高中数学必修常考题型等差数列优选稿
高中数学必修五-等差数列
等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。
人教版高三数学必修五《等差数列》评课稿
人教版高三数学必修五《等差数列》评课稿一、教材内涵及重点难点分析1. 教材内涵《等差数列》是高中数学必修五教材中的重要章节之一,主要包括等差数列的定义、性质、通项公式、求和公式以及等差数列应用等内容。
2. 重点内容•等差数列的定义:解释等差数列的概念,理解首项、公差和项数的意义。
•等差数列的性质:掌握等差数列的常见性质,如公差的相等性、前后项差值的相等性等。
•等差数列的通项公式:掌握推导等差数列通项公式的方法,能够灵活运用通项公式求解相关问题。
•等差数列的求和公式:了解等差数列求和公式的推导过程,掌握求和公式的应用方法。
•等差数列的应用:应用等差数列解决实际问题,如找规律、推导公式、计算累计人数等。
3. 难点分析•掌握等差数列通项公式的推导方法;•灵活运用等差数列求和公式;•结合实际问题求解等差数列的应用题。
二、教学目标和要求1. 教学目标•理解等差数列的概念,能够应用等差数列的相关术语;•掌握等差数列通项公式的推导过程,能够灵活运用通项公式求解问题;•掌握等差数列求和公式的应用方法,能够计算等差数列的累加和;•能够结合实际问题运用等差数列解决相应的应用题。
2. 教学要求•学生能够准确理解等差数列的概念和相关术语;•学生具备基本的代数运算能力,能够进行简单的方程和不等式的变形;•学生能够运用等差数列的相关公式解决基本的数学问题;•学生具备一定的应用问题分析和解决能力。
三、教学内容和教学步骤1. 教学内容•等差数列的定义和性质;•等差数列的通项公式;•等差数列的求和公式;•等差数列的应用。
2. 教学步骤步骤一:导入与引导•介绍等差数列的定义,引导学生理解等差数列的概念;•解释等差数列的相关术语,如首项、公差、项数等;•提出一个关于等差数列的问题,激发学生思考和讨论。
步骤二:讲解和示范•通过示例,讲解等差数列的性质,如公差的相等性、前后项差值的相等性等;•推导等差数列通项公式的过程,引导学生理解通项公式的含义和应用方法;•演示运用通项公式求解等差数列相关问题的步骤。
高中数学必修5等差数列知识点总结和题型归纳
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。
等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。
—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。
≤d<3 D.<d≤36、。
在数列中,,且对任意大于1的正整数,点在直上,则=_____________。
最新高一数学知识(必修5)专题精讲附解答: 等差数列
专题等差数列【知识导图】【目标导航】1.理解等差数列的概念;2.掌握等差数列的判定方法;3.掌握等差数列的通项公式及等差中项的概念,并能简单应用.4.记住等差数列的一些常见性质;5.会用等差数列的性质解答一些简单的等差数列问题.【重难点精讲】重点一、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.若公差d=0,则这个数列为常数列.重点二、等差数列的递推公式与通项公式已知等差数列{a n}的首项为a1,公差为d,则有:递推公式通项公式a n -a n -1=d (n ≥2)a n =a 1+(n -1)d重点三、等差中项 如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即A =a +b 2. 重点四、等差数列{a n }的一些简单性质(1)对于任意正整数n 、m 都有a n -a m =(n -m )d .(2)对任意正整数p 、q 、r 、s ,若p +q =r +s ,则a p +a q =a r +a s .特别地对任意正整数p 、q 、r 若p +q =2r ,则a p +a q =2a r .(3)对于任意非零常数b ,若数列{a n }成等差,公差为d ,则{ba n }也成等差数列,且公差为bd .(4)若{a n }与{b n }都是等差数列,c n =a n +b n ,d n =a n -b n 则{c n },{d n }都是等差数列.(5)等差数列{a n }的等间隔的项按原顺序构成的数列仍成等差数列.如a 1,a 4,a 7,…,a 3n -2,…成等差数列. 重点五、等差数列的单调性等差数列{a n }的公差为d ,则当d =0时,等差数列{a n }是常数列,当d <0时,等差数列{a n }是单调递减数列;当d >0时,等差数列{a n }是单调递增数列.【典题精练】考点1、等差数列的判断与证明 例1.已知数列{}n a 中,135a =,112n n a a -=- ()*2,n n N ≥∈,数列{}nb 满足11n n b a =-()*n N ∈。
高中数学选择性必修二 精讲精炼 4 等差列的前n项和公式(精讲)(含答案)
4.2.2 等差数列的前n项和公式(精讲)考点一等差数列基本量计算【例1】(2021·全国高二课时练习)已知等差数列{a n }中, (1)131,22a d ==-,15n S =-,求n 及n a ;(2)115121022n n a ,a ,S ==-=-,求d . 【答案】(1)124n n ,a ==-;(2)171-.【解析】(1)∵()13115222n n n S n -⎛⎫=⨯+-⨯=- ⎪⎝⎭,整理得27600n n --=,解得12n =或5n =-(舍去), ()1231121422a ⎛⎫=+-⨯-=- ⎪⎝⎭.∵12124n n ,a a ===-.(2)由1()(1512)102222n n n a a n S +-===-,解得4n =. 又由()11n a a n d +-=,即()512141d -=+-,解得171d =-. 【一隅三反】1.(2021·全国高二课时练习)在等差数列{}n a 中. (1)156a =,32n a =-,5n S =-,求n 和d ; (2)14a =,8172S =,求8a 和d ;(3)已知2d =,11n a =,35n S =,求1a 和n . (4)已知742S =,510n S =,345n a -=,求n .【答案】(1)15n =,16d =-;(2)839a =,5d =;(3)153n a =⎧⎨=⎩或171n a =⎧⎨=-⎩;(4)20 .【解析】(1)由题意得()15352262n n n n S a a ⎛⎫=+=-=- ⎪⎝⎭,解得15n =, 又15531462a d =+=-,解得:16d =-;(2)由已知得()()818888417222S a a a =+=+=, 解得:839a =,又因为84739a d =+=,所以5d =;(3)由()()11121112352n n a a n n n S na ⎧=+-⨯=⎪⎨-=+⨯=⎪⎩,整理可得:212350n n -+=, 解得:153n a =⎧⎨=⎩或171n a =⎧⎨=-⎩;(4)()1747477274222a a a S a +⨯====,解得:46a =,所以()()()143645510222n n n n a a n a a n S -+++====, 解得:20n =.2.(2021·全国高二专题练习)已知等差数列{a n }中, (1)112a =,420S =,求6S ; (2)11a =,512n a =-,1022n S =-,求d . 【答案】(1)48;(2)-171.【解析】1)()140441242S a d -=+=,因为112a =,∵3d =.故()()16661661166348222S a d --=+=⨯+⨯=. (2)由()()151********n n n a a n S +-+===-,解得4n =,又由()11n a a n d +-=,即512141()d -=+-,解得171d =-. 3.(2021·全国)已知{}n a 是等差数列,n S 是其前n 项和. (1)若21a =-,1575S =,求n a 与n S ;(2)若1234124a a a a +++=,123156n n n n a a a a ---+++=,210n S =,求项数n .【答案】(1)3n a n =-,252n n nS -=;(2)6n =.【解析】(1)设等差数列{}n a 的公差为d ,根据题意可得211511151415752a a d S a d =+=-⎧⎪⎨⨯=+=⎪⎩, 解得12,1a d =-=,所以()2113n a n n =-+-⨯=-,()2152122n n n n nS n --=-+⨯=. (2)由题意,数列{}n a 是等差数列,其前n 项和为n S , 因为1234124a a a a +++=,123156n n n n a a a a ---+++=,由等差数列的性质,可得()()112341234n n n n n a a a a a a a a a a ---+=+++++++124156280=+=,解得170n a a +=,又由210n S =,所以()17021022n n n nS a a =+=⨯=,解得6n =. 考点二 等差数列前n 项和与中项性质【例2】(1)(2021·全国高二课时练习)在等差数列{a n }中,若S 10=120,则a 1+a 10的值是( ) A .12 B .24 C .36D .48(2)(2021·全国高二专题练习)设n S 是等差数列{}n a 的前n 项和,918S =,430(9)n a n -=>,已知336n S =,则n 的值为( ) A .18B .19C .20D .21【答案】(1)B(2)D 【解析】(1)由S 10=11010()2a a +,得a 1+a 10=101202455S ==,故选:B (2)由等差数列的性质可得19959()9182a a S a +===,解得52a =,故5432n a a -+=, 而154()()1633622n n n n a a nS a a n -+==+==,解得21n =,故选:D . 【一隅三反】1.(2021·湖南高二学业考试)等差数列{}n a 中,376a a +=,则{}n a 的前9项和等于( ) A .-18 B .27C .18D .-27【答案】B 【解析】()()19397999627222a a a a S ++⨯====.故选:B 2.(2021·全国高二课时练习)已知等差数列{a n }中,22383829a a a a ++=,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15【答案】D【解析】由22383829a a a a ++=得2839()a a +=,因为0n a <,所以383a a +=-, 所以110381010()10()10(3)15222a a a a S ++⨯-====-.故选:D 3.(2021·六盘山高级中学高二月考(理))设等差数列{}n a 的前n 项和为,n S 若68,a a 是方程2650x x -+=的两根,则13S =( ) A .39 B .52C .45D .72【答案】A【解析】由题可得,68762a a a +==,所以73a =,即1371339S a ==.故选:A .4.(2021·全国高二课时练习)已知等差数列{}n a 的前n 项和为n S .若1m ,且2110m m m a a a -++-=,2138m S -=,则m =( ) A .38 B .20 C .10 D .9【答案】C【解析】根据等差数列的性质可得112m m m a a a -++=.∵2110m m ma a a -++-=,∵0m a =或2m a =. 若0m a =,显然()212138m m S m a -=-=不成立,∵2m a =. ∵()212138m m S m a -=-=,解得10m =. 故选:C .5.(2021·广东潮阳·高二期末)已知等差数列{}n a 的前n 项和为n S ,11a =,若1118m m m a a a +-++=,且28m S =,则m 的值为( ) A .7 B .8C .14D .16【答案】B【解析】因为{}n a 是等差数列,所以11318m m m m a a a a -+++==,解得:6m a =, 所以()116()2822m m m m a a S ++===,解得:8m =. 故选:B .考点三 等差数列前n 项和的最值【例3】(1)(2021·全国高二课时练习)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( ) A .21B .20C .19D .18(2)(2021·全国高二课时练习)设等差数列{a n }的前n 项和为S n ,若a 11-a 8=3,S 11-S 8=3,则使a n >0的最小正整数n 的值是( ) A .8B .9C .10D .11(3)(2021·全国高二单元测试)在等差数列{a n }中,a 8>0,a 4+a 10<0,则数列{a n }的前n 项和S n 中最小的是( )A .S 4B .S 5C .S 6D .S 7【答案】(1)B(2)C(3)C【解析】(1)∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d , ∵99-105=3d .∵d =-2.又∵a 1+a 3+a 5=3a 1+6d =105,∵a 1=39. ∵S n =na 1+(1)2n n -d =-n 2+40n =-(n -20)2+400. ∵当n =20时,S n 有最大值. 故选:B.(2)设等差数列{a n }的公差为d ,由S 11-S 8=3,得a 11+a 10+a 9=3,即3a 10=3,解得a 10=1, 于是得a 1+9d =1,而a 11-a 8=3d =3,即d =1,则有a 1=-8, 从而得等差数列{a n }的通项公式为:a n =-9+n , 由-9+n >0得n >9,而n 是正整数,则min 10n =, 所以使a n >0的最小正整数n 的值是10.故选:C (3)等差数列{a n }中,a 8>0,a 4+a 10=2a 7<0, 故a 7<0,870d a a =->7n ∴≤时,有0n a <,8n ≥时,有0n a >所以数列{a n }的前n 项和S n 中最小的是7S . 故选:D 【一隅三反】1.(2021·全国高二课时练习)已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( ) A .8 B .9 C .10 D .11【答案】B【解析】设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∵-26+7d -26+12d =5,解得d =3,∵22(1)35535530252632222624n n n S n n n n -⎛⎫=-+⨯=-=--⎪⎝⎭,∵n 为正整数,∵{a n }的前n 项和S n 取最小值时,n =9.故选:B .2.(2021·全国高二专题练习)已知n S 为等差数列{}n a 的前n 项和,10S <,212520S S +=,则n S 取最小值时,n 的值为( ) A .11 B .12 C .13 D .14【答案】A【解析】10S <,212520S S +=,∴公差0d >.∴11212025242(21)25022a d a d ⨯⨯⨯+++=, 1677200a d ∴+=,67072067067<<+,1116767067720067737a d a d a d ∴+<+=<+,111267067a a ∴<<,即11120a a <<n S ∴取最小值时,11n =.故选:A .3.(2021·全国高二专题练习)数列{}n a 的前n 项和232n S n n =-,则当2n 时,下列不等式成立的是( ) A .1n n S na na >> B .1n n S na na >> C .1n n na S na >> D .1n n na S na >>【答案】C【解析】数列{}n a 的前n 项和232n S n n =-,11321a S ∴==-=. 当2n 时,22132[3(1)2(1)]54n n n a S S n n n n n -=-=-----=-, 故数列{}n a 的通项公式为54n a n =-.故数列{}n a 是递减的等差数列,且公差等于4-,故当2n 时有112nn a a a a +>>, 再由1()2n n n a a S +=可得1n n na S na >>, 故选:C .4(2021·全国高二专题练习)已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .18B .19C .20D .21【答案】C【解析】设{}n a 的公差为d ,由题意得135********d a a a a d a a ++++==++,即1235a d +=,∵ 2461113599a a a a d a d a d ++=+++++=,即1333a d +=,∵由∵∵联立得139a =,2d =-,22(1)39(2)40(20)4002n n n S n n n n -∴=+⨯-=-+=--+, 故当20n =时,n S 取得最大值400. 故选:C .5.(2021·全国高二专题练习)已知等差数列{a n }的前n 项和是S n ,若S 15>0,S 16<0,则S n 的最大值是( ) A .S 1 B .S 7 C .S 8 D .S 15【答案】C【解析】∵等差数列{a n }的前n 项和为S n ,且S 15>0,S 16<0,()115151502a a S ⨯+∴=>,∵115820a a a +=>,()116161602a a S ⨯+∴=<,∵116890a a a a +=+<, ∵890,0a a ><, 980d a a =-<所以在数列{}n a 中,当9n <时,0n a >,当9n ≥时,0n a <, 所以当n =8时,S n 最大, 故选:C考点四 等差数列前n 项和的性质【例4】(1)(2021·河南高二月考)记等差数列{}n a 的前n 项和为n S ,已知55S =,1521S =,则10S =( ) A .9B .10C .12D .13(2)(2021·全国高二专题练习)等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有n n S T =1n n +,则77a b 等于( )A .34B .56C .910D .1314 (3)(2021·全国高二课时练习)设等差数列{}n a 的前n 项和为n S ,若20212020220212020S S-=,则数列{}n a 的公差d 为( ) A .1B .2C .3D .4【答案】(1)C(2)D(3)D【解析】(1)因为n S 是等差数列{}n a 的前n 项, 由等差数列前n 项和的性质可知: 5S ,105S S -,1510S S -成等差数列,所以()()105515102S S S S S -=+-,即()()101025521S S -=+-,解得:1012S =, 故选:C.(2)∵S 13=11313()2a a +=13a 7,T 13=11313()2b b +=13b 7,∵713713a S b T ==1314.故选:D.(3)由等差数列的性质,知n S n ⎧⎫⎨⎬⎩⎭为等差数列.又()112n n n S na d -=+,所以112n S n a d n -=+,则数列{}n a 的公差为数列n S n ⎧⎫⎨⎬⎩⎭的公差的2倍, 而n S n ⎧⎫⎨⎬⎩⎭的公差为20212020220212020S S -=,所以数列{}n a 的公差为4,故选:D .【一隅三反】1(2021·全国高二专题练习)设S n 是等差数列{a n }的前n 项和,若53a a =59,则95S S 等于( )A .1B .-1C .2D .12【答案】A【解析】95S S =19159()25()2a a a a ++=5395a a =1.故选:A. 2.(2021·河南高二月考)记等差数列{}n a 与{}nb 的前n 项和分别为n S 和n T ,若123n n S n T n +=+,则105510a b a b =( )A .8281B .8182C .4241D .4142【答案】C【解析】因为()()1191011919101191911919191202192193412a a a a a S b b b T b b +++=====+⨯++,()()1951995199199911029293212a a a a a S b b b T b b+++=====+⨯++,可得552110b a =,所以105510202142411041a b a b =⨯=, 故选:C.3.(2021·云南省楚雄天人中学高二月考(理))等差数列{}n a 中,n S 表示其前n 项和,若10100S =,20110S =,则30S =( ) A .-80 B .120 C .30 D .111【答案】C【解析】因为等差数列{}n a 中,n S 表示其前n 项和,所以1020103020,,S S S S S --成等差数列,即()30100,10,110S -成等差数列, 所以()3020110100S =-+,解得3030S = 故选:C4.(2021·南昌市豫章中学高二开学考试(理))已知等差数列{}n a 的前n 项和为n S ,且111n nS S n n+-=+,416S =,则1a =( ) A .1 B .2 C .3 D .4【答案】A【解析】由等差数列{}n a 的前n 项和为1()2n n n a a S +=,可得1112122n n n n S S a a dd n n ++--===⇒=+, 又由414342162S a ⨯=+⨯=,解得11a =. 故选:A.5.(2021·辽宁抚顺·高二期末)设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517SS =( ) A .2B .1-C .1D .0.5【答案】C【解析】因为在等差数列{}n a 中,891715a a =, 所以1151511588117171179915()15()152152117()17()172172a a S a a a a a a S a a a a ++⨯====⋅=++⨯, 故选:C考点五 含有绝对值的求和【例5】(2021·全国高二专题练习)若数列{}n a 的前n 项和是242n S n n =-+,则1210a a a ++=⋯+________.【答案】66【解析】因为242n S n n =-+当1n =时,111421a S ==-+=-;当2n ≥时,2215[()4211(2]2)4n n n a S S n n n n n -=-=----=+--+,所以20a <,30a >,40a >,. 故()()212012101210410221166a S a a a a ++=++=+⋯+-⨯++=故答案为:66【一隅三反】1.(2021·福建省连城县第一中学高二月考)(多选)已知公差为d 的等差数列{}n a ,n S 为其前n 项和,下列说法正确的是( )A .若90S <,100S >,则6a 是数列{}n a 中绝对值最小的项B .若3614S S =,则61247S S = C .若18a =,42a =,则12832a a a +++=D .若48a a =,0d ≠,则110S =【答案】CD 【解析】对于A :因为{}n a 为等差数列,且91000S S <⎧⎨>⎩,所以1911000a a a a +<⎧⎨+<⎩,即55600a a a <⎧⎨+>⎩, 所以65||a a >,即5a 是数列{}n a 中绝对值最小的项. 故选项A 错误;对于B :因为{}n a 为等差数列, 所以3S ,63S S -,96S S -,129S S -为等差数列, 设3S x =,由3614S S =得:64S x =, 故x ,3x ,94S x -,129S S -为等差数列 解得1216S x =, 所以61241164S x S x ==. 故选项B 错误;对于C :因为{}n a 为等差数列,且18a =,42a =, 所以36d =-,2d =-,则82(1)210n a n n =--=-+.则 128||||||a a a +++8642024632=+++++++=.故选项C 正确;对于D :因为{}n a 为等差数列,且48||||a a =,0d ≠, 所以48a a =-,480a a +=, 则481111111()11()022a a a a S ++===. 故选项D 正确;故选:CD.2.(2021·全国高二专题练习)已知等差数列{}n a 中,158a a +=,42a =.(1)求数列{}n a 的通项公式;(2)设123||||||||n n T a a a a =+++⋯+,求n T .【答案】(1)102n a n =-;(2)229,5940,5n n n n T n n n ⎧-=⎨-+>⎩. 【解析】(1)等差数列{}n a 中,158a a +=,42a =, ∴1124832a d a d +=⎧⎨+=⎩,解得18a =,2d =-, 8(1)(2)102n a n n ∴=+-⨯-=-.(2)由1020n a n =-,得5n ,50a =,620a =-<,123||||||||n n T a a a a =+++⋯+,∴当5n 时,2(1)8(2)92n n n T n n n -=+⨯-=-. 当5n >时,22(1)[8(2)]2(955)9402n n n T n n n -=-+⨯-+⨯-=-+. ∴229,5940,5n n n n T n n n ⎧-=⎨-+>⎩. 3.(2021·河南高二月考)已知数列{}n a 满足117a =-,121n n na a a +=+,*N n ∈. (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列1n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和n T . 【答案】(1)证明见解析;(2)228,14,832, 5.n n n n T n n n ⎧-+≤≤=⎨++≥⎩. 【解析】(1)由121n n n a a a +=+,可得121112n n n n a a a a ++==+即1112n n a a +-=. 因为117a =-,所以117a =-, 故数列1n a ⎧⎫⎨⎬⎩⎭是以7-为首项,2为公差的等差数列. (2)由(1)可得()171229nn n a =-+-⨯=-, 设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则()272982n n n S n n -+-==-.当14n ≤≤时,10na <, 212121111118n n n n T S n n a a a a a a ⎛⎫=+++=-+++=-=-+ ⎪⎝⎭; 当5n ≥时,10na >, 14514511111111n n nT a a a a a a a a ⎛⎫=++++=-+++++ ⎪⎝⎭ ()()2244216328328n S S S n n n n =-+-=--=-+-, 综上所述228,14832,5n n n n T n n n ⎧-+≤≤=⎨++≥⎩。
高中数学选择性必修二 4 2 1 等差数列的概念(精讲)(含答案)
4.2.1 等差数列的概念考点一 判断是否为等差数列【例1】(2020·上海高二课时练习)下列数列中,不是等差数列的是( ) A .1,4,7,10B .lg2,lg4,lg8,lg16C .54322,2,2,2D .10,8,6,4,2【答案】C【解析】根据等差数列的定义,可得:A 中,满足13n n a a +-=(常数),所以是等差数列;B 中,lg 4lg 2lg8lg 4lg16lg8lg 2---=-=(常数),所以是等差数列;C 中,因为453423222222-≠--≠,不满足等差数列的定义,所以不是等差数列;D 中,满足12n n a a +-=-(常数),所以是等差数列.故选:C.【一隅三反】1.(2019·山西应县一中期末(理))若{}n a 是等差数列,则下列数列中也成等差数列的是( )A .{}2naB .1n a ⎧⎫⎨⎬⎩⎭C .{}3n aD .{}n a【答案】C 【解析】A:22n+1n a -a =(a n +a n+1)(a n+1﹣a n )=d[2a 1+(2n ﹣1)d],与n 有关系,因此不是等差数列.B:n+1n 11-a a =n+1n -da a ⨯=[]11-d a +nd a +n-1d ⨯()() 与n 有关系,因此不是等差数列.C:3a n+1﹣3a n =3(a n+1﹣a n )=3d 为常数,仍然为等差数列;D: 当数列{a n }的首项为正数、公差为负数时,{|a n |}不是等差数列;故选:C 2.(2020·全国高一课时练习)已知下列各数列,其中为等差数列的个数为( ) ① 4,5,6,7,8,… ② 3,0,-3,0,-6,… ③ 0,0,0,0,… ④ 1234,,,,10101010… A .1 B .2C .3D .4【答案】C【解析】第一个数列是公差为1的等差数列.第二个数列是摆动数列,不是等差数列.第三个是公差为0的等差数列.第四个是公差为110的等差数列.故有3个等差数列,所以选C. 3.(2020·全国课时练习)已知数列{}n a ,c 为常数,那么下列说法正确的是( ) A .若{}n a 是等差数列时,不一定是等差数列B .若{}n a 不是等差数列时,一定不是等差数列C .若是等差数列时,{}n a 一定是等差数列 D .若不是等差数列时,{}n a 一定不是等差数列【答案】D【解析】当{}n a 是等差数列时,由等差数列的性质可知,一定是等差数列,A 错;对于数列{}n a :1,2,4,5,令,则为等差数列,B 错;当c 为0时, 0,0,0,0是等差数列,但{}n a 不是等差数列,C 错.故选D .考点二 求等差数列的项或通项【例2】(1)(2020·兴安县第三中学期中)由1a =4,3d =确定的等差数列{}n a ,当a n =28时,序号n 等于( ) A .9B .10C .11D .12(2)(2020·广西南宁三中开学考试)在单调递增的等差数列{}n a 中,若31a =,2434a a =,则1a =( ) A .1-B .12-C .0D .12【答案】(1)A (2)C【解析】(1)因为14a =,3d =,所以()1131n a a n d n =+-=+,所以3128n a n =+=,解得9n = 故选:A(2)因为{}n a 是等差数列,所以3121a a d =+=,()()11334a d a d ++=, 解得:12d =,10a =故选:C【一隅三反】1.(2020·江苏江都·邵伯高级中学月考)等差数列{}n a 中,37158a a a ++=,83a =,则9a =( )A .2B .5C .11D .13【答案】A【解析】因为37158a a a ++=,得13228a d +=①,又83a =,得173a d +=②,由①②得:1101a d =⎧⎨=-⎩,故9181082a a d =+=-=.故选:A.2.(2020·兴安县第三中学期中)在数列{}n a 中,1a =2,12n n a a +-=,则51a 的值为( ) A .96 B .98 C .100 D .102【答案】D【解析】因为1a =2,12n n a a +-=,所以数列{}n a 是以2为首项,2为公差的等差数列,所以2n a n =,所以51251102a =⨯=故选:D3.(2020·广西南宁三中开学考试)数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是( ) A .31n - B .32n + C .32n - D .31n +【答案】B【解析】因为13n n a a +-=,所以数列{}n a 是以5为首项,3为公差的等差数列,则()*53132,n a n n n N =+-=+∈.故选:B考点三 等差中项【例2】(1)(2020·全国高一课时练习)已知a =,b =a,b 的等差中项为( )A BCD (2)(2020·昆明市官渡区第一中学开学考试(文))已知0,0a b >>,并且111,,2a b成等差数列,则9a b +的最小值为_________. 【答案】(1)A (2)16【解析】(1)13a ==+,b ==,a b ∴的等差中项为122a b A +==⨯12=⨯= A.(2)由题可得:111a b +=,故1199(9)()1916a ba b a b a b b a+=++=+++≥ 【一隅三反】1.(2020·广东濠江·金山中学高一月考)在等差数列{} n a 中,若288a a +=,则()2375a a a +-=___________.【答案】60;【解析】在等差数列{}n a 中,288a a +=,28528a a a ∴+==,解得54a =,2237555()(2)64460a a a a a +-=-=-=.故答案为:602.(2020·全国其他(理))已知数列{}n a 为等差数列,若2533a a a +=,且4a 与72a 的等差中项为6,则5a =( ) A .0 B .1C .2D .3【答案】D【解析】设{}n a 的公差为d .数列{}n a 为等差数列,2533a a a +=,且4a 与72a 的等差中项为6,∴1111143(2)32(6)12a d a d a d a d a d +++=+⎧⎨+++=⎩,解得11a =-,1d =,5143a ∴=-+=.故选:D .3.(2019·兴安县第三中学期中)已知等差数列{}n a 的前三项为1,1,23a a a -++,则此数列的首项1a=______ . 【答案】1-【解析】依题意可得()()()12321a a a -++=+,解得0a =,故等差数列{}n a 的前三项为1,1,3-,所以11a =-故答案为:1-考点四 证明数列为等差数列【例4】(2019·全国高一课时练习)设数列{a n }满足当n >1时,a n =1114n n a a --+,且a 1=15.(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列;(2)a 1a 2是否是数列{a n }中的项?如果是,求出是第几项;如果不是,请说明理由. 【答案】(1)见证明;(2) a 1a 2是数列{a n }中的项,是第11项.【解析】(1)证明:根据题意a 1=15及递推关系a n ≠0.因为a n =1114n n a a --+.取倒数得111n n a a -=+4, 即111n n a a --=4(n >1),所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为5,公差为4的等差数列. (2)解:由(1),得1n a =5+4(n -1)=4n +1,141n a n =+. 又121111594541a a n =⨯==+,解得n =11. 所以a 1a 2是数列{a n }中的项,是第11项. 【一隅三反】1.(2020·全国高一课时练习)已知2()2x f x x =+,在数列{}n a 中,113a =,1()n n a f a -=*2,n n N ≥∈。
高中数学人教A版必修5《等差数列》PPT课件
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)
高中数学等差数列说课稿(通用8篇)
高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。
同时等差数列也为今后学习等比数列提供了学习比照的根据。
2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。
b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。
c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。
3、教学重点和难点重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。
学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
高中数学必修5等差数列精选题目(附答案)
高中数学必修5等差数列精选题目(附答案)1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的通项公式及前n 项和公式与函数的关系(1)a n =a 1+(n -1)d 可化为a n =dn +a 1-d 的形式.当d ≠0时,a n 是关于n 的一次函数;当d >0时,数列为递增数列;当d <0时,数列为递减数列.(2)数列{a n }是等差数列,且公差不为0⇔S n =An 2+Bn (A ,B 为常数). 已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)在等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *).特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *). (4)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d . (5)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(6)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12.(7)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.(8)若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (9)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n取得最大值S m ;若a 1<0,d >0,则满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .一、等差数列的基本运算1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .122.已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( ) A .3 B .7 C .9 D .10注:(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.3.(2019·开封高三定位考试)已知等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( )A .1B .2C .3D .4 4.已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )A .420B .340C .-420D .-3405.在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( ) A .12B .18C .24D .30二、等差数列的判定与证明6.已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求a n 的表达式.注: 等差数列的判定与证明方法 方 法 解 读适合题型 定义法对于任意自然数n (n ≥2),a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{an }是等差数列通项公式法a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法 验证S n =An 2+Bn (A ,B是常数)对任意的正整数n 都成立⇔{a n }是等差数列7.(2019·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .638.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.三、等差数列的性质与应用(一)等差数列项的性质9.已知在等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 2510.(2019·福建模拟)设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )A .2B .3C .4D .6(二)等差数列前n 项和的性质11.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27(三)等差数列前n 项和的最值12.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17注:1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .13.在等差数列{a n }中,若a 3=-5,a 5=-9,则a 7=( ) A .-12 B .-13 C .12D .1314.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .1315.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.巩固练习:1.在数列{a n }中,a 1=2,a n +1=a n +2,S n 为{a n }的前n 项和,则S 10等于( ) A .90 B .100 C .110D .1302.(2018·北京东城区二模)已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是( )A .30B .29C .28D .273.(2019·山西五校联考)在数列{a n }中,a n =28-5n ,S n 为数列{a n }的前n 项和,当S n 最大时,n =( )A .2B .3C .5D .64.(2019·广东中山一中统测)设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-665.(2018·南昌模拟)已知等差数列{a n }的前n 项和为S n ,且S 5=50,S 10=200,则a 10+a 11的值为( )A.20 B.40C.60 D.806.(2019·广州高中综合测试)等差数列{a n}的各项均不为零,其前n项和为S n.若a2n+1=a n+2+a n,则S2n+1=()A.4n+2 B.4nC.2n+1 D.2n7.已知等差数列5,427,347,…,则前n项和S n=________.8.已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=________.9.等差数列{a n}中,已知a5>0,a4+a7<0,则{a n}的前n项和S n的最大值为________.10.在等差数列{a n}中,公差d=12,前100项的和S100=45,则a1+a3+a5+…+a99=________.11.(2018·全国卷Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.12.(2019·山东五校联考)已知等差数列{a n}为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.参考答案:1.[解析]设等差数列{a n}的公差为d,由3S3=S2+S4,得3(3a1+3d)=2a1+d +4a1+6d,即3a1+2d=0.将a1=2代入上式,解得d=-3,故a5=a1+(5-1)d =2+4×(-3)=-10.2.解:因为S4=a1+a2+a3+a4=4a2+2d=22,d=(22-4a2)2=3,a1=a2-d=4-3=1,a n=a1+(n-1)d=1+3(n-1)=3n-2,由3n-2=28,解得n=10.3.解析:选B设等差数列{a n}的公差为d,则由题意,得⎩⎪⎨⎪⎧a 1+a 1+4d =10,4a 1+4×32×d =16,解得⎩⎨⎧a 1=1,d =2,故选B.4.解析:选D 设数列{a n }的公差为d ,则a 3=a 2+d =d ,a 5=a 2+3d =3d ,由a 3·a 5=12得d =±2,由a 1>0,a 2=0,可知d <0,所以d =-2,所以a 1=2,故S 20=20×2+20×192× (-2)=-340,选D.5.解析:选C 设等差数列{a n }的首项为a 1,公差为d , 因为a 5+a 10=12, 所以2a 1+13d =12,所以3a 7+a 9=3(a 1+6d )+a 1+8d =4a 1+26d =2(2a 1+13d )=2×12=24. 6.[解] (1)证明:因为a n =S n -S n -1(n ≥2), 又a n =-2S n ·S n -1,所以S n -1-S n =2S n ·S n -1,S n ≠0. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n=1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又因为a 1=12,不适合上式. 所以a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.7.解析:选B 由S n =an 2+bn (a ,b ∈R )可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.8.证明:∵a n =2-1a n -1(n ≥2),∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.9.[解析]因为2a 1·2a 2·…·2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4, 所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20.选B.10.解:由a 5=2b 5,得a 5b 5=2,所以S 9T 9=9(a 1+a 9)29(b 1+b 9)2=a 5b 5=2,故选A.11.[解析] 由{a n }是等差数列, 得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B. 12.[解析] ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225. ∴当n =15时,S n 取得最大值.13.解析:选B 法一:设公差为d ,则2d =a 5-a 3=-9+5=-4,则d =-2,故a 7=a 3+4d =-5+4×(-2)=-13,选B.法二:由等差数列的性质得a 7=2a 5-a 3=2×(-9)-(-5)=-13,选B. 14.解析:选C 因为a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.15.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36,又S n =n (a 1+a n )2=324,∴18n =324,∴n =18.练习:1.解析:选C 由递推公式可知该数列是公差为2的等差数列,S 10=10×2+10×92×2=110.故选C.2.解析:选C 由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7(a 1+a 7)2=7×2a 42=7×4=28.故选C.3.解析:选C ∵a n =28-5n ,∴数列{a n }为递减数列. 令a n =28-5n ≥0,则n ≤285,又n ∈N *,∴n ≤5.∵S n 为数列{a n }的前n 项和,∴当n =5时,S n 最大.故选C.4.解析:选D ∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列, ∴S n =n [-1+(-2n +1)]2=-n 2,∴S n n =-n 2n =-n ,∴数列⎩⎨⎧⎭⎬⎫S n n 是以-1为首项,-1为公差的等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为11×(-1)+11×102×(-1)=-66,故选D.5.解析:选D 设等差数列{a n }的公差为d , 由已知得⎩⎪⎨⎪⎧S 5=5a 1+5×42d =50,S 10=10a 1+10×92d =200,即⎩⎪⎨⎪⎧a 1+2d =10,a 1+92d =20,解得⎩⎨⎧a 1=2,d =4.∴a 10+a 11=2a 1+19d =80.故选D.6.解析:选A 因为{a n }为等差数列,所以a n +2+a n =2a n +1,又a 2n +1=a n +2+a n ,所以a 2n +1=2a n +1.因为数列{a n }的各项均不为零,所以a n +1=2,所以S 2n +1=(a 1+a 2n +1)(2n +1)2=2×a n +1×(2n +1)2=4n +2.故选A.7.解析:由题知公差d =-57,所以S n =na 1+n (n -1)2d =514(15n -n 2). 8.解析:∵a 3+a 5=2a 4,∴a 4=0.∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.9.解析:∵⎩⎨⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎨⎧a 5>0,a 6<0,∴S n 的最大值为S 5.10.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 11.解:(1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9.(2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16. 12.解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8, ∴⎩⎨⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8, ∴⎩⎨⎧a 1=2,d =-3或⎩⎨⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4, ∴S n =n (-4+3n -7)2=n (3n -11)2.。
高考等差数列专题及答案百度文库
一、等差数列选择题1.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( )A .48B .60C .72D .242.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .03.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45B .50C .60D .804.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n5.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1626.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S7.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24B .36C .48D .648.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .1519.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤B .6斤C .9斤D .12斤10.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .211.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=12.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .10013.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .614.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<15.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2116.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6B .7C .8D .1017.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0B .1C .2D .318.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项19.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .420.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-二、多选题21.题目文件丢失!22.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 23.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .424.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .325.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为826.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S += B .27S S =C .5S 最小D .50a =27.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列28.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <29.已知数列{}na 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+30.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.故选:A 2.A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--,令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 3.C 【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =1158158()15215156022a a a S a +⨯⨯====故选:C 【点睛】本题考查等差数列性质及前n 项和公式,属于基础题 4.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=, 故选:B. 5.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.6.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 7.B 【分析】利用等差数列的性质进行化简,由此求得9S 的值. 【详解】由等差数列的性质,可得345675520a a a a a a ++++==,则54a =19592993622a a aS +=⨯=⨯= 故选:B 8.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 9.C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 10.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得. 【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 11.B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 12.B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m +=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B. 13.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 14.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 15.B 【分析】由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得10a .【详解】()122n n a a n --=≥,且11a =,∴数列{}n a 是以1为首项,以2为公差的等差数列,通项公式为()12121n a n n =+-=-,10210119a ∴=⨯-=,故选:B. 16.D 【分析】由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭+++=⎧⎪⎨⎪⎩,即{1132024a d a d +-+=, 解得:{123a d =-=,51424310a a d ∴=+=-+⨯=.故选:D. 17.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 18.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 19.B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n n a a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43n n n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题 20.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C .二、多选题 21.无22.ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题. 23.BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2.∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 24.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 25.BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.26.BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 27.AC 【分析】 由题意可知112222n n nn a a a H n-+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n nn a a a H n-+++==,得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错,故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 28.BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负, 因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型. 29.ABD 【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果. 【详解】)211na=-得)211na+=,1=,即数列2=,公差为1的等差数列,2(1)11n n=+-⨯=+,∴22na n n=+,得28a=,由二次函数的性质得数列{}n a为递增数列,所以易知ABD正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.30.ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d=12,可得247-<d<﹣3.a1>0.利用S13=13a7<0.可得S n<0时,n的最小值为13.数列nnSa⎧⎫⎨⎬⎩⎭中,n≤6时,nnSa>0.7≤n≤12时,nnSa<0.n≥13时,nnSa>0.进而判断出D是否正确.【详解】∵S12>0,a7<0,∴()67122a a+>0,a1+6d<0.∴a6+a7>0,a6>0.∴2a1+11d>0,a1+5d>0,又∵a3=a1+2d=12,∴247-<d<﹣3.a1>0.S13=()113132a a+=13a7<0.∴S n<0时,n的最小值为13.数列nnSa⎧⎫⎨⎬⎩⎭中,n≤6时,nnSa>0,7≤n≤12时,nnSa<0,n≥13时,nnSa>0.对于:7≤n≤12时,nnSa<0.S n>0,但是随着n的增大而减小;a n<0,但是随着n的增大而减小,可得:nnSa<0,但是随着n的增大而增大.∴n=7时,nnSa取得最小值.综上可得:ABCD都正确.故选:ABCD.【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.。
人教A版高中数学选择性必修第二册4.2等差数列 经典例题及配套练习题
4.2 等差数列4.2.1等差数列的概念例1(1)已知等差数列*a n+的通项公式为a n=5−2n,求*a n+的公差和首项;(2)求等差数列8,5,2,…的第20项.分析:(1)已知等差数列的通项公式,只要根据等差数列的定义,由a n−a n;1=d即可求出公差d;(2)可以先根据数列的两个已知项求出通项公式,再利用通项公式求数列的第20项.解:(1)当n⩾2时,由*a n+的通项公式a n=5−2n,可得a n;1=5−2(n−1)=7−2n.于是d=a n−a n;1=(5−2n)−(7−2n)=−2.把n=1代入通项公式a n=5−2n,得a1=5−2×1=3.所以,*a n+的公差为−2,首项为3.(2)由已知条件,得d=5−8=−3.把a1=8,d=−3代入a n=a1+(n−1)d,得a n=8−3(n−1)=11−3n.把n=20代入上式,得a20=11−3×20=−49.所以,这个数列的第20项是−49.例2 −401是不是等差数列−5,−9,−13,……的项?如果是,是第几项?分析:先求出数列的通项公式,它是一个关于n的方程,再看−401是否能使这个方程有正整数解.解:由a1=−5,d=−9−(−5)=−4,得这个数列的通项公式为a n=−5−4(n−1)=−4n−1.令−4n−1=−401,解这个关于n的方程,得n=100.所以,−401是这个数列的项,是第100项.练习1.判断下列数列是否是等差数列.如果是,写出它的公差.(1)95,82,69,56,43,30;(2)1,1.1,1.11,1.111,1.1111,1.11111;(3)1,-2,3,-4,5,-6;(4)1,1112,56,34,23,712,12.【答案】(1)是等差数列,公差为−13;(2)不是等差数列;(3)不是等差数列;(4)是等差数列,公差为−112.【分析】根据等差数列的定义对(1)、(2)、(3)、(4)逐个分析即可求解.【详解】解:(1)由82−95=69−82=56−69=43−56=30−43=−13,即该数列从第二项起,每一项与前一项之差为同一个常数−13,所以由等差数列的定义知该数列为等差数列,公差为−13;(2)通过观察可知,1.1−1=0.1,1.11−1.1=0.01,⋯该数列从第二项起,每一项与前一项之差不是同一个常数,所以由等差数列的定义知该数列不是等差数列;(3)通过观察可知,−2−1=−3,3−(−2)=5,⋯该数列从第二项起,每一项与前一项之差不是同一个常数,所以由等差数列的定义知该数列不是等差数列;(4)由1112−1=56−1112=34−56=23−34=712−23=12−712=−112,即该数列从第二项起,每一项与前一项之差为同一个常数−112,所以由等差数列的定义知该数列为等差数列,公差为−112.2.求下列各组数的等差中项:(1)647和895;(2)−1213和2435.【答案】(1)771;(2)9215.【分析】由等差中项的定义直接求解即可.【详解】(1)设647和895的等差中项为a,则a=647:8952=771,故647和895的等差中项为771;(2)设−1213和2435的等差中项为b,则b=;1213:24352=9215,故−1213和2435的等差中项为9215.3.已知在等差数列*a n+中,a4+a8=20,a7=12.求a4.【答案】a4=6【分析】设等差数列的公差为d,由等差数列通项公式性质知a4+a8=2a6,求得a6=10,进而求得公差d,即可得解.【详解】设等差数列的公差为d,则在等差数列*a n+中,a 4+a 8=2a 6=20,∴a 6=10∴d =a 7−a 6=12−10=2 ∴a 4=a 7−3d =12−6=64.在7和21中插入3个数,使这5个数成等差数列. 【答案】10.5,14,17.5【分析】利用等差数列通项公式能求出插入的这3个数.【详解】解:∵在7和21之间插入3个数,使这5个数成等差数列, ∴ {a 1=7a 5=a 1+4d =21 ,解得d =3.5, ∴a 2=7+3.5=10.5, a 3=7+2×3.5=14, a 4=7+3×3.5=17.5,∴插入的这3个数为10.5,14,17.5.例3 某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值就会减少d (d 为正常数)万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价值的5%,设备将报废.请确定d 的取值范围.分析:这台设备使用n 年后的价值构成一个数列*a n +.由题意可知,10年之内(含10年),这台设备的价值应不小于(220×5%=)11万元;而10年后,这台设备的价值应小于11万元.可以利用*a n +的通项公式列不等式求解.解:设使用n 年后,这台设备的价值为a n 万元,则可得数列*a n +.由已知条件,得 a n =a n;1−d(n ⩾2).由于d 是与n 无关的常数,所以数列*a n +是一个公差为−d 的等差数列.因为购进设备的价值为220万元,所以a 1=220−d ,于是 a n =a 1+(n −1)(−d)=220−nd . 根据题意,得{a 10⩾11,a 11<11,即{220−10d ⩾11,220−11d <11,解这个不等式组,得19<d⩽20.9.所以,d的取值范围为19<d⩽20.9.例4已知等差数列*a n+的首项a1=2,公差d=8,在*a n+中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的等差数列*b n+.(1)求数列*b n+的通项公式.(2)b29是不是数列*a n+的项?若是,它是*a n+的第几项?若不是,说明理由.分析:(1)*a n+是一个确定的数列,只要把a1,a2表示为*b n+中的项,就可以利用等差数列的定义得出*b n+的通项公式;(2)设*a n+中的第n项是*b n+中的第c n项,根据条件可以求出n 与c n的关系式,由此即可判断b29是否为*a n+的项.解:(1)设数列*b n+的公差为d′.由题意可知,b1=a1,b5=a2,于是b5−b1=a2−a1=8.因为b5−b1=4d′,所以4d′=8,所以d′=2.所以b n=2+(n−1)×2=2n.所以,数列*b n+的通项公式是b n=2n.(2)数列*a n+的各项依次是数列*b n+的第1,5,9,13,…项,这些下标构成一个首项为1,公差为4的等差数列*c n+,则c n=4n−3.令4n−3=29,解得n=8.所以,b29是数列*a n+的第8项.例5 已知数列*a n+是等差数列,p,q,s,t∈N∗,且p+q=s+t.求证a p+a q=a s+a t. 分析:只要根据等差数列的定义写出a p,a q,a s,a t,再利用已知条件即可得证.证明:设数列*a n+的公差为d,则a p=a1+(p−1)d,a q=a1+(q−1)d,a s=a1+(s−1)d,a t=a1+(t−1)d.所以a p+a q=2a1+(p+q−2)d,a s+a t=2a1+(s+t−2)d.因为p+q=s+t,所以a p+a q=a s+a t.练习5.某体育场一角看台的座位是这样排列的:第1排有15个座位,从第2排起每一排都比前一排多2个座位.你能用a n表示第n排的座位数吗?第10排有多少个座位?【答案】a n=2n+13;a10=33【分析】可将每排座位数看成等差数列,列出通项公式.【详解】由条件可知,每排的座位数,看成等差数列,首项a1=15,d=2,则a n=15+(n−1)×2=2n+13,a10=2×10+13=33.综上可知,a n=2n+13,第10排的座位数a10=33个.6.画出数列a n={18,n=1a n;1−3,1<n≤6的图象,并求通过图象上所有点的直线的斜率. 【答案】图象见解析,−3【分析】由递推关系a n={18,n=1a n;1−3,1<n≤6,求出a n(1≤n≤6)值,然后再作出图象,在根据斜率公式即可求出通过图象上所有点的直线的斜率.【详解】根据递推关系a n={18,n=1a n;1−3,1<n≤6,可知a1=18,a2=15,a3=12,a4= 9,a5=6,a6=3,作出数列a n={18,n=1a n;1−3,1<n≤6的图象,如下图所示:通过图象上所有点的直线的斜率a6;a16;1=3;185=−3.7.在等差数列*a n+中,a n=m,a m=n,且n≠m,求a m;n.【答案】2n【分析】利用等差数列的通项公式,解出a1、d,代入a m;n即可. 【详解】设等差数列*a n+的公差为d则{a n=a1+(n−1)d=ma m=a1+(m−1)d=n ⇒{a1=m+n−1d=−1所以a m;n=a1+(m−n−1)d=m+n−1−m+n+1=2n8.已知数列*a n+,*b n+都是等差数列,公差分别为d1,d2,数列*c n+满足c n=a n+2b n.(1)数列*c n+是否是等差数列?若是,证明你的结论;若不是,请说明理由.(2)若*a n+,*b n+的公差都等于2,a1=b1=1,求数列*c n+的通项公式.【答案】(1)数列*c n+是等差数列,证明见解析;(2)c n=6n−3.【分析】(1)根据等差数列的定义即可证得结论;(2)由等差数列的通项公式运算即可得解.【详解】(1)数列*c n+是等差数列,证明:因为数列*a n+,*b n+都是等差数列,公差分别为d1,d2,所以a n=a1+(n−1)d1,b n=b1+(n−1)d2,又因为c n=a n+2b n=(a1+2b1)+(n−1)(d1+2d2),故c n:1−c n=,(a1+2b1)+n(d1+2d2)-−,(a1+2b1)+(n−1)(d1+2d2)-=d1+2d2,而c1=a1+2b1,所以数列*c n+是以a1+2b1为首项,d1+2d2为公差的等差数列.(2)由(1)知:数列*c n+是以a1+2b1为首项,d1+2d2为公差的等差数列,而c1=a1+2b1=3,d1+2d2=6,所以c n=3+6(n−1)=6n−3.9.已知一个无穷等差数列*a n+的首项为a1,公差为d.(1)将数列中的前m项去掉,其余各项组成一个新的数列,这个新数列是等差数列吗?如果是,它的首项和公差分别是多少?(2)取出数列中的所有奇数项,组成一个新的数列,这个新数列是等差数列吗?如果是,它的首项和公差分别是多少?(3)取出数列中所有序号为7的倍数的项,组成一个新的数列,它是等差数列吗?你能根据得到的结论作出一个猜想吗?【答案】(1)是等差数列,首项为a1+md,公差为d;(2)是等差数列,首项为首项为a1,公差为2d;(3)是等差数列,首项为a1+6d,公差为7d;猜想:等差数列每隔一定距离抽取一项后所组成的新数列仍是等差数列.【分析】(1)由题意可知,新的数列为:a m:1, a m:2, a m:3,⋯,可知新等差数列的首项及公差;(2)由题意可知,新的数列为:a1, a3, a5,⋯,a2n:1,⋯,可知新等差数列的首项及公差;(3)由题意可知,新的数列为:a7, a14, a21,⋯,a7n,⋯,可知新等差数列的首项及公差,进而得到猜想.【详解】(1)由题意可知,将无穷等差数列*a n+的前m项去掉,其余各项组成一个新的数列为:a m:1, a m:2, a m:3,⋯,这个新数列是等差数列,首项为a m:1=a1+md,公差为d.(2)由题意可知,取出无穷等差数列*a n+中的所有奇数项,组成一个新的数列为:a1, a3, a5,⋯,a2n:1,⋯,这个新数列是等差数列,首项为a1,公差为2d.(3)由题意可知,取出无穷等差数列*a n+中所有序号为7的倍数的项,组成一个新的数列为:a7, a14, a21,⋯,a7n,⋯,这个新数列是等差数列,首项为a7=a1+6d,公差为a14−a7=7d. 猜想:等差数列每隔一定距离抽取一项后所组成的新数列仍是等差数列.4.2.2等差数列的前n项和公式例6 已知数列*a n+是等差数列.(1)若a1=7,a50=101,求S50;(2)若a1=2,a2=52,求S10;(3)若a1=12,d=−16,S n=−5,求n.分析:对于(1),可以直接利用公式S n=n(a1:a n)2求和;在(2)中,可以先利用a1和a2的值求出d,再利用公式S n=na1+n(n;1)2d求和;(3)已知公式S n=na1+n(n;1)2d中的a1,d和S n,解方程即可求得n.解:(1)因为a1=7,a50=101,根据公式S n=n(a1:a n)2,可得S50=50×(7:101)2=2700.(2)因为a1=2,a2=52,所以d=12.根据公式S n=na1+n(n;1)2d,可得S10=10×2+10×(10;1)2×12=852.(3)把a1=12,d=−16,S n=−5代入S n=na1+n(n;1)2d,得−5=12n+n(n;1)2×.−16/.整理,得n2−7n−60=0.解得n=12,或n=−5(舍去).所以n=12.例7已知一个等差数列*a n+前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的首项和公差吗?分析:把已知条件代入等差数列前n项和的公式(2)后,可得到两个关于a1与d的二元一次方程.解这两个二元一次方程所组成的方程组,就可以求得a1和d.解:由题意,知S10=310,S20=1240.。
高考等差数列专题及答案百度文库
一、等差数列选择题1.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .552.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161B .155C .141D .1393.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4D .-44.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .95.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .856.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .1517.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60B .120C .160D .2408.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +9.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .32011.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( )A .(23)n -1 B .(23)n C .21n + D .12n + 12.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9B .12C .15D .1813.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .1314.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .815.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2216.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13B .26C .52D .5617.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+18.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2119.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7220.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸D .二丈二尺五寸二、多选题21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( )A .数列{}n a 的前n 项和为4n S n =B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 22.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >23.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =24.题目文件丢失!25.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .226.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.27.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项28.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅29.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0B.243 7d-<<-C.S n<0时,n的最小值为13D.数列nnSa⎧⎫⎨⎬⎩⎭中最小项为第7项30.公差为d的等差数列{}n a,其前n项和为n S,110S>,12S<,下列说法正确的有()A.0d<B.70a>C.{}n S中5S最大D.49a a<【参考答案】***试卷处理标记,请不要删除一、等差数列选择题1.D【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果.【详解】因为在等差数列{}n a中,若n S为其前n项和,65a=,所以()1111161111552a aS a+===.故选:D.2.B【分析】画出图形分析即可列出式子求解.【详解】所给数列为高阶等差数列,设该数列的第8项为x,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107yx y-=⎧⎨-=⎩,解得15548xy=⎧⎨=⎩.故选:B.3.A由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.4.C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 5.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C . 6.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 7.B根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B. 8.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.10.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
新教材高中数学4-2-1等差数列的概念第二课时等差数列的性质及其应用课件新人教A版选择性必修第二册
[对点练清] 已知单调递增的等差数列{an}的前三项之和为21,前三项之积为231,求数列{an} 的通项公式. 解:法一:根据题意,设等差数列{an}的前三项分别为 a1,a1+d,a1+2d, 则aa11+a1+a1+ dda1++2ad1+=22d3= 1,21, 即3aa11a+1+3dd=a211+,2d=231. 解得ad1==43, 或ad1==-114,. 因为数列{an}为单调递增数列,
(2)∵在等差数列{an}中,若m+n=p+q,则am+an=ap+aq,∴a1+a17=a5 +a13.
由条件等式,得a9=117. ∴a3+a15=2a9=2×117=234. [答案] (1)C (2)234
[方法技巧]
本例(1)应用了等差数列的性质:若{an},{bn}是等差数列,则{an+bn}也是等 差数列.
[对点练清]
1.已知{an}为等差数列,a4+a7+a10=30,则a3-2a5的值为 A.10 B.-10 C.15 D.-15
()
解析:法一:设等差数列{an}的公差为d,则30=(a1+3d)+(a1+6d)+(a1+9d) =3a1+18d,即a1+6d=10.故a3-2a5=(a1+2d)-2(a1+4d)=-a1-6d=- 10.
证明:(1)因为{an}是等差数列,设其公差为d, 则an=a1+(n-1)d, 从而,当n≥4时,an-k+an+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n- 1)d=2an,k=1,2,3, 所以an-3+an-2+an-1+an+1+an+2+an+3=6an, 因此等差数列{an}是“P(3)数列”. (2)数列{an}既是“P(2)数列”,又是“P(3)数列”,因此, 当n≥3时,an-2+an-1+an+1+an+2=4an,① 当n≥4时,an-3+an-2+an-1+an+1+an+2+an+3=6an.②
等差数列最新高考试题精选doc
一、等差数列选择题1.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .62272.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大212,则该数列的项数是( ) A .8B .4C .12D .163.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80 4.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .145.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤B .6斤C .9斤D .12斤6.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .07.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n8.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .499.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个11.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .912.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅+=( ) A .278B .52C .3D .413.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .714.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .15115.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( )A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++ 16.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .12尺布 B .518尺布 C .1631尺布 D .1629尺布 17.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .5518.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .619.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6420.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675二、多选题21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦22.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列23.题目文件丢失!24.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .225.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 26.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1227.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--28.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S29.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2130.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】 由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D 2.A 【分析】设项数为2n ,由题意可得()21212n d -⋅=,及6S S nd -==奇偶可求解. 【详解】设等差数列{}n a 的项数为2n , 末项比首项大212, ()212121;2n a a n d ∴-=-⋅=① 24S =奇,30S =偶,30246S S nd ∴-=-==奇偶②.由①②,可得32d =,4n =, 即项数是8, 故选:A. 3.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 4.C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 5.C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 6.A 【分析】 转化条件为122527n n a an n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 7.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩, 所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=, 故选:B. 8.C【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 10.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.11.A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A 12.A 【分析】根据数列{}n a 是等差数列,且1109a a a +=,求出首项和公差的关系,代入式子求解. 【详解】因为1109a a a +=, 所以11298a d a d +=+, 即1a d =-, 所以()11295101019927278849a a a a a d a a d d a d ++⋅⋅⋅+====++.故选:A 13.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 14.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 15.D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++, ()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确; D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.故选:D . 【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 16.D 【分析】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值. 【详解】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D. 17.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 18.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 19.A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 20.A 【分析】先利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式,2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.二、多选题21.BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=++, 令112nn n F b-=⎛⎫+⎪⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题. 22.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.23.无24.AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB.【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 25.ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题. 26.ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d d S n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 27.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC 28.BD 【分析】由6111160S S S S =⇒-=,即950a =,进而可得答案. 【详解】解:1167891011950S S a a a a a a -=++++==, 因为10a >所以90a =,0d <,89S S =最大, 故选:BD . 【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 29.BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题. 30.AC 【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC . 【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。
SXC078高考数学必修_归纳两类等差数列题型
归纳两类等差数列题型题型一:(1)一个首项为正数的等差数列中,S 3=S 11,问此数列的前几项和最大?(2)一个首项为正数的等差数列中,S 4=S 9,问此数列的前几项和最大? 分析:(1)设等差数列为{a n },由题易知,首项a 1>0,d <0,则{a n }为递减数列. 由S 3=S 11得,a 1+a 2+a 3=a 1+a 2+a 3+a 4+…+a 11,∴a 4+a 5+a 6+a 7+a 8+a 9+a 11=0 ① 又a 4+a 11=a 5+a 6=a 6+a 9=a 7+a 8,将此式代入①得 4(a 7+a 8)=0,即a 7+a 8=0. 而a 7、a 8不能同时为零,则必有a 7>0,a 8<0,所以数列的前7项为正,第8项开始为负. 故此数列的前7项和最大.(2)与(1)的解法类似:设等差数列为{a n },由题易知,首项a 1>0,d <0,则{a n }为递减数列. 由S 4=S 9得,a 1+a 2+a 3+a 4=a 1+a 2+a 3+a 4+a 5+…+a 9,∴a 5+a 6+a 7+a 8+a 9 =0 ② 又a 5+a 9=a 6+a 8=2a 7,将此式代入②得 5a 7=0,即a 7 =0. 所以数列的前6项为正,第7项为0,第8项开始为负, 故此数列的前6项与前7项和最大.结论:1. 在等差数列{a n }中,若a n >0,d <0,S m =S n (m 、n ∈N *),①当m+n 为偶数时,前n 项和中前m+n 2项和最大;②当m+n 为奇数时,前n 项和中前m+n ﹣12与m+n+12项和最大. 2. 在等差数列{a n }中,若a n <0,d >0,S m =S n (m 、n ∈N *),①当m+n 为偶数时,前n 项和中前m+n 2项和最小;②当m+n 为奇数时,前n 项和中前m+n ﹣12与m+n+12项和最小. 题型二:(1)已知: a n =26﹣3n , b n =|a n |,求数列{b n }的前n 项和S n .(2)已知: a n =2n ﹣33, b n =|a n |,求数列{b n }的前n 项和S n . 分析:(1)显然{a n }是等差数列,公差d=-3<0,∴数列{a n }是递减数列,又因为首项a 1=23>0 因此这个数列从某一项开始a n 开始小于零.所以应分情况解决数列{b n }的前n 项和. 若⎩⎨⎧ a n ≥0a n+1≤0,⎩⎨⎧ 26-3n ≥026-3(n+1)≤0即26-3n ≥0, 则723≤n ≤823.即n =8时, ∴前8项为正数,从第9项开始为负数.∴当n ≤8时,b n =|a n |=a n ;当n ≥9时, b n =|a n |=-a n .当n ≤8时,S n =b 1+b 2+……+b n =a 1+a 2+……+a n =n(a 1+a n )2=n(23+26-3n)2=-32n 2+492n . 当n ≥9时,S n =b 1+b 2+……+b n =(a 1+a 2+……+a 8)-(a 9+a 10+……+a n )=-(a 1+a 2+……+a n )+2(a 1+a 2+……+a 8)=﹣S n +2S 8=n(23+26-3n)2+2·8(23+2)2=32n 2-492n +200, ∴S n =⎩⎪⎨⎪⎧ ﹣32n 2+492n (n ≤8)32n 2﹣492n+200 (n ≥9). (2)显然{a n }是等差数列,公差d=2>0,∴数列{a n }是递增数列,又因为首项a 1=﹣31<0 因此这个数列从某一项开始a n 大于零.所以应分情况解答数列{b n }的前n 项和. 若⎩⎨⎧ a n ≤0a n+1≥0,⎩⎨⎧ 2n ﹣33≤02(n+1)﹣33≥0,即1512≤n ≤1612.即n =16. ∴前16项为负数,从第17项开始为正数,∴当n ≤16时,b n =|a n |=﹣a n ;当n ≥17时, b n =|a n |=a n . 当n ≤16时,S n =b 1+b 2+……+b n =-(a 1+a 2+……+a n )=﹣n(a 1+a n )2=﹣n(﹣31+2n ﹣33)2=32n - n 2. 当n ≥17时,S n =b 1+b 2+……+b n =﹣(a 1+a 2+……+a n )+(a 9+a 10+……+a n )=(a 1+a 2+……+a n )-2(a 1+a 2+……+a 16)=S n -2S 8=n(-31+2n-33)2﹣2·16(-31-1)2= n 2-32n -512. 结论:1.等差数列{a n }中,首项a n >0,公差d <0,前n 项和为S n ,则数列{|a n |}的前n 项和为S=⎩⎨⎧S n n ≤k -S n +2S k n ≥k+1; 2.等差数列{a n }中,首项 a n <0,公差d >0,前n 项和为S n , 则数列{|a n |}的前n 项和为S=⎩⎨⎧-S n n ≤k S n -2S k n ≥k+1.。
高中数学 等差数列连堂讲稿 新人教A版必修5
等差数列【预习·导引】【互动·课堂】3127a a +=835,a d ==的等差数列.特殊的,一个其公差14b d -=其公差2d =9500,11n <<,所以13(1)n n b a ++=点【演练·提升】夯基达标1.在数列{n a }中,322,211+=-=+n n a a a ,则11a 等于( ). A .227B .10C .13D .19 解析:由1223n n a a +=+得231=-+n n a a ,∴{n a }是等差数列.13,23,2111==-=a d a . 答案:C 。
2.已知等差数列{}n a 的公差为d,若0c ≠,且c 为常数,则数列{}n ca 是( ) A .公差为d 的等差数列 B .公差为cd 的等差数列C .不是等差数列D .不能判断解析:因为1n n a a d +-=,所以1n n ca ca cd +-=,所以数列{}n ca 为公差为cd 的等差数列。
答案:B3.等差数列的首项为251,第10项为开始比1大的项,则公差d 的取值范围为 … A.d >758B.758<d ≤253C.d <253D.758<d <253解析:依题意10918911832575.1137525812525d d a d a d d ⎧⎧+>>⎪⎪>⎧⎪⎪⇒⇒⇒<≤⎨⎨⎨≤⎩⎪⎪+≤≤⎪⎪⎩⎩答案:B4.在等差数列{}n a 中,已知23101136a a a a +++=,则58________a a +=. 解析:解法1:根据题意,有1111()(2)(9)(10)36a d a d a d a d +++++++=,∴142236a d +=,则121118a d +=.解法2:根据等差数列的性质,可得5821131036218a a a a a a +=+=+=÷=. 答案:185.在等差数列{}n a 中,11003,36a a ==,则3656a a +等于( ). A.36 B.38 C.39 D.42 解析:由110013,9936a a a d ==+=,得13d =,则 3656112355529036.a a a d d a d +=++=+=答案:A6.数列{}n a 中,若11,121nn n a a a a +==+,则6a =( )A.13B.113C.11D. 111解析:由已知可得,121112n n n n a a a a ++==+,则1112n na a +-=,所以1n a ⎧⎫⎨⎬⎩⎭是以111a =为首项,以2为公差的等差数列,故6115211a =+⨯=,所以6a =111. 答案:D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修常考题型
等差数列
集团文件版本号:(M928-T898-M248-WU2669-I2896-
等差数列【知识梳理】
1.等差数列的定义
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.
2.等差中项
如果三个数a,A,b成等差数列,那么A叫做a与b的等差中项.这三
个数满足的关系式是A=a+b 2
.
3.等差数列的通项公式
已知等差数列{a n}的首项为a1,公差为d
【常考题型】
题型一、等差数列的判定与证明
【例1】判断下列数列是否为等差数列.
(1)在数列{a n}中a n=3n+2;
(2)在数列{a n}中a n=n2+n.
[解] (1)a n+1-a n=3(n+1)+2-(3n+2)=3(n∈N*).由n的任意性知,这个数列为等差数列.
(2)a n+1-a n=(n+1)2+(n+1)-(n2+n)=2n+2,不是常数,所以这个数列不是等差数列.
【类题通法】
定义法是判定(或证明)数列{a n}是等差数列的基本方法,其步骤为:
(1)作差a n+1-a n;
(2)对差式进行变形;
(3)当a n+1-a n是一个与n无关的常数时,数列{a n}是等差数列;当a n+1-a n不是常数,是与n有关的代数式时,数列{a n}不是等差数列.【对点训练】
1.已知等差数列{a n}的首项为a1,公差为d,数列{b n}中,b n=3a n+4,问:数列{b n}是否为等差数列并说明理由.
解:数列{b n}是等差数列.
理由:∵数列{a n}是首项为a1,公差为d的等差数列,
∴a n+1-a n=d(n∈N*).
∴b n+1-b n=(3a n+1+4)-(3a n+4)=3(a n+1-a n)=3d.
∴根据等差数列的定义,数列{b n}是等差数列.
题型二、等差数列的通项公式
【例2】(1)在等差数列{a n}中,已知a5=10,a12=31,求通项公式a n.
(2)已知数列{a n}为等差数列a3=5
4
,a7=-
7
4
,求a15的值.
[解] (1)∵a5=10,a12=31,
则a1+4d=10,
a1+11d=31,⎩
⎨
⎧a1=-2,
d=3.
∴a n=-2+(n-1)×3=3n-5∴通项公式a n=3n-5.(n∈N*)
(2)法一:由⎩⎨⎧
a 3=54
,
a 7
=-7
4
,
得⎩⎨⎧
a 1+2d =54
,
a 1
+6d =-74.
解得a 1=
114,d =-34
. ∴a 15=a 1+(15-1)d =114+14×(-34)=-31
4. 法二:由a 7=a 3+(7-3)d , 即-74=54+4d ,解得d =-34
.
∴a 15=a 3+(15-3)d =54+12×(-34)=-314.
【类题通法】
1.应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,
得⎩⎨
⎧
a 1+m -1d =a ,
a 1+n -1d =
b ,
求出a 1和d ,从而确定通项公式.
2.若已知等差数列中的任意两项a m ,a n ,求通项公式或其他项时,则运用a m =a n +(m -n )d 则较为简捷.
【对点训练】
2.(1)求等差数列8,5,2,…的第20项;
(2)-401是不是等差数列-5,-9,-13,…的项如果是,是第几项 解:(1)由a 1=8,d =5-8=-3,n =20, 得a 20=8+(20-1)×(-3)=-49. (2)由a 1=-5,d =-9-(-5)=-4, 得这个数列的通项公式为
a n =-5-4(n -1)=-4n -1,
由题意知,-401=-4n -1.
得n =100,即-401是这个数列的第100项.
题型三、等差中项
【例3】 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.
[解] 在等差数列{a n }中, ∵ a 2+a 3+a 4=18, ∴3a 3=18,a 3=6.
解得⎩⎨
⎧ a 2=11a 4=1或⎩⎨
⎧
a 2=1,a 4=11.
当⎩⎨
⎧ a 2=11a 4=1
时,a 1=16,d =-5.
a n =a 1+(n -1)d =16+(n -1)·(-5)
=-5n +21.
当⎩⎨
⎧
a 2=1a 4=11
时,a 1=-4,d =5.
a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.
【类题通法】
三数a ,b ,c 成等差数列的条件是b =
a +c
2
(或2b =a +c ),可用来进行
等差数列的判定或有关等差中项的计算问题.如若证{a n }为等差数列,可证2a n +1=a n +a n +2(n ∈N *
).
【对点训练】
3.(1)已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.
(2)已知数列{a n }满足a n -1+a n +1=2a n (n ≥2),且a 2=5,a 5=13,则a 8=________.
解析:(1)因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪
⎧
8+2=2a ,a +b =2×2,
2+c =2b .
∴⎩⎪⎨⎪
⎧
a =5,
b =-1,
c =-4.
(2)由a n -1+a n +1 =2a n (n ≥2)知,数列{a n }是等差数列,∴a 2,a 5,a 8成等差数列.
∴a 2+a 8=2a 5,∴a 8=2a 5-a 2=2×13-5=21. 答案:(1)5 -1 -4 (2)21 【练习反馈】
1.已知等差数列{a n }的首项a 1=2,公差d =3,则数列{a n }的通项公式为( )
A .a n =3n -1
B .a n =2n +1
C .a n =2n +3
D .a n =3n +2
解析:选A ∵a n =a 1+(n -1)d =2+(n -1)·3=3n -1.
2.等差数列的前3项依次是x -1,x +1,2x +3,则其通项公式为( )
A .a n =2n -5 B.a n =2n -3 C .a n =2n -1
D .a n =2n +1
解析:选B ∵x -1,x +1,2x +3是等差数列的前3项, ∴2(x +1)=x -1+2x +3,解得x =0. ∴a 1=x -1=-1,a 2=1,a 3=3, ∴d =2,∴a n =-1+2(n -1)=2n -3.
3.等差数列的第3项是7,第11项是-1,则它的第7项是________.
解析:设首项为a 1,公差为d ,
由a 3=7,a 11=-1得,a 1+2d =7,a 1+10d =-1,所以a 1=9,d =-1,则a 7=3.
答案:3
4.已知:1,x ,y,10构成等差数列,则x ,y 的值分别为________. 解析:由已知,x 是1和y 的等差中项,即2x =1+y ①,
y 是x 和10的等差中项,即2y =x +10 ②,
由①,②可解得x =4,y =7. 答案:4,7
5.在等差数列{a n }中,
(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.
解:(1)由题意,知⎩⎨
⎧
a 1+ 5-1d =-1,
a 1+8-1d =2.
解得⎩⎨
⎧
a 1=-5,d =1.
(2)由题意,知⎩⎨
⎧
a 1+a 1+6-1d =12,
a 1+4-1d =7.
解得⎩⎨
⎧
a 1=1,d =2.
∴a n =1+2(n -1)=2n -1. ∴a 9=2×9-1=17.。