高中数学新课程创新教学设计案例几何概型

合集下载

高中数学《几何概型》教案

高中数学《几何概型》教案

高中数学《几何概型》教案一、教学目标知识与技能目标:了解几何概型的意义,会求简单的几何概型事件与概率。

过程与方法目标:通过学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。

情感态度与价值观目标:通过对几何概型的教学,树立科学的世界观和辩证的思想,养成合作交流的习惯。

二、教学重难点重点:几何概型的基本特点及“测度”为长度的运算。

难点:无限过渡到有限;实际背景如何转化长度。

三、教学过程环节一:导入新课问题情境一:取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?(教师演示绳子)问题情境二:射箭比赛的箭靶涂有五个彩色得分环?从外向内为白色、黑色、蓝色、红色,靶心是金色。

金色靶心叫“黄心”。

奥运会的比赛靶面直径为122cm,靶心直径为12.2cm。

运动员在70m 外射箭。

假设射箭射中靶面内任何一点都是等可能的,那么射中黄心的概率为多少?(播放flash 动画)环节二:新课讲授教师提问:由以上两个问题,你觉得此类问题与古典概型相比有何特点?如何求此类问题的概率?让学生分组讨论,教师适当点拨。

引出几何概型的概念、基本特点、概率计算公式,之后要加以说明,以便学生理解与记忆。

帮助学生弄清其形式和本质,明确其内涵和外延。

几何概型的概念及概率计算公式对于一个随机试验,如果我们将每个基本事件理解为从某个特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域内的点。

这样就可以把随机事件与几何区域联系在一起.这里的区域可以是线段、平面图形、立体图形等。

用这种方法处理随机试验,称为几何概型。

一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A,则事件A 发生的概率。

在几何概型中,事件A 的概率的计算公式如下:环节三:巩固提高在1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少?环节四:小结作业小结:师生共同总结本节课的内容。

高中数学几何概型教案模板

高中数学几何概型教案模板

高中数学几何概型教案模板课题:几何概型授课教师:卓剑教材:苏教版数学(必修3)第3章3.3节[教学目标]知识与技能(1)了解几何概型的基本概念、特点和含义,测度的含义;(2)能运用概率计算公式解决一些简单的几何概型的概率计算问题.过程与方法(1)经历由直观感知探讨未知领域的过程,培养数学类比能力和概括能力.(2)通过情感体验,使已有的知识和技能得到内化,同时转化为解决新问题的能力.情感态度与价值观(1)通过对几何概型的探求,培养学生的探索能力、钻研精神和科学态度.(2)在探求过程中,通过交流、发现、思维体验、情感体验等激发学生的学习兴趣.[教学重点、难点]教学重点是:理解几何概型的概念,并能进行简单的几何概型的概率的计算.教学难点是:通过实例让学生体会测度的合理选取.[教学方法与教学手段]问题教学法、合作学习法,多媒体课件.[教学过程]1.创设情境周杰伦的《青花瓷》歌曲全长4分钟,高潮部分从第50秒末开始,到第1分30秒末结束.小明最爱听这首歌.暑假中的一天,他正戴着耳机以单曲循环的播放模式听《青花瓷》.这时,妈妈喊他有事.回来后,他又立刻戴上耳机.请问:小明刚好听到《青花瓷》高潮部分的概率是多少?2.提出问题,组织讨论问题探究1取一根长度为3m的绳子,如果拉直后在任意位置剪断,剪得两段的长都不小于1m的概率是多少?问题1有多少种剪法?问题2怎样剪断绳子,能使得剪得两段的长都不小于1m?问题3剪得两段的长都不小于1m的概率是多少?记“剪得两段绳子的长都不小于1m”为事件A,由于剪断绳子上的每一个位置都可视为一个基本事件;将绳子三等分,当剪断位置在中间一段时,事件A发生,所以事件A发生的概率为P(A)中间一段绳子的长度1。

绳子的总长度3问题探究2取一个边长为2a的正方形及其内切圆,随机地向正方形内丢一粒豆子,那么豆子落入圆内的概率为多少?记“豆子落入圆内”为事件A,由于豆子落入正方形中的每一个位置都可视为一个基本事件;豆子落入圆内时,事件A发生。

全国高中数学优质课:几何概型 教学设计教案说课稿

全国高中数学优质课:几何概型 教学设计教案说课稿

几何概型(第1课时)一、教学目标:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力。

二、教学重点与难点:重点:1、几何概型概率计算公式及应用。

2、如何利用几何图形,把问题转化为几何概型问题。

难点:正确判断几何概型并求出概率。

三、学法与教学用具:我认为作为新增内容,几何概型在高考中必然要有所体现,但是大纲要求仅为了解、以及会简单的应用,所以会在填空或选择题中出现。

而向这样的条件不清晰,甚至基本事件不是等可能的几何概型,需要讨论的情况一定要避免出现。

教案说明一、教学目标的定位:本课选自人教版A版(必修三)第三章《概率》中“几何概型”第一课时。

本章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成建模的数学思想,学会用随机的观念去观察、分析研究客观世界的变化规律,并获取认识世界的初步知识和科学方法。

依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等方针,我认为这一节课要达到的学习目标可确定为:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

高中数学《几何概型》教案

高中数学《几何概型》教案

高中数学《几何概型》教案一、教学目标1、建立几何概型的概念,了解点、线、面、几何体的基本概念。

2、学习古希腊的几何概型理论,理解“公理化”证明的基本方法。

3、掌握平面几何的基本定理,如欧氏几何五大公设、垂线、角平分线定理等。

4、培养学生思维的逻辑性,进一步提高分析解决问题的能力,以及形象思维的能力和几何思维的能力。

二、教学重点和难点1、平面几何的基本定理。

2、学习古希腊几何学的公理化方法,认识并应用公理、定义、定理、证明等,进一步提高学生的推理思维。

三、教学方法1、理论结合实践,通过练习掌握平面几何的基本定理,培养学生的推导思维。

2、利用黑板画图辅助教学,加强学生的形象思维。

3、倡导学生积极参与课堂讨论,相互分享探讨问题,提高学习效果。

四、教学内容与步骤第一节、几何概念的复习1、点、线、面、几何体的基本概念。

2、点、线、面的分类。

3、几何图形的构造方法。

4、几何问题的解决方法。

第二节、平面几何基本定理1、欧氏几何五大公设的理解和应用。

2、角平分线的定理及其应用。

3、垂线定理及其应用。

4、圆的性质与应用。

5、全等三角形的性质。

第三节、公理化证明的基本方法1、公理与定义的概念及其作用。

2、定理的定义和证明方法。

3、数学证明思路的讲解。

4、实例分析与案例练习。

五、教学手段黑板,笔,直尺,量角器,地球仪等。

六、教学评价1、通过课堂练习加深对平面几何的了解和掌握。

2、通过提高几何思维的能力和推理逻辑的能力,进一步提高学生的数学水平和思维能力。

3、根据课堂互动、单词测试和综合评定等方式,对学生的学习情况进行评价。

高中数学人教新课标B版必修3--《3.3.1 几何概型》教学设计

高中数学人教新课标B版必修3--《3.3.1 几何概型》教学设计

§3.3.1 几何概型教学设计教学内容:人教版《数学必修3》第三章第三节几何概型。

学情分析:学生学习了概率的含义以及古典概型的计算方式,对概率有了一定的了解,对概率的求法也有了一定的方法。

现在进行几何概型的学习,可以通过对比进行学习,通过分辨两种概型的区别与联系,可以达到学习几何概型的目的。

教学目标知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过游戏、案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

教学重点:初步体会几何概型,将求未知量的问题转化为几何概型求概率的问题教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D 和与事件A 对应的区域d ,并求出它们的测度。

教学过程:一、复习引入古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.小试牛刀1、从区间[-10,10]上任取一个整数,求取到大于1小于5的数的概率. 思考:那么对于有无限多个试验结果的情况相应的概率应如果求呢? (设计意图:通过古典概型的特点以及概率公式的应用巩固,为后面的对比学习奠定基础,同时也引出的新的概率模型,增强学生的好奇心。

)(师生互动:学生回答并完成练习,师生共同总结)二、创设情景,引入新课探究实验11. 取一根长度为30cm 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于10cm 的概率有多大?探究实验22.射箭比赛的箭靶是涂有五个彩色的分环.从外向内为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m 外射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率是多少?()AP A包含基本事件的个数公式:基本事件的总数探究实验33、一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中,始终保持与正方体的6各面的距离都大于1,则称其为“安全飞行”,求蜜蜂安全飞行的概率.由以上3个实验回答:(1)实验中的基本事件是什么:(2)每个基本事件发生是等可能的吗?(3)符合古典概型的特点吗?(设计意图:通过实验操作,让学生能直观感受几何概型的基本事件覆盖的区域)(师生互动:学生观察并回答问题,教师及时修正和确认答案)几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.思考:在几何概型中,如何求得某事件A的概率?在几何概型中,事件A的概率的计算公式如下:学生活动(分组讨论)求几何概型概率问题的步骤:1、判断实验的概率模型是否满足几何概型的两个特征;2、2、利用作图法描述基本事件对应的区域;3、3、把随机事件A转化为与之对应的区域d;4、4、利用几何概型概率公式计算。

高中数学新课程创新教学设计案例50篇(30)几何概型

高中数学新课程创新教学设计案例50篇(30)几何概型

30 几何概型教材分析和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.教学目标1. 通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用.2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.3. 通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.任务分析在这节内容中,介绍几何概型主要是为了更广泛地满足随机模拟的需要,因此,教学重点是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.有条件的学校可以让学生用一种统计软件统计模拟的结果.教学设计一、问题情境如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.问题:在下列两种情况下分别求甲获胜的概率.二、建立模型1. 提出问题首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B与N 的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积).2. 引导学生讨论归纳几何概型定义,教师明晰———抽象概括如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:3. 再次提出问题,并组织学生讨论(1)情境中两种情况下甲获胜的概率分别是多少?(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率.通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.三、解释应用[例题]1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即假设正方形的边长为2,则由于落在每个区域的豆子数是可以数出来的,所以这样就得到了π的近似值.另外,我们也可以用计算器或计算机模拟,步骤如下:(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出落在圆内a2+b2<1的豆子数N1,计算(N代表落在正方形中的豆子数).可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.[练习]1. 如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域.2. 利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积.3. 画一椭圆,让学生设计方案,求此椭圆的面积.四、拓展延伸1. “概率为数…0‟的事件是不可能事件,概率为1的事件是必然事件”,这句话从几何概型的角度还能成立吗?2. 你能说一说古典概型和几何概型的区别与联系吗?3. 你能说说频率和概率的关系吗?点评这篇案例设计完整,整体上按知识难易逐渐深入,同时充分调动了学生的积极性,以学生之间互动为主,教师引导为辅.例题既有深化所学知识的,又有应用所学知识的.“拓展延伸”既培养了学生的思维能力,又有利于学生从总体上把握这节课所学的知识.。

高中数学几何概型教案

高中数学几何概型教案

高中数学几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的基本性质和特点。

2. 培养学生运用几何概型解决实际问题的能力。

3. 通过对几何概型的学习,提高学生的逻辑思维能力和空间想象能力。

二、教学内容1. 几何概型的定义与特点2. 几何概型的分类3. 几何概型的概率计算方法4. 几何概型在实际问题中的应用三、教学重点与难点1. 重点:几何概型的概念、特点和概率计算方法。

2. 难点:几何概型在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的相关知识。

2. 利用多媒体课件,辅助教学,增强学生对几何概型的空间想象力。

3. 结合实际例子,让学生感受几何概型在生活中的应用。

五、教学过程1. 导入新课:通过一个简单的抽奖活动,引导学生思考抽奖活动的概率问题,从而引入几何概型的概念。

2. 自主学习:让学生阅读教材,理解几何概型的定义与特点。

3. 课堂讲解:讲解几何概型的分类和概率计算方法。

4. 课堂练习:让学生完成一些有关几何概型的练习题,巩固所学知识。

5. 应用拓展:结合实际例子,让学生运用几何概型解决实际问题。

六、教学评价1. 评价学生对几何概型的概念、特点和概率计算方法的掌握程度。

2. 评价学生运用几何概型解决实际问题的能力。

3. 评价学生在课堂练习中的表现,包括解题速度和正确率。

4. 评价学生在小组讨论中的参与程度和合作能力。

七、教学资源1. 教材:高中数学几何概型相关内容。

2. 多媒体课件:用于展示几何概型的图形和实例。

3. 练习题库:用于课堂练习和课后作业。

4. 实际案例:用于引导学生将几何概型应用于实际问题。

八、教学进度安排1. 第一课时:介绍几何概型的概念和特点。

2. 第二课时:讲解几何概型的分类和概率计算方法。

3. 第三课时:课堂练习和应用拓展。

九、教学反思1. 反思教学内容是否适合学生的认知水平。

2. 反思教学方法是否有效,是否能够激发学生的兴趣和参与度。

高中数学几何概型教案模板

高中数学几何概型教案模板

高中数学几何概型教案模板教学目标:
1. 熟练掌握数学几何概型的相关概念和定理;
2. 能够运用几何概型进行问题求解;
3. 培养学生的逻辑思维能力和数学推理能力。

教学重点:
1. 几何概型的基本概念;
2. 几何概型定理的应用。

教学难点:
1. 几何概型问题的解题方法;
2. 复杂几何概型问题的解决思路。

教学准备:
1. PowerPoint课件;
2. 教学板书;
3. 习题集。

教学过程:
一、导入
1. 引入几何概念,让学生了解几何概型在数学中的重要性;
2. 利用实例引导学生思考几何概型问题的解决方法。

二、讲解
1. 介绍几何概型的定义和相关定理;
2. 结合例题详细讲解几何概型问题的解题思路和方法;
3. 强化重点、难点内容。

三、练习
1. 给学生布置一些练习题,让他们独立进行解答;
2. 讲解解题思路,指导学生解决问题的方法。

四、总结
1. 回顾本节课学习的内容,强化重点知识;
2. 结合实例再次强化几何概型问题的解题方法。

五、作业
布置相关作业,巩固学生对几何概型的理解和应用能力。

师生互动:
1. 鼓励学生积极参与课堂讨论,提高学习兴趣;
2. 辅导学生解题思路,帮助他们掌握几何概型的解题方法。

教学反思:
1. 总结本节课教学中存在的问题,及时调整教学策略;
2. 收集学生反馈意见,改进教学方法,提高教学效果。

《几何概型》创新教学设计

《几何概型》创新教学设计

《几何概型》创新教学设计一、教材分析:“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。

通过最近几年的实际授课发现,学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,研究问题时过于“想当然”,对几何概型的概念理解不清.因此我认为要在几何概型的特征和概念的理解上下功夫,不要浮于表面。

另外,在解决几何概型的问题时,几何度量的选择是非常重要的,在实际授课时,应当引导学生发现规律,选择合适的度量来解决问题。

二、教学目标:1、知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P(A)=;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)会计算一些几何概型下事件的概率。

2、过程与方法:发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。

3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。

三、教学重点与难点:重点:掌握几何概型的判断及几何概型中概率的计算公式。

难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。

通过数学建模解决实际问题。

四、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学。

五、教学过程:1、复习回顾(1)古典概型的两个特点:①试验中所有可能出现的基本事件只有有限个;②每个基本事件发生是等可能的.(2)计算古典概型的公式:设计意图:复习巩固古典概型的特点及其概率公式,为几何概型的引入做好铺垫。

2、创设情景,引入新课问题1:下图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,甲壳虫分别在卧室和书房中自由地飞来飞去,并随意停留在某块方砖上,问在哪个房间,甲壳虫停留在黑砖上的概率大?问题2:玩转盘游戏 图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时,甲获胜,否则乙获胜。

高中数学教学课例《几何概型》课程思政核心素养教学设计及总结反思

高中数学教学课例《几何概型》课程思政核心素养教学设计及总结反思
生动手、动脑、动口,培养了学生的自我学习和思考能 述
力。
教学不仅仅只是单纯地讲授知识,丰富课堂活动,
提高学生的参与度,培养学生的学习兴趣,能够更好地
让学生体会数学知识中的来龙去脉。
高中数学教学课例《几何概型》教学设计及总结反思
学科
高中数学
教学课例名
《几何概型》

本节内容学生相对于前一节的古典概型理解难度
教材分析 增加,主要要让学生正确理解几何概型的概念和意义,
掌握几何概型的概率计算公式.
1.了解几何概型的基本概念、特点和意义;
教学目标
2.了解测度的简单含义;
3.掌握几何概型的概率计算公式.
对于几何概型,对测度的正确理解至关重要,由于
很多时候遇到的问题比较抽象,学生比较难于理解,经
学生学习能 常会不知道将问题进行转化,测度的选取不合理,教学
力分析 过程中,需要注意引导学生正确理解几何概型的概念,
掌握几何概型的基本特点,会将概率问题成功转化为相
应的测度之比。
1、清楚讲解几何概型的概念及其意义,得出几何
一般地,在几何区域 D 中随机地取一点,记“该点 落在其内部一个区域 d 内”为事件 A,则事件 A 发生的 概率:
二、数学运用 例 1 两根相距 8m 的木杆上系一根拉直绳子,并在 绳子上挂一盏灯,求灯与两端距离都大于 3m 的概率. 例 2 取一个边长为 2a 的正方形及其内切圆,随机 向正方形内丢一粒豆子,求豆子落入圆内的概率 反思总结:经过两个例题的练习和讲解,进一步让
学生理解几何概型的意义以及学会公式的运用。
三、课堂总结:
1、几何概型的概念及意义
2、几何概型的特征
3、几何概型的概率计算公式

高中数学几何概型教案

高中数学几何概型教案

高中数学几何概型教案
教学重点:掌握概型相关概念和性质,能够熟练运用概型解决几何问题。

教学难点:灵活运用概型解决实际问题,结合实际情境进行概型应用。

教学方法:讲授、举例、演示、讨论。

教学资源:教材、黑板、彩色粉笔、计算器。

教学过程:
一、导入(5分钟)
引导学生回顾前一节课的内容,概述几何相关知识,并提出问题引起学生思考。

二、讲解概型概念和性质(15分钟)
1. 讲解概型的定义和基本性质。

2. 举例说明不同类型的概型,引导学生思考。

3. 解释概型在数学中的应用,并讨论实例。

三、练习与讨论(20分钟)
1. 给学生发放练习题,让学生自主练习。

2. 学生互相讨论解题思路,分享解题方法。

3. 收集学生答案,讨论解题过程和答案。

解决学生疑惑。

四、实践运用(10分钟)
1. 提供实际问题,让学生结合几何知识和概型解决问题。

2. 学生在小组中合作,共同讨论解决方案。

3. 学生上台汇报解题过程和答案。

五、总结和作业布置(5分钟)
1. 总结本节课的内容,强调要点。

2. 布置相关练习作业,鼓励学生多练习、巩固知识。

教后反思:本节课主要通过讲解、练习和实践运用,使学生对几何概型有了更深入的理解,并能够运用概型解决实际问题。

在实践运用环节,让学生在小组中合作,培养了学生的团
队合作能力和解决问题的能力。

待下次课程中再次引导学生灵活运用概型解决实际问题。

高中优秀教案设计-几何概型教学设计

高中优秀教案设计-几何概型教学设计
几何概型教学设计(高中数学教材必修 3 第 3.3.1 节)
——邹玲 威海二中
为了更好地突出重点,突破难点,我将整个教学过程分为“问题引入——概念形成—— 探索归纳——巩固深化”四个环节.
教学过程
1.问题引入 引例 1 北京奥运会圆满闭幕,某玩具厂商为推销其生产的福娃玩具,扩大知名度,
教学目标
1.知识目标 ①通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别; ②理解并掌握几何概型的定义; ③会求简单的几何概型试验的概率. 2.情感目标 ①让学生了解几何概型的意义, 加强与现实生活的联系, 以科学的态度评价身边的一些 随机现象; ②通过学习, 让学生体会生活和学习中与几何概型有关的实例, 增强学生解决实际问题 的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.
特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于 10,则可获得一套福娃 玩具,问顾客能得到一套福娃玩具的概率是多少? 设计意图:复习巩固古典概型的特点及其概率公式,为几何概型的引入做好铺垫. 引例 2 厂商为了增强活动的趣味性,改变了活动方式,设
立了一个可以自由转动的转盘(如图 1)转盘被等分成 8 个扇形区 域.顾客随意转动转盘,如果转盘停止转动时,指针正好指向阴影 区域,顾客则可获得一套福娃玩具.问顾客能得到一套福娃玩具的 概率是多少? 设计意图: 1.以实际问题引发学生的学习兴趣和求知欲望; 2.以此为铺垫,通过具体问题情境引入课题; 3.简单直观,符合学生的思维习惯和认知规律. 问题提出后,学生根据日常生活经验很容易回答: “由面积比计算出概率为 图1
的基本事件有无数个,而试验的基本事件总数也是无数个.如果我们仿照古典概型的概率公 式,用事件 A 包含的基本事件个数与试验的基本事件总数的比例来解决这个问题,那样就 会出现“无数比无数”的情况,没有办法求解. 因此,我们需要一个量,来度量事件 A 和 ,使这个比例式可以操作,这个量就称为 “几何度量”.这就得到了几何概型的概率公式 P( A) 量, 表示子区域 A 的几何度量. 引例 2 就可以选取面积做几何度量来解决. 通过上面的分析, 引导学生发现: 几何概型与古典概型的区别在于它的试验结果不是有 限个,但是它的试验结果在一个区域内均匀地分布,因此它满足无限性和等可能性的特征. 其求解思路与古典概型相似,都属于“比例解法”.

高中数学《几何概型》教案、教学设计

高中数学《几何概型》教案、教学设计

高中数学《几何概型》教案、教学设计
一、教学目标
【知识与技能】
理解几何概型的特点,掌握几何概型的概率计算公式,并能应用公式解决实际问题。

【过程与方法】
经历归纳几何概型的特点以及推导几何概型的概率计算公式的过程,提升抽象概括能力与逻辑推理能力。

【情感、态度与价值观】
体会数学与生活的联系,养成良好的数学思维习惯。

二、教学重难点
【重点】几何概型的特点以及概率计算公式。

【难点】几何概型特点的归纳以及概率计算公式的推导。

三、教学过程
(一)导入新课
回顾古典概型。

出示问题情境:往一方格中投一个石子。

请学生思考石子可能落在哪里,如何求概率。

在学生明确事件所有的可能结果是无限个,无法用古典概型求解的情况下,说明今天这节课将解决这样的问题。

引出课题。

(二)讲解新知
出示问题情境:如图有两个转盘,甲乙两人玩转盘游戏,规定当指针指向
区域时,甲获胜,否则乙获胜。

请学生在两种情况下分别求出甲获胜的概率是多少。

(四)小结作业
小结:今天有什么收获?回顾几何概型的特点以及概率计算公式。

作业:从几何概型的角度思考,是否概率为0的事件都是不可能事件,概率为1的事件都是必然事件?
四、板书设计。

高中数学几何概型优秀教案

高中数学几何概型优秀教案

高中数学几何概型优秀教案
目标:通过本节课的学习,学生能够了解射影几何的概念,掌握相关定理,并能运用所学
知识解决相关问题。

教学重点:射影几何的基本概念、相关定理及应用。

教学难点:理解射影几何的概念及解决相关问题时的思维逻辑。

教具准备:黑板、彩色粉笔、投影仪、幻灯片、教材
教学安排:
一、导入(5分钟)
教师简单介绍射影几何的概念,并通过图像展示让学生初步了解射影几何的特点。

二、课堂讲解及示范(15分钟)
1. 教师讲解射影几何的基本概念,如射影平面、射影圆、射影线等,并通过实例进行说明。

2. 教师讲解射影几何的相关定理,如射影线的夹角定理、射影线与射影圆的位置关系等。

三、学生实践操作(20分钟)
学生们根据教师的示范,自行完成几道射影几何相关问题,加深对射影几何概念的理解,
并培养解决问题的能力。

四、讲解案例及讨论(10分钟)
学生们将自己的解答展示出来,教师进行点评和讲解,通过案例讨论加深学生对射影几何
的理解。

五、课堂总结(5分钟)
教师对本节课的学习内容进行总结,并强化射影几何的重要性。

六、作业布置(5分钟)
布置相关作业,巩固所学知识。

教学方式:板书教学、案例教学、互动探讨
教学评价:学生学习兴趣、参与度、主动性、学习成绩
教学反思:根据学生反馈和实际教学情况,不断优化教学方案,提高教学效果。

高中数学教学课例《几何概型》课程思政核心素养教学设计及总结反思

高中数学教学课例《几何概型》课程思政核心素养教学设计及总结反思
六、课堂小结 这节课你学到了什么?通过这节课你掌握了哪些 方法?应该注意些什么问题?有哪些思想是在以后的 学习中可以借鉴的等等,引导学生对这节课的内容加以 巩固深化。 主要内容应为:1.几何概型的特点 2.几何概型的 概率公式。 师生共同总结,可以让学生自行总结,并让学生代 表回答,教师最后用 PPT 展示总结。 学生自己总结梳理,学生代表回答。 培养学生总结梳理 习惯和能力,在总结 中提高。
《几何概型》共分三课时,今天的内容是第一节课,
本课时的教学设计注重课程的发生和开发过程,关注学
生的发展和情感体验,并积极引导学生关注人文、重视
数学与生活的良好品质。
本节课采用了类比的思维方式,让学生明确古典概
型与几何概型的异同。在启发式教学方式的引领下,以
问题串的形式开启学生思维之门。我认为本节课有以下
3.情感、态度与价值观:
通过对几何概型的教学,帮助学生树立科学的世界
观和辩证的思想,养成合作交流的习惯,初步形成建立
数学模型的能力。
通过最近几年的实际调查发现,学生在学习本节课 时特别容易和古典概型相混淆,把几何概型的“无限性” 误认为古典概型的“有限性”.究其原因是思维不严谨, 研究问题时过于“想当然”,对几何概型的概念理解不 清.因此我认为要在几何概型的特征和概念的理解上下 功夫,不要浮于表面.
形结合的数学思想,是概率问题与几何问题的一种完美 结合
本节内容极能体现新课程理念,可以成为“知识与 技能、过程与方法及情感态度价值观”三个纬度目标有 机融合的重要载体,从而实现三位一体的课程功能。
一、创设情景,引入新课 二、新知学习 三、讨论研究 四、教材例题讲解 五、拓展提升练习 六、课堂小结 七、布置作业 教师活动 预设学生活动 设计意图

高中数学 331几何概型教案 新人教B版必修3 教案

高中数学 331几何概型教案 新人教B版必修3 教案

《几何概型》教学设计一、教学目标1.知识与技能目标:(1)通过本部分内容的学习,理解几何概型的意义、特点,掌握几何概型的概率公式;(2)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(3)通过解决具体问题的实例感受理解几何概型的概念,掌握基本事件等可能性的判断方法,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。

感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。

2.过程与方法目标:(1)情境引入,通过师生共同对“问题链”的探究,运用观察、类比、思考、探究、概括、归纳的方法体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。

(2)通过小组的探究讨论,让学生学会分享自己的见解,培养学生的团队合作精神。

3.情感态度与价值观目标:本节课的主要特点是贴近生活,体会概率在生活中的重要作用,同时随机试验多,学习时养成勤学严谨的思维习惯。

通过学习,让学生体会生活和学习中与几何概型有关的实例,增强学生解决实际问题的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.二、重点、难点1. 教学重点:体会几何概型的意义,几何概型的概念和公式的应用,注意理解几何概型与古典概型的区别与联系2.教学难点:在几何概型中把试验的基本事件和随机事件与某一特定的几何区域及其子区域对应,并且从中理解如何利用几何概型的知识把实际问题转化为各种几何概率问题,进而熟练应用几何概型的概率公式计算相关事件发生的概率。

三、教学设计情境引入设计意图问题1:若A={1,2,3,4,5,6,7,8,9},则从A中任取出一个数,这个数不大于3的概率是多少?变式1:若A=(0,9],则从A中任意取出一个数,则这个数不大于3的概率是多少?问题2:2008年奥运会期间,某厂商为推销其生产的福娃产品,特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于10,可获得一套福娃玩具。

高中数学-《几何概型》教案、教学设计、简案

高中数学-《几何概型》教案、教学设计、简案

《几何概型》教案、教学设计、简案一、说教材《几何概型》是在学生已经学习了古典概型的基础上,学习的另一类等可能概型,是对古典概型内容的进一步拓展,为解决实际问题提供了一种新的模型,因此本课在在教材中起到了承上启下的作用。

二、教学目标理解几何概型的概念,会用几何概型概率公式求解随机事件的概率,了解古典概型与几何概型的不同体会数学结合的数学思想。

三、教学重难点【教学重点】理解几何概型的概念,会用几何概型概率公式求解随机事件的概率。

【教学难点】了解古典概型与几何概型的不同四、教学方法用启发式教学法,讨论引导法、练习法五、教学过程(一)、复习导入通过问题设疑引导学生回顾古典概型的内容,并通过例题的对比,提出问题,激发学生的学习兴趣和求知欲望,并引出几何概型。

引例:1.在区间[0,10]上任取一个整数,则不大于3的概率为?。

2.在区间[0,10]上任取一个实数,则不大于3的概率为?。

问题:1、本题中基本事件是指什么?其个数分别是多少?2、基本事件是否等可能?3、a例与b例分别可以建立什么模型?如何求解(二)、探究新知1、提出问题、合作探究通过多媒体播放一段转盘游戏视频,在多媒体上展示问题:当指针指向B区域甲获胜,否则乙获胜,在两种情况下,分别求甲获胜的概率是多少?开展小组小组讨论活动,引出几何概型的概念。

2、归纳总结,引出公式学生自主活动,初步总结几何概型概率求解公式。

老师验证完善,最终得出几何概型概率求解公式。

3、掌握公式,解决问题通过多媒体展示例1。

请两位学生上黑板板演,并与学生一起对题目进行分析并验证,得出结论。

(三)、巩固练习学生把导入部分的问题进行解决,请两位学生进行板演,对古典概型与几何概型通过例题进行对比。

(四)、课堂小结师生互动总结本课,我会请学生自由发言谈谈本节课的收获与体会,进行适当的总结与补充。

(五)、布置作业采用分层作业,满足不同基础水平学生的需要,能够使不同的学生在数学上得到不同的发展,导学案基础题,学有余力的学生可以选做导学案上的提高题。

高中数学新人教版B版精品教案《3.3.1 几何概型》

高中数学新人教版B版精品教案《3.3.1 几何概型》

几何概型教学设计一、教学内容分析1教材的内容及地位“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。

《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。

2教学重点1理解几何概型的定义、特点。

2会用公式计算几何概型概率。

3理解几何概型和古典概型的区别。

3教学难点在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度,通过数学建模解决实际问题。

二、教学目标分析1通过师生共同试验探究,体会数学知识的形成,正确理解几何概型的概念,会根据古典概型与几何概型的区别与联系来判别概率模型。

2会利用公式求简单的几何概型的概率问题,体会数学知识与现实世界的联系,培养逻辑推理。

3会用类比的方法学习新知识,提高学生的解题分析能力,培养学生从有限向无限探究的意识。

三、学生学情分析学生通过古典概型的学习初步形成了解决概率问题的思维模式,但不会很成熟,学生在学习本节课时容易对几何概型概念理解不清,与古典概型相混淆。

另外,在解决几何概型问题时,几何概型的判别问题应该不大,但几何度量的选择需要特别重视,在教学中,应引导学生发现其中的规律特征,找出正确的几何测度方式去分析解决问题。

另外,授课班级为理科宏志班,但了解到本班数学成绩偏差,因此选题均为中档题,适宜学生自己分析解决,实现学生主体地位。

四、教学策略分析1、教学方法:本节课采用贯穿类比思想,以引导发现为主的教学方法,以归纳启发式作为教学模式2、学法指导:通过小组合作试验、交流,类比归纳,让学生在学习中学会怎样发现问题、分析问题、解决问题。

3、板书设计(一)知识回顾:问题1:古典概型的两个特点是什么?问题2:计算公式是什么?古典概型的特点及其概率公式:(1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学新课程创新教学设计案例几何概型
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
30 几何概型
教材分析
和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.
教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.
这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.
教学目标
1. 通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用.
2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.
3. 通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.
任务分析
在这节内容中,介绍几何概型主要是为了更广泛地满足随机模拟的需要,因此,教学重点是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.有条件的学校可以让学生用一种统计软件统计模拟的结果.
教学设计
一、问题情境
如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.
问题:在下列两种情况下分别求甲获胜的概率.
二、建立模型
1. 提出问题
首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B与N的顺序,结果是否发生变化(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).
题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.
注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.
(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积).
2. 引导学生讨论归纳几何概型定义,教师明晰———抽象概括
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
在几何概型中,事件A的概率的计算公式如下:
3. 再次提出问题,并组织学生讨论
(1)情境中两种情况下甲获胜的概率分别是多少
(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.
(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于
10min的概率.
通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.
三、解释应用
[例题]
1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.
分析:我们有两种方法计算事件的概率.
(1)利用几何概型的公式.
(2)利用随机模拟的方法.
解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以
解法2:设X,Y是0~1之间的均匀随机数.X+表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间.如果Y+7>X+,即Y>X-,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).
教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.
2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.
解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即
假设正方形的边长为2,则
由于落在每个区域的豆子数是可以数出来的,所以
这样就得到了π的近似值.
另外,我们也可以用计算器或计算机模拟,步骤如下:
(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;
(2)经平移和伸缩变换,a=(a1-)*2,b=(b1-)*2;
(3)数出落在圆内a2+b2<1的豆子数N1,计算(N代表落在正方形中的豆子数).
可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.
本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.
[练习]
1. 如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域.
2. 利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积.
3. 画一椭圆,让学生设计方案,求此椭圆的面积.
四、拓展延伸
1. “概率为数‘0’的事件是不可能事件,概率为1的事件是必然事件”,这句话从几何概型的角度还能成立吗
2. 你能说一说古典概型和几何概型的区别与联系吗
3. 你能说说频率和概率的关系吗
点评
这篇案例设计完整,整体上按知识难易逐渐深入,同时充分调动了学生的积极性,以学生之间互动为主,教师引导为辅.例题既有深化所学知识的,又有应用所学知识的.“拓展延伸”既培养了学生的思维能力,又有利于学生从总体上把握这节课所学的知识.。

相关文档
最新文档