Gambit的命令面板。
图3 Gambit的命令面板从命令面板中我们就可以看出,网格划分的工作可分为三个步骤:一是建立模型,二是划分网格,三是定义边界。
这三个部分分别对应着Operation区域中的前三个命令按钮Geometry(几何体)、mesh(网格)和Zones(区域)。
Operation中的第四个命令按钮Tools 则是用来定义视图中的坐标系统,一般取默认值。
GAMBIT网格划分
![GAMBIT网格划分](https://img.taocdn.com/s3/m/964d5a2853ea551810a6f524ccbff121dd36c528.png)
详细说明
Hex
指定网格仅仅包含六面体网格单元
Hex/Wedge
指定网格主要有六面体网格单元组成但是也包括在适当地位置的楔形网格
Tet/Hybird
指定网格主要由四面体网格构成但是在适当的位置可以包含六面体、锥形和楔形网格单元
GAMBIT提供了以下体网格划分Type选项
选项
详细说明
Map
生成一般六面体结构化网格单元
TGrid
√
Stairstep
√
Submap
将一个不可图示的面分成可图示区域并在每个区域生成结构化网格单元网格
Pave
生成非结构化网格单元网格
Tri Primitive
将一个二侧面分成二个四边形区域并在每个区Байду номын сангаас生成可图示的网格
Wedge Primitive
在楔形面的尖部生成二角形网格单元并从尖部向外生成放射状网格
GAMBIT提供了以下面网格划分Type选项
Submap
将一个不可图示化体积分割成可图示化区域并在每个区域生成六面体结构化网格单元
Tet Primitive
将一个四个侧面的体积分成四个六面体区域并在每个区域生成可图示化网格
Cooper
扫描整个体积的指定的源面的网格节点类型
Tet/Hybird
指定该网格主要包含四面体网格单元但是在合适的位置也可以包含六面体、锥体和楔形单元
Stairstep
生成普通六面体网格和一个与原是提及形状近似的平滑的体积
体网格划分Elements和Type选项之间的关系如下表。(其中:“√”表示允许组合)
Elements选项
Type选项
Hex
Hex/Wedge
Gambit及其Fluent操作技巧步骤图案详解
![Gambit及其Fluent操作技巧步骤图案详解](https://img.taocdn.com/s3/m/038d80a083c4bb4cf7ecd1b2.png)
现在PRO/E软件中建立燃烧室和气缸工作容积的三维图,并且以*.stp格式输出,在磁盘建立一个文件夹(比如在D盘建立一个名称为step的文件夹),将刚才的*.stp文件放在此文件夹下面。
桌面上打开Gambit图标,见图1。
图1在菜单File下,点击Import > STEP,见图2。
打开Import STEP File窗口,见图3。
图2图3 找到并打开刚才的*.stp文件,如图4所示。
图4 使用2条边建立一个面,见图5。
图5可以将本模型划分为两部分,打开Split V olume窗口,使用刚才建立的面将模型划分为2个部分,见图6。
图6进行网格划分,先对上面的体积进行网格划分,由于其形状比较规则,所以可以使用6面体网格单元,见图7。
然后对下面的体积进行网格划分,由于其形状不规则,所以选用4面体网格单元,见图8。
全部网格划分完后,见图9。
图7图8图9点击右下方的SPECIFY MODEL DISPLAY ATTRIBUTES,在其面板上的Mesh选项后点击off,即可关闭网格显示,但是此时模型网格已经划分了。
图10边界条件的设置,分别选中需要设置的面,如本例中选中face4,将其名称设为movwall,类型设为wall,见图11. 选中face12,将其名称设为middle,类型设为INTERIOR,见图12. 选择face2和face3,将其名称设为cylinder,类型设为wall。
图11图12图13指定体,分别设置模型的上部和下部为V2和V1,如图14和15.图14图15以上模型网格设置好之后,将模型以*.msh格式输出,本例子以cylinder.msh输出,见图16。
图16打开FLUENT图标,在FLUENT Versions窗口中选择3d,见图17。
图17分别选择File>Read>Case,找到前面输出的cylinder.msh文件,选择并打开,见图18。
图18在Surface菜单下选择Zone,打开Zone Surface控制面板,图19分别选中V1和V2,然后单价Create,即可建立它们的表面,见图20。
拉伐尔喷管流动分析(gambit划分网格,fluent数值模拟)
![拉伐尔喷管流动分析(gambit划分网格,fluent数值模拟)](https://img.taocdn.com/s3/m/2bab8e7f561252d380eb6e52.png)
喷管流动分析
一、分析目的
通过流体力学模拟软件,对喷管内的气体流动进行分析,得到其中的流场及激波情况
二、分析过程
(一)、模型建立及网格划分
1、首先在gambit中通过各关键点坐标画出模型
2、对各条线进行划分。
其中对左右两侧的线段采用一定的网格大小改变比例,以使近壁面网格加密;对上下表面分三段进行划分,以使网格均匀垂直
3、对整个面进行划分,如下图所示
4、网格质量分析如下图。
所有网格质量都在0.64以下(0为质量最好,1,为最差,一般要求网格质量都在0.75以下)
(二)fluent模拟
1、将上一步得到的网格文件导入,并设置显示方式
2、使用基于压力的求解器
3、设置使用的模型,包括能量模型与粘流模型。
下图为粘流模型的设置,使用k-omega双方程模型,以更好地模拟近壁面情况。
4、根据文献中的资料设置气体参数
5、设置边界条件,入口为30个大气压,3200K,出口设置为从0.5至1.5个大气压不等
6、设置计算方法
7、设置计算参数
8、设置监视器,以观察计算过程中的收敛情况
9、初始化并计算
10、从Graphics and Animations和Plots中得出结果图像
三、分析结果
1、压力云图
2、速度云图
3、马赫数
(1)出口0.9atm
(2)出口1.1atm
(3)出口2atm。
gambit网格划分祥解
![gambit网格划分祥解](https://img.taocdn.com/s3/m/902366de84868762caaed5b4.png)
Gambit介绍网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit <>,文件名如果已经存在,要加上参数-old。
一.Gambit的操作界面如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。
文件栏文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。
这些命令的使用和一般的软件一样。
Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件()。
视图和视图控制面板Gambit中可显示四个视图,以便于建立三维模型。
同时我们也可以只显示一个视图。
视图的坐标轴由视图控制面板来决定。
图2显示的是视图控制面板。
图2 视图控制面板视图控制面板中的命令可分为两个部分,上面的一排四个图标表示的是四个视图,当激活视图图标时,视图控制面板中下方十个命令才会作用于该视图。
视图控制面板中常用的命令有:全图显示、选择显示视图、选择视图坐标、选择显示项目、渲染方式。
同时,我们还可以使用鼠标来控制视图中的模型显示。
其中按住左键拖曳鼠标可以旋转视图,按住中键拖动鼠标则可以在视图中移动物体,按住右键上下拖动鼠标可以缩放视图中的物体。
命令面板命令面板是Gambit的核心部分,通过命令面板上的命令图标,我们可以完成绝大部分网格划分的工作。
图3显示的就是Gambit的命令面板。
图3 Gambit的命令面板从命令面板中我们就可以看出,网格划分的工作可分为三个步骤:一是建立模型,二是划分网格,三是定义边界。
这三个部分分别对应着Operation区域中的前三个命令按钮Geometry(几何体)、mesh(网格)和Zones(区域)。
Operation中的第四个命令按钮Tools 则是用来定义视图中的坐标系统,一般取默认值。
fluent 简单案例
![fluent 简单案例](https://img.taocdn.com/s3/m/12fcd1e7294ac850ad02de80d4d8d15abe2300d3.png)
fluent 简单案例
当然可以,以下是一个简单的 Fluent 案例,用于模拟一个简单的二维管道流。
1. 模型建立:
首先,在 Gambit 中创建一个二维管道模型。
例如,一个长为 1m,直径为的圆管。
2. 网格划分:
使用 Gambit 对模型进行网格划分,选择适当的网格类型和尺寸。
3. 边界条件设置:
入口:速度入口,速度为 m/s。
出口:压力出口,压力为一个大气压。
管壁:无滑移壁面。
4. 求解器设置:
选择压力基求解器,湍流模型选择标准 k-ε 模型。
设置迭代次数为 500,收敛残差为 1e-6。
5. 开始模拟:
完成以上步骤后,可以开始模拟。
Fluent 将计算流场,并显示流速、压力、湍流强度等变量的分布。
6. 后处理:
模拟完成后,可以使用 Fluent 的后处理功能来查看和分析结果。
例如,可
以绘制速度、压力、湍流强度的云图或矢量图。
以上是一个简单的 Fluent 案例,用于模拟二维管道流。
实际应用中,可能
需要根据具体问题调整模型、网格、边界条件和求解器设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50%的工作量集中在网格生成
选择正确的网格策略
8-2
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
分解实例2
两个管相贯(不同矢量)
建模: 用体积单元画出管形。 用举行拉伸部分创建一个拉伸长方体,边长要在两管直径之间。
分解 用长方体切割主管。 用长方体切掉小圆柱体。
8-7
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
多管的流动体积
8-13
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
网格质量
网格质量影响在单元间的通量计算,因此直接影响结算的精度和收敛的 难易程度。
在体积中避免简化单元(歪斜度~1)或者高方向比(~5)以及在边界层中的 高方向比(~100)
网格策略
Introductory FLUENT Training
8-1
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
简介
不同网格策略可以用来处理真实体积:
六面体网格运用体积分解 四面体网格 六面体核心网格
六面体核心网格
六面体核心网格可以在复杂表面体 积上很大地减小网格数目和提高整 体质量
和尺寸功能一样,偏移层可以减少 高缺陷的四面体网格,导致在边界 和六面体核心中的小间距。
六面体核心网格不能和一些物理模 型兼容,和四面体和六面体核心有 尺寸距离。
船体的流动体积
高质量的网格取决于:
体积和表面整洁,邻近复杂表面没有裂片和小特点 待解决的体积特性好(间距、曲率、尖角等) 用近似的尺寸功能增长率和尺寸限制、边界梯度、空间等创建好的表面网格
轴向片状体
弯曲尺寸功能用来解决片状体积。
依附在片状表面的边界层用来解决近壁面效应。
邻近尺寸功能用来解决尖端间隙距离。 固定尺寸功能用来生成远离在中枢和盖子上片状体的表面网格。
尖端间隙(小距离) 片状体
盖子中枢Biblioteka 8-12© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
8-5
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
源面
分解例子1
源面
8-6
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
源面
分解例子2
源面
源面
8-8
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
混合容器
混合容器:
这个混合容器被分割,里面创建了六面体网格。在推进器里生成了四面体网 格。
分解例子1
在长方体里的空球体
建模
用体积单元创造一个球体和一个长方体 从长方体里减去球体。
分解
建立一个圆柱体。这个圆柱体的直径要比球体的小,高度要穿过这个长方体 用圆柱体减去长方体 。 创建对角边界穿过顶面和底面再用这些边创建一个对角面。 用这个面分裂这个类长方体。
4 棱柱网格 (Hex/Wedge Cooper)
8-10
5 交界体上四面体网格
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
四面体网格
大多数的网格区域包括金字塔形,棱 柱和六面体
例如——混合容器里的包含桨页的子域
适用于棱柱和近棱柱的体积
优点:高质量和较少的网格数能够加快解算周期 缺点:对复杂体的划分时间长
我们将对这些分解举一些例子
8-4
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
六面体为主的网格
运用布尔运算和分割体积分解计算区域 下列方法被用来创造六面体网格:
Map Submap Tet-Primitive Cooper
四面体(tet)用来生成复杂的子域
在推进器里的四面体
8-9
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
热蒸汽支路管
其他例子
1 适应性六面体
2 在此结构里的四面体 3 棱柱网格
(Hex/Wedge Cooper)
边界层的金字塔和六面体形状从表面 生成,这里壁面(边界层)很重要。
流动体积的尺寸功能能用来评定表面/ 体积网格。
绝对尺寸功能用来解决曲率和边界。
相对尺寸用来细化一些区域。
用尺寸功能和边界层的自动四面体网 格
8-11
© 2006 Fluent Inc.
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
选择网格策略
处理复杂体积最好的策略决定于
期望时间
较快的四面体网格对比较少网格数量有技巧性的hex/hybrid网格
期望网格数
解决整体流动的少网格数目对比较详细的多网格数目 六面体核心网格对比四面体网格
期望网格质量
你能取得最大的倾斜和方向比
物理条件
流动特点,解析湍流
8-3
© 2006 Fluent Inc.