自动控制原理实验报告46026

合集下载

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告一、实验目的。

本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。

二、实验原理。

PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。

比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。

PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。

三、实验装置。

本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。

四、实验步骤。

1. 将PID控制器与被控对象连接好,并接通电源。

2. 调节PID控制器的参数,使其逐渐接近理想状态。

3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。

4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。

五、实验结果与分析。

经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。

因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。

六、实验总结。

通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。

同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。

七、实验心得。

本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。

只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。

八、参考文献。

[1] 《自动控制原理》,XXX,XXX出版社,2010年。

[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2、学习在电子模拟机上建立典型环节系统模型的方法。

3、学习阶跃响应的测试方法。

二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。

记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。

2、PC机一台。

3、数字万用表一块。

4、导线若干。

五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。

2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。

3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1. 熟悉并掌握TD-ACC+( TD-ACS设备的使用方法及各典型环节模拟控制电路的构成方法。

2. 熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

对比差异、分析原因。

3. 了解参数变化对典型环节动态特性的影响。

二.实验设备PC机一台,TD-ACC+( TD-ACS实验系统一套。

三.实验内容1. 比例环节2. 积分环节3. 比例积分环节4. 惯性环节5. 比例微分环节6. 比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。

实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。

2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数、仪器设备PC机一台,TD-ACC+或TD-ACS)教学实验系统一套三、原理简述所谓校正就是指在使系统特性发生变接方式可分为馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。

实验三、线性系统的频率响应分析、实验目的1 .掌握波特图的绘制方法及由波特图来确定系统开环传函2 .掌握实验方法测量系统的波特图。

、实验设备PC机一台,TD-ACC系列教学实验系统一套三、实验原理及内容(一)实验原理1 .频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(3由0变至%)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验报告

自动控制原理实验报告

《自动控制原理实验》实验报告班级:自动化0901姓名:***学号:*********东华大学信息学院实验一 MATLAB 中数学模型的表示MP2.1考虑两个多项式2()21p s s s =++ ,()1q s s =+使用 MATLAB 计算下列各式:程序: (a )>> A=[1 2 1];B=[1 1]; >> C=conv(A,B)运行结果: C =1 3 3 1 (b)>> num=[1 1]; >> den=[1 2 1]; >> z=roots(num); >> p=roots(den); >> z,p运行结果: z =-1 p =-1 -1 (c)>> value=polyval(p,-1) 运行结果: value = 0程序:(a)>> num1=[1];num2=[1 2];den1=[1 1];den2=[1 3];[num,den]=series(num1,den1,num2,den2);[num,den]=cloop(num,den,-1);printsys(num,den)运行结果:num/den =s + 2----------------s^2 + 5 s + 5(b)step(num,den)运行结果:(a)>> num1=[1]; den1=[1 1];num2=[1]; den2=[1 0 2];[num3,den3]=series(num1,den1,num2,den2);num4=[4 2]; den4=[1 2 1];[num5,den5]=feedback(num3,den3,num4,den4,-1);num6=[1]; den6=[1 0 0];num7=[50]; den7=[1];[num8,den8]=feedback(num6,den6,num7,den7,1);[num9,den9]=series(num5,den5,num8,den8);num10=[1 0 2]; den10=[1 0 0 14];[num11,den11]=feedback(num9,den9,num10,den10,-1);num12=[4]; den12=[1];[num13,den13]=series(num11,den11,num12,den12)F=tf(num13,den13)运行结果:Transfer function:4 s^5 + 8 s^4 + 4 s^3 + 56 s^2 + 112 s + 56 ----------------------------------------------------------------------------------------------------s^10 + 3 s^9 - 45 s^8 - 129 s^7 - 198 s^6 - 976 s^5 - 2501 s^4 - 3558 s^3 - 4841 s^2 - 6996 s – 2798(b)[p,z]=pzmap(num13,den13); pzmap(num13,den13);grid on运行结果:p =7.0710-7.07101.2047 +2.0871i1.2047 -2.0871i0.2984 + 1.4750i0.2984 - 1.4750i-2.4108-1.5219 + 0.9395i-1.5219 - 0.9395i-0.5517>> zz =1.2051 +2.0872i1.2051 -2.0872i-2.4101-1.0000 + 0.0000i-1.0000 - 0.0000i(c)>> Z=roots(num13)Z =1.2051 +2.0872i1.2051 -2.0872i-2.4101-1.0000 + 0.0000i-1.0000 - 0.0000i>> P=roots(den13)P =7.0710-7.07101.2047 +2.0871i1.2047 -2.0871i0.2984 + 1.4750i0.2984 - 1.4750i-2.4108-1.5219 + 0.9395i-1.5219 - 0.9395i-0.5517绘制系统的单位阶跃响应,参数Z=3,6和12。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验一典型系统的时域响应和稳定性分析 (2)一、实验目的 (3)二、实验原理及内容 (3)三、实验现象分析 (5)方法一:matlab程序 (5)方法二:multism仿真 (12)方法三:simulink仿真 (17)实验二线性系统的根轨迹分析 (21)一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21)二、根据根轨迹图分析系统的闭环稳定性 (22)三、如何通过改造根轨迹来改善系统的品质? (25)实验三线性系统的频率响应分析 (33)一、绘制图1. 图3系统的奈氏图和伯德图 (33)二、分别根据奈氏图和伯德图分析系统的稳定性 (37)三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导出系统的传递函数 (38)实验四、磁盘驱动器的读取控制 (41)一、实验原理 (41)二、实验内容及步骤 (41)(一)系统的阶跃响应 (41)(二) 系统动态响应、稳态误差以及扰动能力讨论 (45)1、动态响应 (46)2、稳态误差和扰动能力 (48)(三)引入速度传感器 (51)1. 未加速度传感器时系统性能分析 (51)2、加入速度传感器后的系统性能分析 (59)五、实验总结 (64)实验一典型系统的时域响应和稳定性分析一、 实验目的1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

二、 实验原理及内容1.典型的二阶系统稳定性分析 (1) 结构框图:见图1图1(2) 对应的模拟电路图图2(3) 理论分析导出系统开环传递函数,开环增益01T K K =。

(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图2),s 1T 0=, s T 2.01=,R200K 1= R200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ 2.典型的三阶系统稳定性分析 (1) 结构框图图3(2) 模拟电路图图4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。

自控原理课程实验报告

自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。

3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。

二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。

本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。

2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。

(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。

(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。

(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。

(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。

(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。

2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。

(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

(2)根据仿真结果,优化系统参数,提高系统性能。

四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。

自控制原理实验报告(3篇)

自控制原理实验报告(3篇)

第1篇一、实验目的1. 理解自控制原理的基本概念和基本方法。

2. 掌握典型控制系统的组成和基本工作原理。

3. 学习使用实验仪器,进行控制系统模拟实验。

4. 分析和评估控制系统的性能指标,提高对控制系统设计和优化的认识。

二、实验仪器与设备1. EL-AT-III型自动控制系统实验箱一台2. 计算机一台3. 万用表一个三、实验原理1. 自控制原理基本概念:自控制原理是研究如何利用反馈信息来控制系统的行为,使其达到预定的目标。

其基本原理是:通过将系统的输出信号反馈到输入端,与输入信号进行比较,产生误差信号,然后根据误差信号调整系统的控制策略,以达到控制目标。

2. 典型控制系统组成:典型控制系统通常由控制器、被控对象、反馈环节和执行机构组成。

3. 控制系统模拟实验:利用实验箱和计算机,通过模拟电路搭建典型控制系统,进行实验研究。

四、实验内容1. 实验一:典型环节及其阶跃响应- 实验目的:掌握控制模拟实验的基本原理和一般方法,掌握控制系统时域性能指标的测量方法。

- 实验步骤:1. 搭建一阶系统的模拟电路。

2. 通过计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。

3. 改变系统的参数,分析参数对系统性能的影响。

2. 实验二:二阶系统阶跃响应- 实验目的:了解二阶系统的阶跃响应特性,掌握二阶系统的性能指标。

- 实验步骤:1. 搭建二阶系统的模拟电路。

2. 通过计算机等测量仪器,测量系统的输出,得到系统的阶跃响应曲线及性能指标。

3. 分析二阶系统的性能指标,如上升时间、超调量、调节时间等。

3. 实验三:连续系统串联校正- 实验目的:学习连续系统串联校正方法,提高控制系统的性能。

- 实验步骤:1. 搭建连续系统的模拟电路。

2. 分析系统的性能指标,确定校正方法。

3. 通过计算机等测量仪器,测量校正后的系统输出,评估校正效果。

五、实验结果与分析1. 实验一:通过搭建一阶系统的模拟电路,测量系统的输出,得到系统的动态响应曲线及性能指标。

自动控制原理实验教程及实验报告

自动控制原理实验教程及实验报告

实验三 典型环节(或系统)的频率特性测量一、实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据实验所得频率特性曲线求取传递函数的方法。

二、实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成典型二阶系统开环频率特性曲线的测试。

3.根据测得的频率特性曲线求取各自的传递函数。

4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。

三、实验步骤1.利用实验设备完成一阶惯性环节的频率特性曲线测试。

在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。

为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。

仍以一阶惯性环节为例,此时将Ui 连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo 连到实验箱 U3单元的I1(A/D 通道的输入端),并连好U3单元至上位机的并口通信线。

接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。

界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X ”选择“通道I1#”,“采样通道Y ”选择“不采集”。

②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。

③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“Bode”。

④完成实验设置,先选择“实验类别”(在主界面右上角)为“频域”,然后点击“实验参数设置”,在弹出的“频率特性测试频率点设置”框内,确定实验要测试的频率点。

注意设置必须满足ω<30Rad/sec 。

⑤以上设置完成后,按“实验启动”启动实验。

界面中下方的动态提示框将显示实验测试的进展情况,从开始测试直至结束的过程大约需要2分钟。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。

6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。

二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

《自动控制原理》实验报告讲述

《自动控制原理》实验报告讲述

《自动控制原理》实验报告姓名:学号:班级:11电气1班专业:电气工程及其自动化学院:电气与信息工程学院2013年12月目录实验一、典型环节的模拟研究实验二、二阶系统的阶跃响应分析实验三、线性系统的稳态误差分析实验四、线性系统的频率响应分析实验一典型环节的模拟研究1.1 实验目的1、熟悉并掌握TD-ACS设备的使用方法及各典型环节模拟电路的构成方法。

2、熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

3、了解参数变化对典型环节动态特性的影响。

1.2 实验设备PC机一台,TD-ACS实验系统一套。

1.3 实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。

1. 比例环节(P)(1) 方框图:如图1.1-1 所示。

图1.1-1(2) 传递函数:Uo(S)/Ui(S)=K(3) 阶跃响应:Uo(t)=K(t≥0)其中K=R1/R0(4) 模拟电路图:图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。

以后的实验中用到的运放也如此。

(5) 理想与实际阶跃响应对照曲线:①取R0 = 200K;R1 = 100K。

理想阶跃响应曲线实测阶跃响应曲线2.积分环节(I)(1) 方框图:如右图1.1-3 所示。

图1.1-3(2) 传递函数:错误!未找到引用源。

(3) 阶跃响应:Uo(t) = 错误!未找到引用源。

(t 0) 其中T=R0C(4) 模拟电路图:如图1.1-4 所示。

图1.1-4(5) 理想与实际阶跃响应曲线对照:①取R0 = 200K;C = 1uF。

3.比例积分环节(PI)(1)方框图:如图1.1-5 所示。

图1.1-5(2) 传递函数:错误!未找到引用源。

(3)阶跃响应:Uo(t)=K+t/T(t) (t 0) 其中K=Ri/Ro; T=RoC(4) 模拟电路图:见图1.1-6图1.1-6(5) 理想与实际阶跃响应曲线对照:①取R0 = R1 = 200K;C = 1uF。

自动控制原理实验报告

自动控制原理实验报告

⾃动控制原理实验报告实验⼀典型环节的模拟研究及阶跃响应分析1、⽐例环节可知⽐例环节的传递函数为⼀个常数:当Kp 分别为0.5,1,2时,输⼊幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满⾜理论值。

2、积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1µf (0.33µf ),利⽤MATLAB ,模拟阶跃信号输⼊下的输出信号如图: T=0.1 T=0.033与实验测得波形⽐较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满⾜理论条件。

3、惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K=R f /R 1,T=R f C,(1)保持K=R f /R 1=1不变,观测T= 0.1秒,0.01秒(既R 1=100K,C=1µf ,0.1µf )时的输出波形。

利⽤matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较⼤。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较⼩,所以读数时误差较⼤。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2)保持T=R f C= 0.1s 不变,分别观测K=1,2时的输出波形。

自动控制原理实习报告

自动控制原理实习报告

实习报告:自动控制原理实验一、实验背景及目的随着现代工业的快速发展,自动控制技术在各个领域中的应用越来越广泛。

自动控制原理实验是电气工程及其自动化专业的一门重要实践课程,旨在让学生了解和掌握自动控制理论的基本原理和方法,培养学生的动手能力和实际问题解决能力。

本次实验主要涉及电动调节阀和PID控制器的相关知识。

二、实验内容及步骤1. 电动调节阀篇(1)了解电动调节阀的结构特点和工作原理。

电动调节阀主要由电动执行器与调节阀阀体构成,通过接收工业自动化控制系统的信号,来驱动阀门改变阀芯和阀座之间的截面积大小,控制管道介质的流量、温度、压力等工艺参数,实现远程自动控制。

(2)学习电动调节阀的调节稳定性和调节性能。

电动调节阀具有调节稳定,调节性能好等特点。

其结构特点包括:伺服放大器采用深度动态负反馈,可提高自动调节精度;电动操作器有多种形式,可适用于4~20mA DC或0~10mA DC;可调节范围大,固有可调比为50,流量特性有直线和等百分比;电子型电动调节阀可直接由电流信号控制阀门开度,无需伺服放大器;阀体按流体力学原理设计的等截面低流阻流道,额定流量系数增大30%。

(3)了解电动调节阀的分类及适用场合。

电动调节阀一般可分为单座式和双座式结构。

电动单座式调节阀适用于对泄漏要求严格,阀前后压差低及有一定粘度和含纤维介质的工作场合;电动双座式调节阀具有不平衡力小,允许压差大,流通能力大等待点,适用于泄漏量要求不严格的场合。

2. PID控制器篇(1)了解PID控制器的组成及作用。

PID控制器由比例控制、积分控制和微分控制组成。

比例控制是利用输入信号和参考信号的偏差量来控制;微分控制是利用输入信号的变化频率来控制;积分控制是利用输入信号的积分量来控制。

PID控制器能够通过设置比例、积分和微分三种参数来调节系统输出。

(2)学习PID控制器的开发现状。

PID控制器自发明以来已有近70年的历史,其结构简单、稳定性好、运行可靠、调节方便,已成为工业控制技术中的领先技术之一。

自动控制原理实验报告

自动控制原理实验报告

《自动控制原理》实验报告姓名:学号:专业:班级:时段:成绩:工学院自动化系实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为K R K R R RZ ZsG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-3所示。

三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。

① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+=s s G 和15.01)(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1图1-3 比例环节的模拟电路及SIMULINK 图形⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=四、实验结果及分析① 仿真模型及波形图1)(1=s G 和2)(1=s G② 仿真模型及波形图11)(1+=s s G 和15.01)(2+=s s G 11)(1+=s s G 15.01)(2+=s s G③ 积分环节ss G 1)(1=④微分环节⑤比例+微分环节(PD)⑥比例+积分环节(PI)五、分析及心得体会实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和ω对二阶系统性能的影响。

n3.熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

自动控制原理实验报告(电子版)

自动控制原理实验报告(电子版)

自动控制原理实验报告课程编号:ME3121023专业班级姓名学号实验时间:一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。

能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。

通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。

二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线18根实验一线性典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。

2、掌握用运算放大器构成各种常用的典型环节的方法。

3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。

4、学会时域法测量典型环节参数的方法。

(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。

2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。

3、在运算放大器上实现各环节的参数变化。

(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。

2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。

3、分别画出各典型环节的理论波形。

5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。

(四)、实验原理:实验原理及实验设计:1.比例环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节:Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤1、根据原理图构造实验电路。

自动控制原理_实验报告

自动控制原理_实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。

二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。

三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。

它主要由控制器、被控对象和反馈环节组成。

控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。

1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。

比例环节的响应特性为输出信号与输入信号成线性关系。

(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。

积分环节的响应特性为输出信号随时间逐渐逼近输入信号。

(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。

比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。

2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。

PID控制器可以实现对系统的快速、稳定和精确控制。

四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。

2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-150-100-5050实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=15201TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。

利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。

K=1时波形即为(1)中T0.1时波形K=2时,利用matlab 仿真得到如下结果: t s(5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大K 理论值为2,实验值4.30/2.28,相对误差为(2-4.30/2.28)/2=5.7%与理论值较为接近。

4、 二阶振荡环节令R 3 = R 1,C 2 = C 11KTSS T 1)s (R )s (C 22++=T = R 1C 1,K = R 2/R 1n ω= 1/T = 1/R 1C 1ξ= 1/2K = R 1/2R 2(1) 取R 1 = R 3 = 100K,C 1 = C 2 = 1μf 既令T = 0.1秒,调节R 2分别置阻尼 比ξ= 0.1,0.5,1○1R2=500k,ξ=0.1时, n ω=10;matlab 仿真结果如下:超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=73%,实验值为(3.8-2.28)/2.28=66.7%与理论值较为接近.过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=4s ,由matlab 仿真得t s =2.89s ,实验值为3.1s,与仿真得到的理论值相对误差为(3.1-2.89)/2.89=7.2%较为接近。

○2R2=100k, ξ=0.5,n ω=10 ;matlab 仿真结果如下: 超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=16%,实验值为(2.8-2.28)/2.28=22.8%与理论值较为接近过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.8s ,由matlab 仿真得较为接近。

○3 R2=50k, ξ=1,n ω=10;matlab 仿真结果如下:超调量M p 理论值为0,实验值为(2.28-2)/2.28=12.3%,与理论值吻合。

过渡过程时间理论值,由matlab 仿真得t s =0.48s ,实验值为0.40,与仿真得到的理论值相对误差为(0.48-0.40)/0.48=20%较为接近。

(2)取R 1 = R 3 = 100K,C 1 = C 2 =0.1μf 既令T = 0.01秒,重复进行上述测试。

○1R2=500k,ξ=0.1时, n ω=100;matlab 仿真结果如下: 超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=73%,实验值为(3.8-2.28)/2.28=66.7%与理论值较为接近.过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.4s ,由matlab 仿真得t s =0.29s ,实验值为0.30,与理论值相对误差为(0.30-0.29)/0.29=3.4%较为接近。

○2R2=100k,ξ=0.5时, n ω=100;matlab 仿真结果如下: 超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=16%,实验值为(2.8-2.28)/2.28=22.8%与理论值较为接近过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.08s ,由matlab 仿真得t s =0.0525s ,近。

○3 R2=50k, ξ=1,n ω=10;matlab 仿真结果如下:超调量M p 理论值为0,实验值为(2.28-2)/2.28=12.3%,与理论值吻合。

过渡过程时间理论值,由matlab 仿真得t s =0.048s ,实验值为0.04,与仿真得到的理论值相对误差为(0.048-0.04)/0.048=16.7%较为接近。

六、思考题1、根据实验结果,分析一阶系统t s 与T,K 之间的关系。

参数T 的物理意义? T 越大,ts 越大,ts 与K 无关。

T 反映了系统的瞬态响应速度。

2、根据实验结果,分析二阶系统t s ,M p ,与n ω,ξ之间的关系。

参数n ω,ξ的物理意义? 超调量只与ξ有关,ξ越小,超调量越大;调节时间与n ω*ξ有关,乘积越大,调节时间越小;n ω*ξ反映了系统阶跃响应的衰减程度,n ω反映了阶跃响应的振荡快慢程度。

3、对于图1-5所示系统,若将其反馈极性改为正反馈;或将其反馈回路断开,这时的阶跃响应应有什么特点?试从理论上进行分析(也可在实验中进行观察)变成正反馈或将其反馈回路断开,理论上阶跃响应的大小不断增加,实际中受制于运放的最大输出电压的影响,阶跃响应快速上升,最后达到一个很大的幅值。

4、根据所学习的电模拟方法,画出开环传递函数为)1S T 2S T )(1S T (K)s (G 22221+ξ++=的单位反馈系统的模拟线路图,并注明线路图中各元件参数(用R 、C 等字符表示)和传递函数中参数的关系。

易知将一个一阶惯性环节与图1-5所示电路串联起来后,再加一个单位反相比例环节即可实现,电路图如下其中应有R3=R1,C2=C1,于是K=Rf/R1,T1=Rf*C,T2=R1*C1,ζ=R1/(2*R2)。

实验二开环零点及闭环零点作用的研究实验电路图见附件(a)选择T=3.14s,K=3.14,T(S)=L(S)/1+L(S)=3.14/3.14S^2+S+3.14利用MATLAB仿真如下Mp:理论值1.6 实际值1.7 相对误差6.25%tp:理论值3.26 实际值 2.9 相对误差11.0%ts:理论值23 实际值 24.2 相对误差5.2%(b) Td=0.033T(S)=L(S)/1+L(S)=1.0362S+3.14/3.14S^2+4.1762S+3.14 利用MATLAB仿真Mp:理论值1.065 实际值1.15 相对误差8.0% tp:理论值3.68 实际值3.6 相对误差2.2%ts:理论值5.77 实际值6.0 相对误差4.0%(c) T(S)=L(S)/1+L(S)=3.14/3.14S^2+4.1762S+3.14利用MATLAB仿真Mp:理论值1.06 实际值1.08 相对误差2.0%tp:理论值4.12 实际值4.3 相对误差4.4%ts:理论值6.09 实际值6.2 相对误差1.8%比较实验二、三,知开环零点加快了瞬态响应;比较实验一、三,知闭环零点改善了整体的闭环性能,其主要原因是改变了阻尼比。

由实验结果可知,增加比例微分环节后系统的瞬态响应改善了,其根本在于增大了阻尼比。

而第二个实验中由于引进了开环零点,所以其性能与第三个不一样。

实验心得及体会提前预习,熟悉电路图,设计好参数对完成实验有很大的帮助,可以起到事半功倍的效果,要养成提前预习的习惯。

思考题为什么说系统的动态性能是由闭环零点,极点共同决定的?从时域和频域的关系来看,极点的位置决定了系统的响应模态,而零点的位置决定了每个模态函数的相对权重。

实验三控制系统稳定性研究一、实验数据本实验的线路图如下,其中R11=R12=R21=R31=100K,1.对于方案一,取R13=R22=1M,C1=1μ,C2=10μ,R3=100K,C3=1μ,由实验现象得知,对任意α∈(0,1),系统均稳定,且α越大,响应速度越快,幅值也越大。

对于方案二,C3=1μ,知对于任意α系统仍稳定,且α越大,响应速度越快,幅值也越大。

方案三中R32=1M,C3=1μ,当输出呈现等幅振荡时,α=0.0192. 对于第一组,由实验可知对任意α∈(0,1)系统均稳定,且α越大,响应速度越快,幅值也越大。

第二组中,当输出呈现等幅振荡时,α=0.5103. 仍选择以上电路,要使T=RC=0.5s,可选取R=500K,C=1μ。

而由以上传a=1时,R13=R22=R32=500K,C1=C2=C3=1μ。

实验测得当输出开始呈现缓慢衰减,K=809.1Hz。

a=2时,R13=1M,R22=500K,R32=250K,C1=C2=C3=1μ。

实验测得当输出开始呈现缓慢衰减,K=924.1Hz。

a=5时,R13=250K,C1=10μ,R22=500K,C2=1μ,R32=100K,C3=1μ。

此时发现对任意α∈(0,1)系统均稳定。

二、数据处理1.对于前三个方案,由Hurwitz判据易知α=1.22,11.1,0.0242时系统临界稳定。

而实验中α不可能大于1,故前两个实验中系统均稳定,而第三个实验中测得α=0.019,与理论值相对误差为(0.0242-0.019)/0.0242=21.4%。

对于后两组实验,由Hurwitz判据易知α=1.993,0.42时系统临界稳定。

相关文档
最新文档