2019-2020年中考数学重难点专题讲座 第三讲 动态几何问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学重难点专题讲座 第三讲 动态几何问题
智康·刘豪
【前言】第一讲和第二讲我们探讨了有关中考几何综合题的静态问题,相信很多同学已经有所掌握了。但是静态问题的难度最多也就是中等偏上,真正让人抓狂的永远是动态问题。从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。在这一讲,我们着重研究一下动态几何问题的解法,代数方面的动态问题我们将在第七,第八讲来解决。由于有些题目比较难和繁琐,建议大家静下心来慢慢研究,在这些题上花越多时间,中考中遇到类似题目就会省下越多的时间。
第一部分 真题精讲 【例1】(xx ,密云,一模) 如图,在梯形中,,,,,梯形的高为.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).
C
M B
(1)当时,求的值;
(2)试探究:为何值时,为等腰三角形.
【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当、运动到秒时,如图①,过作交于点,则四边形是平行四边形.
A
B M C
N
E D
∵,.
∴. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题)
∴. (这个比例关系就是将静态与动态联系起来的关键) ∴ .解得.
【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】
(2)分三种情况讨论:
① 当时,如图②作交于,则有即.(利用等腰三角形底边高也是底边中线的性质) ∵, ∴, ∴, 解得.
A
B M C
N
F D
② 当时,如图③,过作于H . 则, ∴. ∴.
A
B M C
N H
D
③ 当时, 则. .
综上所述,当、或时,为等腰三角形.
【例2】(xx ,崇文,一模)
在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .
(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证
明你的结论.
(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么? (3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)
【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个
“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。 【解析】:
(1)结论:CF 与BD 位置关系是垂直;
证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.
由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º, ∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD . ∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .
【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解。 (2)CF ⊥BD .(1)中结论成立.
理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG 可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD 【思路分析3】这一问有点棘手,D 在BC 之间运动和它在BC 延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X 。分类讨论之后利用相似三角形的比例关系即可求出CP.
(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时,
∵∠BCA=45º,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴ , ∴, .
②点D 在线段BC 延长线上运动时,
∵∠BCA=45º,可求出AQ= CQ=4,∴ DQ=4+x . 过A 作交CB 延长线于点G ,则. CF ⊥BD , △AQD ∽△DCP ,∴ , ∴, .
【例3】(xx ,怀柔,一模)
已知如图,在梯形中,24AD BC AD BC ==∥,,,点是的中点,是等边三角形. (1)求证:梯形是等腰梯形;
(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式; (3)在(2)中,当取最小值时,判断的形状,并说明理由.
【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方
面。第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。第二问和例1一样是双动点问题,所以就需要研究在P,Q 运动过程中什么东西是不变的。题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关
G A
B C D E
F A D C B P M
Q 60