2019-2020年中考数学重难点专题讲座 第三讲 动态几何问题
动态几何类问题2019中考数学高端精品(解析版)
![动态几何类问题2019中考数学高端精品(解析版)](https://img.taocdn.com/s3/m/db3fa3503169a4517723a3d9.png)
专题10 动态几何类问题【考点综述评价】所谓“动态几何问题”是指题设图形中存在一个或多个动点、动线、动面,它们在线段、射线或弧线上运动的一类开放性题目.动态几何问题有两个显著特点:一是“动态”,常以图形或图象中点、线、面的运动(包括图形的平移、翻折、旋转、相似等图形变换)为重要的构图背景;二是“综合”,主要体现为三角形、四边形等几何知识与函数、方程等代数知识的综合.解决动点问题的关键是在认真审题的基础上先做到静中求动,根据题意画一些不同运动时刻的图形,想像从头到尾的整个运动过程,对整个运动过程有一个初步的理解,理清运动过程中的各种情形;然后是做到动中取静,画出运动过程中各种情形的瞬间图形,寻找变化的本质,或将图中的相关线段代数化,转化为函数问题或方程问题解决.【考点分类总结】考点1:单点运动问题【典型例题】(2017黑龙江省龙东地区)如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.【答案】43或47或4.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.三角形,∴AM=AO=4;如图3,当∠ABM =90°时,∵∠BOM =∠AOC =60°,∴∠BMO =30°,∴MO =2BO =2×4=8,∴Rt △BOM 中,BM =22MO OB -=43,∴Rt △ABM 中,AM =22AB BM +=47.综上所述,当△ABM 为直角三角形时,AM 的长为43或47或4.故答案为:43或47或4.【方法归纳】从点动的特殊情形入手,进行推理或判断,再对一般情形作出猜想或判断并证明.【变式训练】(2017辽宁省辽阳市)如图1,抛物线213y x bx c =++经过A (23-,0)、B (0,﹣2)两点,点C 在y 轴上,△ABC 为等边三角形,点D 从点A 出发,沿AB 方向以每秒2个单位长度的速度向终点B 运动,设运动时间为t 秒(t >0),过点D 作DE ⊥AC 于点E ,以DE 为边作矩形DEGF ,使点F 在x 轴上,点G 在AC 或AC 的延长线上.学科/-网(1)求抛物线的解析式;(2)将矩形DEGF 沿GF 所在直线翻折,得矩形D 'E 'GF ,当点D 的对称点D '落在抛物线上时,求此时点D '的坐标;(3)如图2,在x 轴上有一点M (23,0),连接BM 、CM ,在点D 的运动过程中,设矩形DEGF 与四边形ABMC 重叠部分的面积为S ,直接写出S 与t 之间的函数关系式,并写出自变量t 的取值范围.【答案】(1)21323y x x =+-;(2)D ′(43,109);(3)22423(0)353412383(2)23t t S t t t ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩. 【分析】(1)把A 、B 的坐标代入抛物线的解析式求解即可;(2)由等边三角形的性质可知∠BAC =60°,依据特殊锐角三角函数值可得到AE =t ,DE =3t ,AF =23t ,然后再证明AD =DF =2t ,过点D ′作D ′H ⊥x 轴与点H ,接下来,再求得点D ′的坐标,最后将点D ′的坐标代入抛物线的解析式求解即可;(3)当0<t ≤43时,S =ED •DF ;当43<t ≤2时,S =矩形DEGF 的面积﹣△CGN 的面积.∵∠D ′FH =∠AFD =30°,∴D ′H =12D ′F =t ,FH =3D ′H =3t ,∴AH =AF +FH =33t ,∴OH =AH ﹣AO =3323t -,∴D ′(3323t -,t ).∴当0<t ≤43时,S =ED •DF =23t . 当43<t ≤2时,如图3所示:∵CG =AG ﹣AC ,∴CG =3t ﹣4,∴GN =3343t -,∴S =ED •DF ﹣12CG •GN =223t ﹣12(3t ﹣4)×3(3t ﹣4)=25312383t t -+-. 综上所述,S 与t 的函数关系式为22423(0)353412383(2)3t t S t t t ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩.考点2:多点运动问题【典型例题】(2017甘肃省天水市)如图,在等腰△ABC 中,AB =AC =4cm ,∠B =30°,点P 从点B 出发,以3c m /s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1c m /s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】D .【分析】作AH ⊥BC 于H ,根据等腰三角形的性质得BH =CH ,利用∠B =30°可计算出AH=12AB =2,BH =3AH =23,则BC =2BH =43,利用速度公式可得点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,然后分类讨论:当0≤x ≤4时,作QD ⊥BC 于D ,如图1,BQ =x ,BP =3x ,DQ =12BQ =12x ,利用三角形面积公式得到234y x =;当4<x ≤8时,作QD ⊥BC 于D ,如图2,CQ =8﹣x ,BP =43,DQ =12CQ =12(8﹣x ),利用三角形面积公式得383y x =-+,于是可得0≤x ≤4时,函数图象为抛物线的一部分,当4<x ≤8时,函数图象为线段,则易得答案为D .△BDQ 中,DQ =12CQ =12(8﹣x ),∴y =12•12(8﹣x )•43,即383y x =-+,综上所述,23(04)383(48)x x y x x ⎧≤≤⎪=⎨⎪-+<≤⎩.故选D .学+科.网【方法归纳】从点动的特殊情形入手,进行推理或判断,再对一般情形作出猜想或判断并证明.【变式训练】(2017四川省雅安市)如图,已知抛物线2y x bx c =++的图象经过点A (1,0),B (-3,0),与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD .(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE =PC 时,求点P 的坐标.(3)在(2)的条件下,作PF ⊥x 轴于F ,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M 的坐标.【答案】(1)223y x x =+-;(2)P (﹣2,﹣2);(3)点M 的坐标为(1212-+,0),(1212--,0),(313-+,0),(313--,0). 【分析】(1)利用待定系数法即可得出结论;(2)先确定出点E 的坐标,利用待定系数法得出直线BD 的解析式,利用PC =PE 建立方程即可求出a 即可得出结论;(3)设出点M 的坐标,进而得出点G ,N 的坐标,利用FM =MG 建立方程求解即可得出结论.(﹣1,0),设直线BD 的解析式为y =mx +n ,∴304m n m n -+=⎧⎨-+=-⎩,∴26m n =-⎧⎨=-⎩,∴直线BD 的解析式为y =﹣2x ﹣6,设点P (a ,﹣2a ﹣6).∵C (0,﹣3),E (﹣1,0),根据勾股定理得,PE 2=(a +1)2+(﹣2a ﹣6)2,PC 2=a 2+(﹣2a ﹣6+3)2.∵PC =PE ,∴(a +1)2+(﹣2a ﹣6)2=a 2+(﹣2a ﹣6+3)2,∴a =﹣2,∴y =﹣2×(﹣2)﹣6=﹣2,∴P (﹣2,﹣2);(3)如图,作PF ⊥x 轴于F ,∴F (﹣2,0).设M (d ,0),∴G (d ,d 2+2d ﹣3),N (﹣2,d 2+2d ﹣3).∵以点F ,N ,G ,M 四点为顶点的四边形为正方形,必有FM =MG ,∴|d +2|=|d 2+2d ﹣3|,∴d =1212-±或d =3132-±,∴点M 的坐标为(1212-+,0),(1212--,0),(3132-+,0),(3132--,0).考点3:线动问题研究【典型例题】(2017黑龙江省龙东地区)如图,矩形AOCB 的顶点A 、C 分别位于x 轴和y 轴的正半轴上,线段OA 、OC 的长度满足方程15130x y -+-=(OA >OC ),直线y =kx +b 分别与x 轴、y 轴交于M 、N 两点,将△BCN 沿直线BN 折叠,点C 恰好落在直线MN 上的点D 处,且tan ∠CBD =34. (1)求点B 的坐标;(2)求直线BN 的解析式; (3)将直线BN 以每秒1个单位长度的速度沿y 轴向下平移,求直线BN 扫过矩形AOCB 的面积S 关于运动的时间t (0<t ≤13)的函数关系式.【答案】(1)B (15,13);(2)183y x=+;(3)215 (08)33996(813)2t t S t t t <≤⎧⎪=⎨-+-<≤⎪⎩. 【分析】(1)由非负数的性质可求得x 、y 的值,则可求得B 点坐标;(2)过D 作EF ⊥OA 于点E ,交CB 于点F ,由条件可求得D 点坐标,且可求得OM ON =34,结合DE ∥ON ,利用平行线分线段成比例可求得OM 和ON 的长,则可求得N 点坐标,利用待定系数法可求得直线BN 的解析式;(3)设直线BN 平移后交y 轴于点N ′,交AB 于点B ′,当点N ′在x 轴上方时,可知S 即为▱BNN ′B ′的面积,当N ′在y 轴的负半轴上时,可用t 表示出直线B ′N ′的解析式,设交x 轴于点G ,可用t 表示出G 点坐标,由S =S 四边形BNN ′B ′﹣S △OGN ′,可分别得到S 与t 的函数关系式.【解答】(3)设直线BN 平移后交y 轴于点N ′,交AB 于点B ′,分两种情况讨论:①当点N ′在x 轴上方,即0<t ≤8时,如图2,由题意可知四边形BNN ′B ′为平行四边形,且NN ′=t ,∴S =NN ′•OA =15t ;【方法归纳】按线动的位置进行分类,画出各状态图形,利用这些等量关系转化为方程来解决.【变式训练】(2017辽宁省营口市)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【答案】C.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.考点4:面动问题研究【典型例题】(2017四川省攀枝花市)如图1,在平面直角坐标系中,,直线MN分别与x轴、y轴交于点M (6,0),N(0,3,等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为_______;(2)在运动过程中,当t=_______时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA—AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P 在线段AC 上运动时,设PEF S S ∆=,求S 与t 的函数关系式,并求出S 的最大值及此时点P 的坐标.【答案】(1)3;(2)3;(3)①t =1或34或32;②S=2333t t -+,当t =32时,△PEF 的面积最大,最大值为9332,此时P (3,332). 【分析】(1)根据,∠OMN =30°和△ABC 为等边三角形,求证△OAM 为直角三角形,然后即可得出答案.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,由此即可解决问题;(3)①如图1中,由题意BP =2t ,BM =6﹣t ,由△PEF 与△MNO 相似,可得PE EF =23或EF PE=23,即5323t t -=33或32532t t -=33,解方程即可解决问题; ②当P 点在EF 上方时,过P 作PH ⊥MN 于H ,如图2中,构建二次函数利用二次函数的性质即可解决问题;∵∠BAC=60°,∴EF=3AE=32t,当点P在EF下方时,PE=BE﹣BP=3﹣52t,由235302ttt⎧⎪≥⎪≤⎨⎪⎪->⎩,解得0≤t<65,∵△PEF与△MNO相似,∴PEEF=236或EFPE=236,∴5323tt-=33或32532tt-=33,解得t=1或t=34.当点P在EF上方时,PE=BE﹣BP=52t-3,∵△PEF与△MNO相似,∴PEEF=23或EFPE=23,∴5323tt-=33或32532tt-=33,解得t=32或3.∵0≤t≤32,且52t-3>0,即65<t≤32,∴t=32.综上所述,t=1或34或32.②当P点在EF上方时,过P作PH⊥MN于H,如图2中,由题意,EF=32t,FC=MC=3﹣t,∠PFH=30°,∴PF=PC﹣CF=(6﹣2t)﹣(3﹣t)=3﹣t,∴PH=12PF=32t-,∴S=12•EF•PH=12×32t×【方法归纳】根据题意画一些不同运动时刻的图形,想象从头到尾的整个运动过程,对整个运动过程有一个初步的理解,理清运动过程中的各种情形;然后是做到动中取静,画出运动过程中各种情形的瞬间图形,寻找变化的本质,或将图中的相关线段代数化,转化为函数问题或方程问题解决.【变式训练】(2017天津)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(3,0),点B(0,1),点O (0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(2)如图②,当P为AB中点时,求A'B的长;(3)当∠BP A'=30°时,求点P的坐标(直接写出结果即可).【答案】(1)(2,1);(2)1;(3)点P 的坐标为(332-,332-)或(2332-,32). 【分析】(1)由点A 和B 的坐标得出OA =3,OB =1,由折叠的性质得:OA '=OA =3,由勾股定理求出A 'B 的值,即可得出点A '的坐标为(2,1);(2)由勾股定理求出AB =2,证出OB =OP =BP ,得出△BOP 是等边三角形,得出∠BOP =∠BPO =60°,求出∠OP A =120°,由折叠的性质得:∠OP A '=∠OP A =120°,P A '=P A =1,证出OB ∥P A ',得出四边形OP A 'B 是平行四边形,即可得出A 'B =OP =1;(3)分两种情况:①点A '在y 轴上,由SSS 证明△OP A '≌△OP A ,得出∠A 'OP =∠AOP =12∠AOB =45°,得出点P 在∠AOB 的平分线上,由待定系数法求出直线AB 的解析式,即可得出点P 的坐标;②由折叠的性质得:∠A '=∠A =30°,OA '=OA ,作出四边形OAP A '是菱形,得出P A =OA =3,作PM ⊥OA 于M ,由直角三角形的性质求出PM 的长,把32y =代入313y x =-+求出点P 的纵坐标即可. 【解答】(1)∵点A (3,0),点B (0,1),∴OA =3,OB =1,由折叠的性质得:OA '=OA =3,∵A 'B ⊥OB ,∴∠A 'BO =90°,在Rt △A 'OB 中,A 'B =22'OA OB -=2,∴点A '的坐标为(2,1);①如图③所示:点A '在y 轴上,在△OP A '和△OP A 中,∵OA ′=OA ,P A ′=P A ,OP =OP ,∴△OP A '≌△OP A (SSS ),∴∠A 'OP =∠AOP =12∠AOB =45°,∴点P 在∠AOB 的平分线上,设直线AB 的解析式为y =kx +b ,把点A 30),点B (0,1)代入得:301k b b +==⎪⎩,解得:331k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为31y x =+,∵P (x ,y ),∴31x =+,解得:x 33-P 33-33-);②如图④所示:由折叠的性质得:∠A'=∠A=30°,OA'=OA,∵∠BP A'=30°,∴∠A'=∠A=∠BP A',∴OA'∥AP,P A'∥OA,∴四边形OAP A'是菱形,∴P A=OA=3,作PM⊥OA于M,如图④所示:学/科+-网∵∠A=30°,∴PM=12P A=32,把y=32代入313y x=-+得:32=313x-+,解得:x=2332-,∴P(233-,3);综上所述:当∠BP A'=30°时,点P的坐标为(33-,33-)或(233-,3).【新题好题训练】1.(2017内蒙古通辽市)如图,点P在直线AB上方,且∠APB=90°,PC⊥AB于C,若线段AB=6,AC=x,S△P AB=y,则y与x的函数关系图象大致是()A.B.C .D .【答案】D . 【分析】根据已知条件推出△APC ∽△PBC ,根据相似三角形的性质得到PC =(6)x x -,根据三角形的面积公式即可得到结论. 【解答】∵PC ⊥AB 于C ,∠APB =90°,∴∠ACP =∠BCP =90°,∴∠APC +∠BPC =∠APC +∠P AC =90°,∴∠P AC =∠BPC ,∴△APC ∽△PBC ,∴PC BC AC PC =,∵AB =6,AC =x ,∴BC =6﹣x ,∴PC 2=x (6﹣x ),∴PC =(6)x x -,∴y =12AB •PC =236x x -+ =23(3)9x --+,故选D . 2.(2017四川省泸州市)已知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .6【答案】C .【分析】过点M 作ME ⊥x 轴于点E ,交抛物线2114y x =+于点P ,由PF =PE 结合三角形三边关系,即可得出此时△PMF 周长取最小值,再由点F 、M 的坐标即可得出MF 、ME 的长度,进而得出△PMF 周长的最小值.3.(2017山东省泰安市)如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1c m /s 的速度运动,同时点Q 从点C 沿CB 向点B 以2c m /s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形P ABQ 的面积最小值为( )A .19cm 2B .16cm 2C .15cm 2D .12cm 2【答案】C .【分析】在Rt △ABC 中,利用勾股定理可得出AC =6cm ,设运动时间为t (0≤t ≤4),则PC =(6﹣t )cm ,CQ =2tcm ,利用分割图形求面积法可得出S 四边形P ABQ =t 2﹣6t +24,利用配方法即可求出四边形P ABQ 的面积最小值,此题得解.【解答】在Rt △ABC 中,∠C =90°,AB =10cm ,BC =8cm ,∴AC =22AB BC -=6cm .设运动时间为t (0≤t ≤4),则PC =(6﹣t )cm ,CQ =2tcm ,∴S 四边形P ABQ =S △ABC ﹣S △CPQ =12AC •BC ﹣12PC •CQ =12×6×8﹣12(6﹣t )×2t =t 2﹣6t +24=(t ﹣3)2+15,∴当t =3时,四边形P ABQ 的面积取最小值,最小值为15.故选C . 4.(2017新疆乌鲁木齐市)如图,点A (a ,3),B (b ,1)都在双曲线3y x =上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .52B .62C . 21022D .82【答案】B .【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A 点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x轴、y轴于C点、D点,根据两点之间线段最短得此时四边形P ABQ的周长最小,然后利用两点间的距离公式求解可得.5.(2017辽宁省营口市)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【答案】C.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.学/科..网【解答】当0<t≤2时,S=12t2,当2<t≤4时,S=12t2﹣12(2t﹣4)2=﹣32t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故选C.6.(2017四川省内江市)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q 到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ 最小,此时P A+BQ= .【答案】16.【分析】作PE⊥l1于E交l2于F,在PF上截取PC=8,连接QC交l2于B,作BA⊥l1于A,此时P A+AB+BQ 最短.作QD⊥PF于D.首先证明四边形ABCP是平行四边形,P A+BQ=CB+BQ=QC,利用勾股定理即可解决问题.7.(2017辽宁省抚顺市)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON交于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设APOQ=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.【答案】(1)AB=PB;(2)存在;(3)k=0.5.【分析】(1)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;(2)存在.证明方法类似(1);(3)连接BQ.只要证明△ABP∽△OBQ,即可推出APOQ=ABOB,由∠AOB=30°,推出当BA⊥OM时,ABOB的值最小,最小值为0.5,由此即可解决问题;【解答】(1)连接:AB=PB.理由:如图1中,连接BQ.∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.(3)连接BQ.8.(2017江苏省宿迁市)如图,在矩形纸片ABCD中,已知AB=1,BC3,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.(1)当B′C′恰好经过点D时(如图1),求线段CE的长;(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积;(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.【答案】(1)CE=6﹣2;(2)562-;(3)23π.【分析】(1)如图1中,设CE=EC′=x,则DE=1﹣x,由△ADB′′∽△DEC,可得''AD DBDE EC=,列出方程即可解决问题;(2)如图2中,首先证明△ADB′,△DFG都是等腰直角三角形,求出DF即可解决问题;(3)如图3中,点C的运动路径的长为¼'CC的长,求出圆心角、半径即可解决问题.【解答】(1)如图1中,设CE=EC′=x,则DE=1﹣x,∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°,∴∠B′AD=∠EDC′,∵∠B′=∠C′=90°,AB′=AB=1,AD=3,∴DB′=31-=2,∴△ADB′∽△DEC′,∴''AD DBDE EC=,∴32=,∴x=6﹣2,∴CE=6﹣2.9.(2017四川省广元市)如图,已知抛物线2y ax bx c =++过点A (﹣3,0),B (﹣2,3),C (0,3),其顶点为D . 学+科-网(1)求抛物线的解析式;(2)设点M (1,m ),当MB +MD 的值最小时,求m 的值;(3)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值;(4)若抛物线的对称轴与直线AC 相交于点N ,E 为直线AC 上任意一点,过点E 作EF ∥ND 交抛物线于点F ,以N ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由.【答案】(1)223y x x =--+;(2)185;(3)278;(4)E (﹣2,1)或317-+,317+或317--,3172). 【分析】(1)根据待定系数法,可得答案;(2)利用轴对称求最短路径的知识,找到B 点关于直线x =1的对称点B ′,连接B 'D ,B 'D 与直线x =1的交点即是点M 的位置,继而求出m 的值.(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减去较小的纵坐标,可得PE 的长,根据三角形的面积,可得二次函数,根据二次函数的性质,可得答案;(4)设出点E的,分情况讨论,①当点E在线段AC上时,点F在点E上方,②当点E在线段AC(或CA)延长线上时,点F在点E下方,根据平行四边形的性质,可得关于x的方程,继而求出点E的坐标.【解答】(1)将A,B,C点的坐标代入解析式,得:9304233a b ca b cc-+=⎧⎪-+=⎨⎪=⎩,解得:123abc=-⎧⎪=-⎨⎪=⎩,抛物线的解析式m=﹣32时,△APC的面积的最大值是278;(4)由(1)、(2)得D(﹣1,4),N(﹣1,2),点E在直线AC上,设E(x,x+3):①当点E在线段AC上时,点F在点E上方,则F(x,﹣x2﹣2x+3),∵EF=DN,∴﹣x2﹣2x+3﹣(x+3)=4﹣2=2,解得,x=﹣2或x=﹣1(舍去),则点E的坐标为:(﹣2,1).②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,﹣x2﹣2x+3),∵EF=DN,∴(x+3)﹣(﹣x2﹣2x+3)=2,解得x=3172-+或x=3172-,即点E的坐标为:(3172-,3172+)或(3172--,3172-).综上所述:满足条件的点E坐标为E(﹣2,1317-+317+317--317-).10.(2017四川省德阳市)如图,在平面直角坐标系xoy 中,抛物线C 1:2y mx n =+(m ≠0)与x 轴交于A 、B 两点,与y 轴的负半轴交于点C ,其中A (-1,0),C (0,-1).(1)求抛物线C 1及直线AC 的解析式;(2)沿直线AC 上A 至C 的方向平移抛物线C 1,得到新的抛物线C 2,C 2上的点D 为C 1上的点C 的对应点,若抛物线C 2恰好经过点B ,同时与x 轴交于另一点E ,连结OD 、DE ,试判断ΔODE 的形状,并说明理由;学+6/科+-网(3)在(2)的条件下,若P 为线段OE (不含端点)上一动点,作PF ⊥DE 于F ,PG ⊥OD 于G ,设PF =h 1,PG =h 2,试判断h 1•h 2的值是否存在最大值,若存在,求出这个最大值,并求出此时P 点的坐标,若不存在,请说明理由.【答案】(1)21y x =-,y =﹣x ﹣1;(2)△ODE 是等腰三角形;(3)当x =52时,h 1h 2的值最大,是25此时点P (52,0). 【分析】(1)利用待定系数法求抛物线C 1及直线AC 的解析式;(2)△ODE 是等腰三角形,根据D 在直线AC 上,所以D (a ,﹣a ﹣1),由△AOC 是等腰直角三角形,可得△HCD 是等腰直角三角形,则CH =DH =a ,即点C 平移到D 处:向下平移a 个单位,再向右平移a 个单位,所以抛物线 C 2:y =(x ﹣a )2﹣1﹣a ,因为抛物线C 2恰好经过点B ,把B (1,0)代入可得a 的值,分别求得:OD =OE =5;(3)如图2,用面积法,分别表示h 1、h 2的长,相乘求最大值即可.∵A 、B 对称,∴B (1,0).如图1,设D (a ,﹣a ﹣1),过D 作DH ⊥y 轴于H .∵OA =OC =1,∠AOC =90°,∴△AOC 是等腰直角三角形,∴∠HCD =∠ACO =45°,∴△HCD 是等腰直角三角形,∴CH =DH =a ,由平移得:抛物线 C 2:y =(x ﹣a )2﹣1﹣a ,把B (1,0)代入得:0=(1﹣a )2﹣1﹣a ,a (a ﹣3)=0,a 1=0(舍),a 2=3,∴抛物线 C 2:y =(x ﹣3)2﹣4,∴D (3,﹣4),E (5,0),∴OE =5.由勾股定理得:OD =2234=5,∴OD =OE ,∴△ODE 是等腰三角形;。
2020中考数学 压轴专题 动态几何之“双动点”问题(含答案)
![2020中考数学 压轴专题 动态几何之“双动点”问题(含答案)](https://img.taocdn.com/s3/m/02b866f40722192e4436f686.png)
2020中考数学 压轴专题 动态几何之“双动点”问题(含答案)1. 已知,如图,在△ABC 中,已知AB =AC =5 cm ,BC =6 cm .点P 从点B 出发,沿BA 方向匀速运动,速度为1 cm /s ;同时,直线QD 从点C 出发,沿CB 方向匀速运动,速度为1 cm /s ,且QD ⊥BC ,与AC ,BC 分别交于点D ,Q ;当直线QD 停止运动时,点P 也停止运动.连接PQ ,设运动时间为t (0<t <3)s .解答下列问题: (1)当t 为何值时,PQ//AC ?(2)设四边形APQD 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形APQD :S △ABC =23:45?若存在,求出t 的值;若不存在,请说明理由.第1题图解:(1)当t s 时,PQ//AC ,∵点P 从点B 出发,沿BA 方向匀速运动,速度为1 cm /s ;同时,直线QD 从点C 出发,沿CB 方向匀速运动,速度为1 cm /s , ∴BP =t ,BQ =6−t . ∵PQ//AC , ∴△BPQ ∽△BAC ,第1题解图∴C B Q B B A BP =,即665t t -=,解得t =1130s . ∴当t 为1130s 时,PQ//AC ;(2)过点A 、P 作AN ⊥BC ,PM ⊥BC 于点N 、M , ∵AB =AC =5cm ,BC =6cm , ∴BN =CN =3cm , ∴AN =222235-=-BN AB =4cm .∵AN ⊥BC ,PM ⊥BC , ∴△BPM ∽△BAN , ∴AN PM AB BP =,即45PM t =,解得PM =t 54, ∴S △BPQ =21BQ ·PM =21(6−t )·t 54=t t 512522+-, ∵AB =AC =5cm ,AN=4cm ,CN=3cm ,DQ//AN , ∴△CDQ ∽△CAN , ∴CN CQ AN DQ =,即34tDQ =,∴DQ=34t , ∴S △CDQ =21CQ ·DQ =32t 2. ∵S △ABC =21BC ·AN =21×6×4=12, ∴y =S 四边形APQD =S △ABC −S △CDQ −S △BPQ =12−32t 2−(t t 512522+-)=12−t t 5121542-(0<t <3); (3)存在.∵由(2)知,S 四边形APQD =S △ABC −S △CDQ −S △BPQ =12−21t 2−(t t 512522+-)=12−t t 5121542-,S △ABC =12, ∴452312512154122=-t t -,解得t 1=4114123-+,t 2=4114123--(舍去). ∴当t =4114123-+s 时,S 四边形APQD :S △ABC =23:45.2. 如图①,在Rt △ABC 中,∠C =90°,AB =10,BC =6,点P 从点A 出发,沿折线AB −BC 向终点C 运动,在AB 上以每秒5个单位长度的速度运动,在BC 上以每秒3个单位长度的速度运动,点Q 从点C 出发,沿CA 方向以每秒34个单位长度的速度运动,P 、Q 两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒.(1)求线段AQ 的长;(用含t 的代数式表示)(2)连接PQ ,当PQ 与△ABC 的一边平行时,求t 的值;(3)如图②,过点P 作PE ⊥AC 于点E ,以PE ,EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连接DF .设矩形PEQF 与△ABC 重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.第2题图解:(1)在Rt △ABC 中,∵∠C =90°,AB =10,BC =6,由勾股定理得:AC =2222610-=-BC AB =8,∵点Q 在CA 上,以每秒34个单位移动, ∴CQ =34t , ∴AQ =AC -CQ =8−34t .(2)∵P 点从AB -BC 总时间36510+=4s , ∵点P 在AB 或BC 上运动,点Q 在AC 上, ∴PQ 不可能与AC 平行, ①当点P 在AB 上,则PQ//BC ,此时AC AQ AB AP =,即834810t 5t-=,解得t =s 23; ②当点P 在BC 上,此时PQ//AB ,∴CA CQ BC CP =,即46-3t 2368t-=(),解得t =3s , 综上所述,t =32s 或3s 时,PQ 与△ABC 的一边平行; (3)①∵点D 是AC 的中点, ∴CD=4,当点Q 运动到点D 时,t 34=4,解得t =3, 点Q 与点E 重合时,t 316=AC =8,得t =23,分三种情况讨论如下: (i )点Q 与点E 重合时,316t =AC =8,得t =23,当0≤t ≤23,此时矩形PEQF 在△ABC 内,如解图①所示,∵AP =5t ,易得AE =4t ,PE =3t ,∴EQ =AQ -AE =8-34t -4t =8-316t , ∴S =PE ×EQ =3t (8-316t )=-16t 2+24t ;第2题解图(ii )点P 与点B 重合时,5t =10,得t =2,当23≤t ≤2时,如解图②所示,设QF 交AB 与T ,则重叠部分是矩形PEQF 的面积减去△PFT 的面积. ∵AQ =8-34t ,∴QT =43AQ =43(8-34t )=6-t , ∴FT =PE -QT =3t -(6-t )=4t -6, EQ =AE -AQ =4t -(8-34t )=316t -8, ∴S =PE ·EQ -21EQ ·Ft =3t ·(316t -8)-21·(316t -8)(4t -6) =316t 2+8t -24; (iii )当2<t ≤3,点P 在BC 上,且点F 在△ABC 外,如解图③所示,此时点E 与点C 重合,PC =6-3(t -2)=12-3t ,QC =34t ,QT =43(8-34t )=6-t ,BP =3(t -2),PR =34·3(t -2)=4t -8,FR =FP -PR =34t -(4t -8)=8-38t ,FT =43FR =6-2t . ∴S =PT ×QC -21FR ·FT =(12-3t )·34t -21·(8-38t )·(6-2t ) =-320t 2+32t -24;第2题解图②53,56. 3. 如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4.动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,到达A 点后立刻以原来的速度沿AB 返回.点P ,Q 运动速度均为每秒1个单位长度,当点P 到达C 时停止运动,点Q 也同时停止.连接PQ ,设运动时间为t (0<t ≤5)秒.(1)当点Q 从B 点向A 点运动时(未到达点A )求S △APQ 与t 的函数关系式;写出t 的取值范围; (2)在(1)的条件下,四边形BQPC 的面积能否为△ABC 面积的1513若能,求出相应的t 值;若不能,说明理由;(3)伴随点P 、Q 的运动,设线段PQ 的垂直平分线为l ,当l 经过点B 时,求t 的值.第3题图解:(1)在Rt △ABC 中,由勾股定理得:AC =222243+=+BC AB =5;如解图①,过点P 作PH ⊥AB 于点H ,AP =t ,AQ =3−t ,第3题解图①则∠AHP =∠ABC =90°,∵∠PAH =∠CAB ,∴△AHP ∽△ABC , ∴BCPHAC AP =, ∵AP =t ,AC =5,BC =4, ∴PH =54t ,∴S △APQ =21(3−t )·54t , 即S =−2t 52+t 56,t 的取值范围是:0<t <3. (2)在(1)的条件下,四边形BQPC 的面积能为△ABC 面积的1513.理由如下: 依题意得:−2t 52+t 56=21152 ×3×4,即−2t 52+t 56=54. 整理,得(t −1)(t −2)=0, 解得t 1=1,t 2=2, 又0<t <3,∴当t =1或t =2时,四边形BQPC 的面积能为△ABC 面积的1513; (3)①如解图②,当点Q 从B 向A 运动时l 经过点B ,第3题解图②BQ =BP =AP =t ,∠QBP =∠QAP , ∵∠QBP +∠PBC =90°,∠QAP +∠PCB =90° ∴∠PBC =∠PCB ,∴CP =BP =AP =t ∴CP =AP =21AC =21×5=2.5, ∴t =2.5;②如解图③,当点Q 从A 向B 运动时l 经过点B ,第3题解图③BP =BQ =3−(t −3)=6−t ,AP =t ,PC =5−t ,过点P 作PG ⊥CB 于点G , 则PG//AB , ∴△PGC ∽△ABC , ∴BCGCAB PG AC PC ==, ∴PG =AC PC ·AB =53(5−t ), CG =AC PC ·BC =54(5−t ), ∴BG =4−54(5−t )=54t , 由勾股定理得BP 2=BG 2+PG 2, 即(6−t )2=(54t )2+[53(5−t )]2, 解得t =1445. 综上所述,伴随点P 、Q 的运动,线段PQ 的垂直平分线为l ,经过点B 时,t 的值是2.5或1445. 4. 如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,D 、E 分别是AC 、AB 的中点,连接DE ,点P 从点D 出发,沿DE 方向匀速运动,速度为1cm /s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm /s ,当点P 运动到点E 停止运动,点Q 也停止运动.连接PQ ,设运动时间为t (s )(0<t <4).解答下列问题: (1)当t 为何值时,PQ ⊥AB ?(2)当点Q 在BE 之间运动时,设五边形PQBCD 的面积为y (cm 2),求y 与t 之间的函数关系式; (3)在(2)的情况下,是否存在某一时刻t ,使PQ 分四边形BCDE 两部分的面积之比为S △PQE :S 五边形PQBCD =1:29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.解:(1)如解图①,在Rt △ABC 中,第4题解图AC =6,BC =8, ∴AB =2286+=10.∵D 、E 分别是AC 、AB 的中点., AD =DC =3,AE =EB =5,DE//BC 且DE =21BC =4, ∵PQ ⊥AB ,∴∠PQB =∠C =90°, 又∵DE//BC ,∴∠AED =∠B , ∴△PQE ∽△ACB ,∴BCQEAB PE =. 由题意得:PE =4−t ,QE =2t −5, 即852104-=-t t ,解得t =1441; (2)如解图②,过点P 作PM ⊥AB 于M , 由△PME ∽△ACB ,得ABPEAC PM =, ∴10t -46=PM ,得PM =53(4−t ).S △PQE =21EQ ·PM =21(5−2t )·53(4−t )=53t 2−1039t +6, S 梯形DCBE =21×(4+8)×3=18, ∴y =S 梯形DCBE -S △PQE =18−(53t 2−1039t +6)=−53t 2+1039t +12. (3)假设存在时刻t ,使S △PQE :S 五边形PQBCD =1:29, 则此时S △PQE =301S 梯形DCBE , ∴53t 2−1039t +6=301×18,即2t 2−13t +18=0, 解得t 1=2,t 2=29(舍去). 当t =2时, PM =53×(4−2)=56,ME =54×(4−2)=58, EQ =5−2×2=1,MQ =ME +EQ =58+1=513, ∴PQ =22MQ PM +=52055135622=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛.∵21PQ ·h =S △PQE =53, ∴h =56·)2056(20520562055或=. 5. 如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒. (1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S△CPQ :S △ABC =9:100?若存在,求出t 的值;若不存在,则说明理由;(3)是否存在某一时刻t ,使得△CPQ 为等腰三角形?若存在,求出所有满足条件的t 的值;若不存在,则说明理由.解:(1)如解图①,∵∠ACB =90°,AC =8,BC =6,∴AB =10.∵CD ⊥AB ,∴S △ABC =21BC •AC =21AB •CD . ∴CD =1086⨯=⨯AB AC BC =4.8, ∴线段CD 的长为4.8; (2)①过点P 作PH ⊥AC ,垂足为H ,如解图②所示.由题可知DP =t ,CQ =t ,则CP =4.8−t .∵∠ACB =∠CDB =90°,∴∠HCP =90°−∠DCB =∠B .∵PH ⊥AC ,∴∠CHP =90°,∴∠CHP =∠ACB ,∴△CHP ∽△BCA ,∴AB PC AC PH =,∴10t 8.48-=PH , ∴PH =t 54-2596,∴S △CPQ =21CQ ·PH =21t (t 54-2596)=−52t 2+2548t ; ②存在某一时刻t ,使得S △CPQ :S △ABC =9:100.∵S △ABC =21×6×8=24,且S △CPQ :S △ABC =9:100, ∴(−52t 2+2548t ):24=9:100. 整理得:5t 2−24t +27=0.即(5t −9)(t −3)=0.解得:t =59或t =3. ∵0≤t ≤4.8,∴当t =59秒或t =3秒时,S △CPQ :S △ABC =9:100; (3)①若CQ =CP ,如解图①,则t =4.8−t ;解得:t =2.4;②若PQ =PC ,如解图②所示,∵PQ =PC ,PH ⊥QC ,∴QH =CH =21QC =21t . ∵△CHP ∽△BCA .∴ABCP BC CH =, ∴108.4621t t -=,解得:t =55144; ③若QC =QP ,过点Q 作QE ⊥CP ,垂足为E ,如解图③所示.同理可得:t =1124. 综上所述:当t 为2.4秒或55144秒或1124秒时,△CPQ 为等腰三角形.第5题解图6. 如图,在△ABC 中,AB =AC =10 cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2 cm /s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm /s ,运动过程中始终保持PQ//AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t (0<t <5).(1)当t 为何值时,PM//BC ?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式; (3)已知某一时刻t ,有S 四边形PQCM =43S △ABC 成立,请你求出此时t 的值.第6题图解:(1)∵当PM//BC 时,△APM ∽△ABC , ∴AP =AM ,∴10−t =2t ,∴t =310; (2)∵四边形PQCM 为梯形,y =21(PQ +MC )DF , ∵PQ =PB =t ,MC =10−2t ,BF :BD =BP :AB ,∴BF =54108 t t , ∴DF =8−t 54, ∴y =21(t +10−2t )·(8−t 54)=252t −8t +40; (3)由(2)知,252t −8t +40=40×43, 解得t =10±53,又∵0<t<5,∴当t =10-53s 时,使S 四边形PQCM =43S △ABC 成立.7. 如图,在四边形ABCD 中,AD//BC ,AD =6 cm ,CD =4 cm ,BC =BD =10 cm ,点P 由B 出发沿BD方向匀速运动,速度为1cm /s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm /s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题:(1)当t 为何值时,PE//AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S △PEQ =252S △BCD ?若存在,求出此时t 的值;若不存在,说明理由; (4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.第7题图解:(1)当PE//AB 时,∴DBDP DA DE =. 而DE =t ,DP =10−t ,∴10106t t -=, ∴t =415, ∴当t =415s 时,PE//AB ; (2)∵AD//BC ,线段EF 由DC 出发沿DA 方向匀速运动,∴EF//CD ,∴四边形CDEF 是平行四边形,∴∠DEQ =∠C ,∠DQE =∠BDC .∵BC =BD =10,∴△DEQ ∽△BCD ,∴CD EQ BC DE =,410EQ t =, ∴EQ =52t , 如解图,过B 作BM ⊥CD 交CD 于M ,过P 作PN ⊥EF 交EF 于N ,∵BC =BD ,BM ⊥CD ,CD =4cm ,∴CM =21CD =2cm , ∴BM =6496410021022==-=-cm ,∵EF//CD ,∴∠BQF =∠BDC ,∠BFG =∠BCD ,又∵BD =BC ,∴∠BDC =∠BCD ,∴∠BQF =∠BFG ,∵ED//BC ,∴∠DEQ =∠QFB ,又∵∠EQD =∠BQF ,∴∠DEQ =∠DQE ,∴DE =DQ ,∴ED =DQ =BP =t ,∴PQ =10−2t .又∵△PNQ ∽△BMD , ∴BM PN BD PQ =,∴6410210PN t =-,∴PN =)5t -,∴S △PEQ =21EQ ·PN =⨯⨯t 5221)5t -=2255-+;第7题解图(3)存在.此时t 的值为1s 或4s .S △BCD =21CD ·BM =21×4×46=86, 若S △PEQ =252S △BCD , 则有2646255-+=252×86, 解得t 1=1,t 2=4,∴当t=1或4时,S △PEQ =252S △BCD ; (4)五边形PFCDE 的面积不发生变化.理由如下:在△PDE 和△FBP 中, ∵DE =BP =t ,PD =BF =10−t ,∠PDE =∠FBP ,∴△PDE ≌△FBP (SAS ).∴S 五边形PFCDE =S △PDE +S 四边形PFCD =S △FBP +S 四边形PFCD =S △BCD =86,∴在运动过程中,五边形PFCDE 的面积不变.8. 如图.在△ABC 中.AB =AC =5 cm ,BC =6 cm ,AD 是BC 边上的高.点P 由C 出发沿CA 方向匀速运动.速度为1 cm /s .同时,直线EF 由BC 出发沿DA 方向匀速运动,速度为1 cm /s ,EF//BC ,并且EF 分别交AB 、AD 、AC 于点E ,Q ,F ,连接PQ .若设运动时间为t (s )(0<t <4),解答下列问题:(1)当t 为何值时,四边形BDFE 是平行四边形?(2)设四边形QDCP 的面积为y (cm 2),求出y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形QDCP :S △ABC =9:20?若存在,求出此时t 的值;若不存在,说明理由;(4)是否存在某一时刻t ,使点Q 在线段AP 的垂直平分线上?若存在,求出此时点F 到直线PQ 的距离h ;若不存在,请说明理由.第8题图解:(1)如解图①中,连接DF , 第8题解图①∵AB =AC =5,BC =6,AD ⊥BC ,∴BD =CD =3,在Rt △ABD 中,AD =223-5=4,∵EF//BC ,∴△AEF ∽△ABC ,∴ADAQ BC EF =, ∴446t EF -=, ∴EF =23(4−t ), ∵EF//BD ,∴EF =BD 时,四边形EFDB 是平行四边形,∴23(4−t )=3, ∴t =2,∴t =2s 时,四边形EFDB 是平行四边形;(2)如解图②中,作PN ⊥AD 于N ,第8题解图②∵PN //DC ,∴ACAP DC PN =, ∴553t PN -=, ∴PN =53(5-t ), ∴y =21DC ·AD −21AQ ·PN =6−21(4−t ) ·53(5−t )=6−(t t 10271032-+6)=t t 10271032+-(0<t <4); (3)存在.理由:由题意(t t 10271032+-):12=9:20, 解得t =3或6(舍去);∴当t =3s 时,S 四边形QDCP :S △ABC =9:20;(4)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .第8题解图③∵QA =QP ,QN ⊥AP ,∴AN =NP =21AP =21(5−t ),由题意cos ∠CAD =AQAN C A AD =, ∴()544521=--t t , ∴t =37, ∴t =37s 时,点Q 在线段AP 的垂直平分线上. ∵sin ∠FPH =53=PF FH , ∵PA =5−37=38,AF =AQ ÷122554=, ∴PF =127, ∴FH =207. ∴点F 到直线PQ 的距离h =207.9. 如图,BD 是正方形ABCD 的对角线,BC =2,动点P 从点B 出发,以每秒1个单位长度的速度沿射线BC 运动,同时动点Q 从点C 出发,以相同的速度沿射线BC 运动,当点P 出发后,过点Q 作QE ⊥BD ,交直线BD 于点E ,连接AP 、AE 、PE 、QE ,设运动时间为t (秒).(1)请直接写出动点P 运动过程中,四边形APQD 是什么四边形?(2)请判断AE ,PE 之间的数量关系和位置关系,并加以证明;(3)设△EPB 的面积为y ,求y 与t 之间的函数关系式;(4)直接写出△EPQ 的面积是△EDQ 面积的2倍时t 的值.第9题图解:(1)四边形APQD 是平行四边形;【解法提示】∵四边形ABCD 是正方形,P 、Q 速度相同, ∴∠ABE =∠EBQ =45°,AD ∥BQ ,AD =BC =2,BP =CQ , ∴BC =AD =PQ ,∴四边形APQD 是平行四边形.(2)AE =PE ,AE ⊥PE ;理由如下:∵EQ ⊥BD ,∴∠PQE =90°−45°=45°,∴∠ABE =∠EBQ =∠PQE =45°,∴BE =QE ,在△AEB 和△EPQ 中,AB PQ ABE PQE BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△EPQ (SAS ),∴AE =PE ,∠AEB =∠PEQ ,∴∠AEP =∠BEQ =90°,∴AE ⊥PE ;(3)过点E 作EF ⊥BC 于点F ,如解图①所示:BQ =t +2,EF =22+t , ∴y =21×22+t ×t ,即y =t t 41212+;第9题解图①(4)△EPQ 面积是△EDQ 面积的2倍时t 的值为1或3.【解法提示】分两种情况:① 当P 在BC 延长线上时,作PM ⊥QE 于M ,如解图②所示:知识像烛光,能照亮一个人,也能照亮无数的人。
2019-2020学年初三数学解析中考动态几何问题.doc
![2019-2020学年初三数学解析中考动态几何问题.doc](https://img.taocdn.com/s3/m/eccd4e12192e45361166f51e.png)
2019-2020学年初三数学解析中考动态几何问题动态几何题已成为中考试题的一大热点题型。
在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力。
解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。
通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。
下面就动点型、动线型、动面型等几何题作一简要分析。
一. 动点型 1. 单动点型例1. 如图1,在矩形ABCD 中,AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E ,F 分别是垂足,求PE+PF 的长。
分析与略解:P 是AD 边上任意一点,不妨考虑特殊点的情况,即在“动”中求“静”。
当P 点在D (或A )处时,过D 作DG ⊥AC ,垂足为G ,则PE=0,PF=DG , 故PE+PF=DG , 在Rt △ADC 中,13512DC AD AC 2222=+=+=由面积公式有:1360AC DC AD DG =⋅=,再有“静”寻求“动”的一般规律,得到PE+PF=DG=1360。
图12. 双动点型例2. (2003年吉林省)如图2,在矩形ABCD 中,AB=10cm ,BC=8cm ,点P 从A 出发,沿A →B →C →D 路线运动,到D 点停止;点Q 从D 点出发,沿D →C →B →A 路线运动,到A 停止。
若点P 、Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,a 秒时点P 、点Q 同时改变速度,点P 的速度变为每秒bcm ,点Q 的速度为每秒dcm 。
图3是点P 出发x 秒后△APD 的面积)cm (S 21与x (秒)的函数关系图象,图4是点Q 出发x 秒后△AQD 的面积)cm (S 22与x (秒)的函数关系图象。
中考数学专题——动态问题(非常全面)
![中考数学专题——动态问题(非常全面)](https://img.taocdn.com/s3/m/430f9444ff4733687e21af45b307e87101f6f84d.png)
(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。
2020中考数学高频考点专题复习:动态问题考点总结及2019年配套真题
![2020中考数学高频考点专题复习:动态问题考点总结及2019年配套真题](https://img.taocdn.com/s3/m/56d9f8c2a300a6c30d229f95.png)
专题知识回顾
一、动态问题概述
1. 就运动类型而言 , 有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定
值问题和存在性问题等。
2. 就运动对象而言 , 几何图形中的动点问题,有点动、线动、面动三大类。
3. 就图形变化而言 , 有轴对称(翻折) 、平移、旋转(中心对称、滚动)等。
4. 动态问题一般分两类, 一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多
(2)画出符合题意的示意图。
(3)根据试题的已知条件或者要求列出算式、方程或者数量间的关系式。
专题典型题考法及解析
【例题 1】(点动题) 如图,在矩形 ABCD 中, AB= 6,BC= 8,点 E 是 BC 中点,点 F 是边
CD 上的任意一点,当△ AEF 的周长最小时,则 DF 的长为(
)
A.1 B.2 C.3
当 3< x< 5 时, y= ×3×(5﹣ x)=﹣ x+ .
4. ( 2019?湖北武汉) 如图, AB是⊙ O的直径, M、N是 (异于 A. B)上两点, C是 上一
动点,∠ ACB的角平分线交⊙ O于点 D,∠ BAC的平分线交 CD于点 E.当点 C从点 M运动到
点 N时,则 C. E 两点的运动路径长的比是(
t
2
;当移动
的距离> a 时,如图 2, S= S△ AC′H= ( 2a﹣t ) 2= t 2﹣ 2at +2a2,根据函数关系式即可得
到结论; ∵在直角三角形 ABC中,∠ C= 90°, AC= BC, ∴△ ABC是等腰直角三角形, ∵EF⊥ BC,ED⊥ AC, ∴四边形 EFCD是矩形, ∵E 是 AB的中点, ∴EF= AC, DE= BC,
中考数学动态几何问题课件 (共37张PPT)
![中考数学动态几何问题课件 (共37张PPT)](https://img.taocdn.com/s3/m/266d7bf04afe04a1b071de3b.png)
1
1
S△BCD= BD· CF= × 4× - x 2 + 3x =-x2+6x,
2 2 2
1
1
1
则S=S△OAD+S△ACD+S△BCD=4+(2x-4)+(-x2+6x)=-x2+8x=-(x-4)2+16(2<x<6), 因为a=-1<0,所以当x=4时,四边形ABCD的面积S取最大值,最大值为16.
难点突破
6、 在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB 相交于点E,DF与线段AC(或AC的延长线)相交于点F. (1)如图①,若DF⊥AC,垂足为F,AB=4,求BE的长; (2)如图②,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.
∴ ∠BEC+ ∠AEN的值不变
难点突破
难点突破 5、如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的 E点处,折痕的一端G点在边BC上. (1)如图①,当折痕的另一端F在AB边上且AE=4时,求AF的长; (2)如图②,当折痕的另一端F在AD边上且BG=10时. ①求证:EF=EG;②求AF的长;
由折叠知△A1DE≌△ADE, 所以A1D=AD=1.
由 A1B+A1D≥BD,得 A1B≥BD-A1D= 5-1. 故 A1B 长的最小值是 5-1.
难点突破
2、如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度
运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边 形PABQ面积的最小值为( C )
2023年九年级数学中考压轴复习专题几何综合——动点问题课件
![2023年九年级数学中考压轴复习专题几何综合——动点问题课件](https://img.taocdn.com/s3/m/4fd083b0e43a580216fc700abb68a98271feacae.png)
∴
=
4
Rt△ADH中,AD=5,tanA= = 3
6−5
∴y与x的函数关系式为
=
∴DH=4,AH=3.在Rt△EDH中,DH=4,
25
EH=x-3,
( 6 ≤≤35)
∴DE²=DH²+EH²=4²+(x-3)²=x²-6x+
4
例题 在△ABC中,AC=25,AB =35,tanA=3,D为AC边上的一点,且AD=5 ,E,F都为AB边上的动
所以结合已知条件与所给图形进行认真分析是非常重要的,
当然这样的分析是建立在熟练运用常见图形的几何性质之上
的.
(2)类似于例题这样的几何计算型的压轴题,同学们
要切实体会解直角三角形与相似三角形在计算中所发挥的
重要作用.
(3)对于类似于例题这样的动态几何,应时刻谨记
“动静结合”、“数形结合”的处理原则,以及“分类
∴∠EDF+∠ADF=90°,即
∠ADE=90°.在Rt△ADE中,AD=5,
4
tanA= = 3
4
20
5
25
∴DE=3AD= 3 ,AE=3AD= 3
∴△EDF∽△EAD,
∴ =
∴DE²=AE·EF=x·(x一y)=x²-xy.∴x²-6x+25=x²xy
(2) 如下图,作DH⊥AE于点H,在
目录
01
研究背景
03
典型例题探究
动 态 几 何 研 究 重 要 性
总结分析动态问题处理技巧
05
02
知识脉络梳理
初中阶段几何知识梳理
04 小试能手
技 巧 ,
挑战自我
展
2020年中考数学复习 初中数学动态几何问题 (29张PPT)
![2020年中考数学复习 初中数学动态几何问题 (29张PPT)](https://img.taocdn.com/s3/m/bd23a7b5998fcc22bcd10d65.png)
(3)若△DMN是等腰三角形,求t的值.
[解析] (3)根据等腰三角形的腰的情况 进行分类讨论,从而求出t的值.
初中数学动态几何问题
动态几何问题是指以几何知识和图形为背景,蕴涵一些运动变化的 几何元素,主要研究几何图形在运动中所遵循的规律,如图形的形状、 位置、数量关系等.
就运动对象而言,有点动(点在线段或弧线上运动)、线动(直线或线 段的平移、旋转)和面动(部分图形的平移、旋转、翻折)等,而且在运动 过程中大多是动中有静,动静结合.
(3)根据题意可知,MD=12AD,DN=12DC,MN=12AC=3.
i)当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,
∴t=6;
ii)当MD=DN时,AD=DC,
1 过D作DH⊥AC交AC于H,则AH=2AC=3, ∵AC=6,BC=8, ∴AB=10,
∵cosA=AAHD=AACB=35,
例 2 已知:如图①,抛物线 y=ax2+bx+c 与 x 轴正半轴交 于 A,B 两点,与 y 轴交于点 C,直线 y=x-2 经过 A、C 两 点,且 AB=2.
(2)若直线 DE 平行于 x 轴并从 C 点开始以每秒 1 个单位的 速度沿 y 轴正方向平移,且分别交 y 轴、线段 BC 于点 E、D, 同时动点 P 从点 B 出发,沿 BO 方向以每秒 2 个单位的速度运 动.当点 P 运动到原点 O 时,直线 DE 与点 P 都停止运动,连结
位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD 的中点,连结MN,设点D运动的时间为t.
中考总复习专题三:动态几何问题
![中考总复习专题三:动态几何问题](https://img.taocdn.com/s3/m/ffdf41a3be23482fb5da4c05.png)
专题三:中考动态几何问题(第1课时)课程解读一、学习目标:了解几何动态问题的特点,学会分析变量与其他量之间的内在联系,探索图形运动的特点和规律,掌握动态问题的解题方法.二、考点分析:近几年在中考数学试卷中动态类题目成了压轴题中的常选内容,有点动、线动、图形运动等类型,呈现方式丰富多彩,强化各种知识的综合与联系,有较强的区分度,且所占分值较高,具有一定的挑战性.知识梳理几何动态问题是指:在图形中,当某一个元素,如点、线或图形等运动变化时,问题的结论随之改变或保持不变的几何问题.它是用运动变化的观点,创设一个由静止的定态到按某一规则运动的动态情景,通过观察、分析、归纳、推理,动中窥定,变中求静,以静制动,从中探求本质、规律和方法,明确图形之间的内在联系.几何动态问题关心“不变量”,所体现的数学思想方法是数形结合思想,这里常把函数与方程、函数与不等式联系起来,实际上是一般化与特殊化的方法.当求变量之间的关系时,通常建立函数模型或不等式模型求解;当求特殊位置关系或数值时,常建立方程模型求解.必要时,多作出几个符合条件的草图也是解决问题的好办法.典型例题知识点一:动点问题例 1.如图所示,在直角梯形ABCD中,CD∥AB,∠A=90°,AB=28cm,DC =24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ANMD的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是()思路分析:1)题意分析:本题涉及到的知识点主要有直角梯形、函数及其图象等.解题后的思考:本题中有两个动点,在允许的范围内某一时刻四边形ANMD 是固定不动的,可用含t的式子表示出面积y,再根据y与t之间的关系式确定函数图象.2、如图所示,已知直线31y x=-+与x轴、y轴分别交于A、B两点,以线段AB为直角边在第一限象内作等腰Rt△ABC,∠BA C=90°,且点P(1,a)为坐标系中的一个动点。
最新浙教版初中数学中考复习动态几何问题 (共46张PPT)教育课件
![最新浙教版初中数学中考复习动态几何问题 (共46张PPT)教育课件](https://img.taocdn.com/s3/m/601e41843b3567ec112d8a28.png)
24
考向三:动线问题
• 【例】如图,在矩形ABCD中,BC=2,点P是线段BC上一点,连结PA,将线段PA绕点P逆 时针旋转90°得到线段PE,平移线段PE得到CF,连结EF.问:四边形PCFE的面积是否有最大 值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.
2
考向一:动点问题——单动点问题
• 【例】如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点 与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图 象大致是( )
3
解析:
4
考向一:动点问题——单动点问题
• 【例】如图,△AOB中,∠O=90°,AO=8 cm,BO=6 cm,点C从A点出发,在边AO上以 2 cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5 cm/s的速度向O点运 动,过OC的中点E作CD的垂线EF,则当点C运动了多少秒时,以C点为圆心,1.5 cm为半径 的圆与直线EF相切?
心
安
;
书
一
笔
清
远
,
盈
一
抹
恬
淡
,
浮
华
三
千
,
只
做
自
己
;
人
间
有
情
,
心
中
有
爱
,
携
一
米
阳
光
,
微
笑
向
暖
。
口
罗
不
是
。
•
2020届中考数学专题复习-动态几何之定值问题探讨
![2020届中考数学专题复习-动态几何之定值问题探讨](https://img.taocdn.com/s3/m/0417939b5022aaea998f0fea.png)
最新2020届中考数学专题复习-动态几何之定值问题探讨动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。
前面我们已经对最值问题、面积问题、和差问题进行了探讨,本专题对定值问题进行探讨。
结合2018年和2019年全国各地中考的实例,我们从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。
一、线段(和差)为定值问题:典型例题: 例1:(2019黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R .(1)如图1,当点P 为线段EC 中点时,易证:PR+PQ= 512(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想.【答案】解:(2)图2中结论PR +PQ=125仍成立。
证明如下: 连接BP ,过C 点作CK ⊥BD 于点K 。
∵四边形ABCD 为矩形,∴∠BCD=90°。
又∵CD=AB=3,BC=4,∴2 2 22BD CD BC 345=+=+=。
∵S △BCD =12BC•CD=12BD•CK ,∴3×4=5CK ,∴CK=125。
∵S △BCE =12BE•CK ,S △BEP =12PR•BE ,S △BCP =12PQ•BC ,且S △BCE =S △BEP +S △BCP , ∴12BE•CK=12PR•BE +12PQ •BC 。
中考二轮复习数学难点 第3讲 动态几何
![中考二轮复习数学难点 第3讲 动态几何](https://img.taocdn.com/s3/m/1dd3faf8da38376baf1faee2.png)
中考数学重难点专题讲座第三讲 动态几何问题【前言】从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
在这一讲,我们着重研究一下动态几何问题的解法,第一部分 真题精讲【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题题目中出现了两个动点,很多同学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。
对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意味着BM,MC以及DN,NC都是变化的。
但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定MN//AB时,就变成了一个静止问题。
由此,从这些条件出发,列出方程,自然得出结果。
【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC即可,于是就漏掉了MN=MC,MC=CN这两种情况。
在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。
具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解【例2】在△ABC中,∠ACB=45º.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=3BC,CD=x,求线段CP的长.(用含x的式子表示)【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。
2019-2020年中考数学复习专题讲座(精编含详细参考答案14页):动点型问题.docx
![2019-2020年中考数学复习专题讲座(精编含详细参考答案14页):动点型问题.docx](https://img.taocdn.com/s3/m/7401b58d83c4bb4cf6ecd16b.png)
2019-2020年中考数学复习专题讲座( 精编含详细参考答案14 页 ) :动点型问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点, 它们在线段、射线或弧线上运动的一类开放性题目. 解决这类问题的关键是动中求静, 灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路, 这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律, 是初中数学的重要内容. 动点问题反映的是一种函数思想, 由于某一个点或某图形的有条件地运动变化, 引起未知量与已知量间的一种变化关系, 这种变化关系就是动点问题中的函数关系.(一)应用勾股定理建立函数解析式(或函数图像)例 1(2012?嘉兴)如图,正方形 ABCD的边长为 a,动点 P 从点 A出发,沿折线 A→B→D→C→A的路径运动,回到点 A 时运动停止.设点 P 运动的路程长为长为 x, AP长为 y,则 y 关于 x的函数图象大致是()A.B.C.D.思路分析:根据题意设出点P 运动的路程 x 与点 P 到点 A 的距离 y 的函数关系式,然后对x 从 0 到 2a+2 a 时分别进行分析,并写出分段函数,结合图象得出答案.解:设动点 P 按沿折线 A→B→D→C→A的路径运动,∵正方形 ABCD的边长为 a,∴BD=a,则当 0≤x< a 时, y=x,当 a≤x<( 1+) a 时, y=,当 a( 1+)≤x< a( 2+)时,y=,当 a(2+)≤x≤a( 2+2)时, y=a( 2+2)﹣ x,结合函数解析式可以得出第2, 3 段函数解析式不同,得出 A 选项一定错误,根据当 a≤x<( 1+) a 时,函数图象被P 在 BD中点时,分为对称的两部分,故 B 选项错误,再利用第 4 段函数为一次函数得出,故C选项一定错误,故选: D.点评:此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.对应训练1.( 2012?内江)如图,正△ABC的边长为 3cm,动点 P 从点 A 出发,以每秒 1cm的速度,沿 A→B→C的方向运动,到达点 C 时停止,设运动时间为2x(秒), y=PC,则 y关于 x 的函数的图象大致为()A .B .C .D .解:∵正△ ABC 的边长为 3cm ,∴∠ A=∠ B=∠C=60°, AC=3cm .如图, D 为 AB 的中点,连结 CD ,则: AD=BD=1.5( cm ), CD=33( cm )。
中考数学重难点专题讲座第三讲动态几何问题
![中考数学重难点专题讲座第三讲动态几何问题](https://img.taocdn.com/s3/m/2c482205854769eae009581b6bd97f192279bff5.png)
中考数学重难点专题讲座第三讲动态几何问题【前言】从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
在这一讲,我们着重研究一下动态几何问题的解法,第一部分真题精讲【例1】(2022,密云,一模)如图,在梯形ABCD中,AD∥BC,AD3,DC5,BC10,梯形的高为4.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t(秒).ADNBMC(1)当MN∥AB时,求t的值;(2)试探究:t为何值时,△MNC为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。
对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意味着BM,MC以及DN,NC都是变化的。
但是我们发现,和这些动态的条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定MN//AB时,就变成了一个静止问题。
由此,从这些条件出发,列出方程,自然得出结果。
【解析】解:(1)由题意知,当M、N运动到t秒时,如图①,过D作DE∥AB交BC于E点,则四边形ABED是平行四边形.ADNBEMC∵AB∥DE,AB∥MN.∴DE∥MN.(根据第一讲我们说梯形内辅助线的常用做法,成功将MN放在三角形内,将动态问题转化成平行时候的静态问题)∴∴【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC即可,于是就漏掉了MN=MC,MC=CN这两种情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学重难点专题讲座 第三讲 动态几何问题智康·刘豪【前言】第一讲和第二讲我们探讨了有关中考几何综合题的静态问题,相信很多同学已经有所掌握了。
但是静态问题的难度最多也就是中等偏上,真正让人抓狂的永远是动态问题。
从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
在这一讲,我们着重研究一下动态几何问题的解法,代数方面的动态问题我们将在第七,第八讲来解决。
由于有些题目比较难和繁琐,建议大家静下心来慢慢研究,在这些题上花越多时间,中考中遇到类似题目就会省下越多的时间。
第一部分 真题精讲 【例1】(xx ,密云,一模) 如图,在梯形中,,,,,梯形的高为.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).CM B(1)当时,求的值;(2)试探究:为何值时,为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。
对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。
但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定MN//AB 时,就变成了一个静止问题。
由此,从这些条件出发,列出方程,自然得出结果。
【解析】 解:(1)由题意知,当、运动到秒时,如图①,过作交于点,则四边形是平行四边形.AB M CNE D∵,.∴. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题)∴. (这个比例关系就是将静态与动态联系起来的关键) ∴ .解得.【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。
在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。
具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】(2)分三种情况讨论:① 当时,如图②作交于,则有即.(利用等腰三角形底边高也是底边中线的性质) ∵, ∴, ∴, 解得.AB M CNF D② 当时,如图③,过作于H . 则, ∴. ∴.AB M CN HD③ 当时, 则. .综上所述,当、或时,为等腰三角形.【例2】(xx ,崇文,一模)在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么? (3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。
由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。
【解析】:(1)结论:CF 与BD 位置关系是垂直;证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º, ∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD . ∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解。
(2)CF ⊥BD .(1)中结论成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG 可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD 【思路分析3】这一问有点棘手,D 在BC 之间运动和它在BC 延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X 。
分类讨论之后利用相似三角形的比例关系即可求出CP.(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴ , ∴, .②点D 在线段BC 延长线上运动时,∵∠BCA=45º,可求出AQ= CQ=4,∴ DQ=4+x . 过A 作交CB 延长线于点G ,则. CF ⊥BD , △AQD ∽△DCP ,∴ , ∴, .【例3】(xx ,怀柔,一模)已知如图,在梯形中,24AD BC AD BC ==∥,,,点是的中点,是等边三角形. (1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式; (3)在(2)中,当取最小值时,判断的形状,并说明理由.【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。
第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。
第二问和例1一样是双动点问题,所以就需要研究在P,Q 运动过程中什么东西是不变的。
题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关G AB C D EF A D C B P MQ 60系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢? 当然是利用角度咯.于是就有了思路. 【解析】(1)证明:∵是等边三角形∴60MB MC MBC MCB ===︒,∠∠ ∵是中点 ∴ ∵ ∴ ∴ ∴∴梯形是等腰梯形. (2)解:在等边中,∴120BMP BPM BPM QPC +=+=︒∠∠∠∠ (这个角度传递非常重要,大家要仔细揣摩) ∴ ∴ ∴ ∵ ∴∴ ∴(设元以后得出比例关系,轻松化成二次函数的样子)【思路分析2】第三问的条件又回归了当动点静止时的问题。
由第二问所得的二次函数,很轻易就可以求出当X 取对称轴的值时Y 有最小值。
接下来就变成了“给定PC=2,求△PQC 形状”的问题了。
由已知的BC=4,自然看出P 是中点,于是问题轻松求解。
(3)解: 为直角三角形 ∵∴当取最小值时, ∴是的中点,而 ∴ ∴以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。
如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。
当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.【例4】xx ,门头沟,一模已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接. (1)直接写出线段与的数量关系;(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)图3图2图1FEABCDABCDEFGGFED CBA【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。
从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。
第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。
第二问将△BEF 旋转45°之后,很多考生就想不到思路了。
事实上,本题的核心条件就是G 是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。
连接AG 之后,抛开其他条件,单看G 点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF 的垂线。
于是两个全等的三角形出现了。
(1)(2)(1)中结论没有发生变化,即.证明:连接,过点作于,与的延长线交于点. 在与中, ∵AD CD ADG CDG DG DG =∠=∠=,,,∴. ∴. 在与中,∵DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,, ∴. ∴在矩形中,在与中, ∵, ∴. ∴. ∴M N图2ABCDEFG【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。
但是我们不应该止步于此。
将这道题放在动态问题专题中也是出于此原因,如果△BEF 任意旋转,哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。
建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:在△BEF 的旋转过程中,始终不变的依然是G 点是FD 的中点。
可以延长一倍EG 到H ,从而构造一个和EFG 全等的三角形,利用BE=EF 这一条件将全等过渡。
要想办法证明三角形ECH 是一个等腰直角三角形,就需要证明三角形EBC 和三角形CGH 全等,利用角度变换关系就可以得证了。
(3)(1)中的结论仍然成立.G图3FEABCD【例5】(xx ,朝阳,一模)已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处.(1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值;(3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就是轴对称)也是一大热点。
这一题是朝阳卷的压轴题,第一问给出比例为1,第二问比例为2,第三问比例任意,所以也是一道很明显的从一般到特殊的递进式题目。