平面的概念--平面的基本性质

合集下载

§14.1 平面及其基本性质

§14.1 平面及其基本性质
Ⅰ.基础知识§14.1 平面及其基本性质
一、 平面的基本概念
1.平面的概念:非常“平”,且无限延展的
2.平面的特征:面 ①.无厚度;②无边界;③在空间无限延展.
3.平面的记法:
①可用一个大写的英文字母或小写的希腊字母表示平面.
②可用三个(或三个以上)点的字母表示平面.
4.平面的画法:画平行四边形来表示平面.
(2)证明点在直线上.(证明点是两个平面的公共点,直线 是两个平面的交线即可)
(3)证明多点共线.பைடு நூலகம்证明这些点是两个平面的公共点, 则它们必在两个平面的交线上)
Ⅰ.基础知识§14.1 平面及其基本性质
二、 平面的基本性质
3.公理3: 不在同一直线上的三点确定一个平面.
α
A
B
C
推论1:
A
一条直线和直线外的一点确定一个平面α.
α
A
b
直线均在此平面内即可.) (3)证明多点共面.(证明这些点在共面的直线即可.)
Ⅱ.例题选讲§14.1 平面及其基本性质 例1 用集合符号表示语句“直线l经过平面α外
M
一点M和平面α内一点N”.并画出图形.
M , N , M l, N l.
α
N
例2 若空间中有四个点,则“这四个点中有三个在同一 直线上”是“这四个点在同一平面上”充的分_不__必__要_______
1.公理1: 如果直线 l 上有两个点在平面α上,那么
直线 l 在平面α上.
若A l, B l,且A , B , α
l
则 l .
①公理1的实质: 公理1是判定直线在平面上的依据.
②公理1的应用: (1)证明直线在平面上.(只要证明直线上两点在平面上)

平面的基本性质

平面的基本性质

∴过不共线的三点A,B,C有一个平面 (公理3)
∵B∈ ,C∈ ∴a (公理1)
∴过点A和直线a有一个平面
(唯一性)
又由公理3,经过不共线的三点A、B、C的平面
只有一个 ∴经过a和平点面的A基本的性质平面只有一个.
推论2.两条相交直线唯一确定一个平面。
a
βb
C
数学语言表示:
直 线 a bC 有 且 只 有 一 个 平 面 , 使 得 a, b.
平面的基本性质
一.平面的概念:
光滑的桌面、平静的湖面等都是我们熟悉的 平面形象,数学中的平面概念是现实平面加以抽 象的结果。
二.平面的特征:
观察思考
平面没有大小、厚薄和宽窄,平面在空间是 无限延伸的。
三.平面的表示方法:
平面可以用小写的希腊字母或大写的英文字 母表示,也可以用三个或三个以上字母表示。
察 思
问题2 如图,两个平面只有一个公共点,是吗? 考
?
问题3 照相机架为什么只有三只脚?自行车只用
一只撑脚?
平面的基本性质
公理一:如果一条直线上的两点在一个平面内, 那么这条直线上的所有点都在这个平面内
BAAB
B A α
l
如果直线l 上所有点都在平面α内就说直线l在平 面α内,或者说平面α经过直线l,否则,就说直 线l在平面α外 应用:
平面的基本性质
推论3.两条平行直线唯一确定一个平面。
βA
Ba b
C
数学语言表示:
直 线 a//b 有 且 只 有 一 个 平 面 , 使 得 a, b.
思考1:不共面的四点可以确定多少个平面? 思考2:四条相交于同一点的直线a,b,c,d并且任意三条都不在同一平 面内,有它们中的两条来确定平面,可以确定多少个平面。

平面的基本性质

平面的基本性质

三、平面的基本性质:
公理1 : 如果一条直线的两点在一个平面内,那么这条
直线上所有点都在这个平面内
A l, B l, A , B l

A•
•B
l
想一想:这个公理有什么作用?
1.检验物体的表面是否平整 2.判断一条直线是否在一个平面内
3.判断点是否在一个平面内
P l且P l
•A
B•
•C
想一想:哪些现象可以用来说明公理3?
1、三脚的板凳才能坐稳! 2、两块合铁和一把锁才能固定门! 3、照相机的支架是三条腿!
A, B, C不共线 A, B, C确定一平面
练习
1.正方体的各顶点如图所示,正方体的三个面所在平 面 A1C1 , A1B, BC1 ,分别记作、、 ,试用适当的符号填 空.
小结:
1、平面的概念及表示方法。
2、平面的基本性质(三个公理)及其作用。
作业:
预习公理的推论1、2、3
/ 博王时彩计划软件
敢咯 那 那时候别早咯 奴婢那就服侍您歇息吧 ”菊香の前半句话王爷还没什么在意 壹听到她那那后半句话 气得差点儿上去给她壹巴掌!自从他决定回怡然居之后 壹直在 搜肠刮肚地选择用啥啊样の委婉词语来与淑清告别 既别能太伤她の心 又能够安然脱身 结果还别等他想出法子来呢 那各可恶の菊香 竟然是哪壶别开提哪壶 直接就要来服侍 他歇息!真是要将他活生生气死!第壹卷 第899章 清白既然菊香已经红口白牙地提出来服侍他安歇就寝事宜 被逼到绝境之中没处躲没处藏の王爷只好硬着头皮开口道: “爷那壹遭被吵醒 也睡别着咯 打算回去看看书 您家主子还病着 爷看书会影响她养病 那 爷那就走咯 服侍您家主子好好休息 ”菊香唱咯壹晚上の独角戏 最终还是没能将 他留下 淑清本就是在病中 再见他竟是那般绝情 别禁悲从心来 壹晚上都没什么开口の她终于忍别住喊咯壹声:“爷!”然后她就再也说别出来壹句话 只是用壹双眼睛泪汪 汪地望向他 见病中の淑清如此楚楚可怜の样子 就那么走开实在是太过残忍 于是 狠别下心来の他只好又坐回床侧 替她掖咯掖被角 好言相劝道:“别哭咯 那还病着呢 又得 哭坏咯身子!就是有些风寒 没什么啥啊大碍 好好养着 按时喝药 另外 现在天凉咯 别总去院子里 有啥啊事情让菊香去做 爷要是过来 自会让秦顺儿传话 您那么去等 能等 来啥啊?还别是把身体弄坏咯?”“爷 妾身就是忍别住想去看看 都快壹各月没什么见到您咯 那心里实在是别踏实 ”“您の心思 爷自然晓得 只是……”只是啥啊呢?他别 想让淑清更伤心 没什么说出口 于是他就那么靠在床边 陪着淑清 而淑清因为本身就在病中 又喝咯药 经过壹晚上の折腾 终于体力渐渐别支 耗咯将近壹各时辰 也就渐渐地 睡咯下去 见淑清终于睡安稳咯 他才如释重负般地悄悄起身 出咯烟雨园 他犹豫咯壹下 回朗吟阁还是怡然居?回怡然居肯定是要搅咯水清の睡眠 她の睡眠壹直很差 睡眠别 好就导致精神差 所以身子才会那么赢弱 形成咯壹各恶性循环の老大难问题 可是回朗吟阁の话 他是跳进黄河也洗别清咯 他可以指天发誓 秦顺儿可以亲口作证 但是水清完 全可以别相信!她又没什么亲眼见到他在朗吟阁 她凭啥啊相信?他跟她打咯九年の交道 她有の时候极明事理 以壹各知书达礼大家闺秀の形象卓而别群 可是有些时候 她竟 然也会蛮别讲理 与壹般妇人别无两样 特别是对待他の那些诸人们の时候 在他用“燕子诗”向她真情告白时候 她竟然用“小檐日日燕飞来”嘲讽奚落他 让他陷入百口莫辩 の被动局面 虽然事后他别停地向她解释 啥啊“秋来只为壹人长” 啥啊“壹汀烟雨杏花寒” 水清统统壹概别予理会 最后将她逼急咯 竟然给他来咯壹各“息燕归檐静 飞花 落院闲” 彻底逃跑咯!任他再教上悠思上百句燕子诗 终是没什么挽回她の心 那各时候她还只是凭空想象他那些莫须有の“朝憎莺百啭、夜妒燕双栖”の罪名 就敢蛮别讲理 胡搅蛮缠 而现在 已经有咯菊香那各确凿の人证物证 他还怎么可能抵赖得掉?第壹卷 第900章 温暖 在打扰水清睡眠和证明自己清白那壹对矛盾问题の反复权衡之下 他终 于选择咯回怡然居 他怕她又从他の掌心逃跑咯 以前她の每壹次逃跑 都是他姑息纵容の结果 也是担心将她逼得太紧咯 原本他在水清心目中の形象就别佳 若是追她追得太紧 再在她印象中留下壹各无耻好色之徒の恶名 更是要弄巧成拙 导致两各人关系更加恶化 无可奈何之下 每壹次他都眼睁睁地看着她从他の掌心中溜走 任由她绝决地离去 却是 壹丁点儿都别敢对她用强 当然 除咯在香山 那壹次 他是真真地被她气着咯 第壹次对她动用咯武力 而现在 当他品尝到如此甜美の爱情之后 再也别想将风筝の线放得太长 他怕自己手中の那根线 禁别住狂风暴雨の袭击而折断 徒留追悔莫及 虽然只是短短の十三天 却让他有壹种前二十多年都白活咯の感觉 从前 诸人对他而言只是诸人 而现在 他既将水清当作自己の诸人 更将

平面的基本性质

平面的基本性质

三、平面的基本性质: 平面的基本性质:
公理1:如果一条直线的两点在一个平面内 那么这条直线上 公理 如果一条直线的两点在一个平面内,那么这条直线上 如果一条直线的两点在一个平面内 的所有点都在这个平面内. 的所有点都在这个平面内 这时我们说直线在平面内或平面经过直线. 注 : ①这时我们说直线在平面内或平面经过直线 ②符号表示:若A∈l, B∈l,A∈α, B∈α, 则 l ⊂ α . 符号表示 若 ∈ ∈ ∈ ∈ 是借用集合的符号,点 不在直线 不在直线l上 直线 直线l不 ③∈, ⊂ 是借用集合的符号 点A不在直线 上,直线 不 内记作什么? 在平面α内记作什么 A∉l l⊄α ∉ ⊄ 作用: 判断直线在平面内的依据 直线在平面内的依据. ④作用 判断直线在平面内的依据
α
A B
公理2:如果两个平面有一个公共点 那么它们还有其它公 公理 如果两个平面有一个公共点,那么它们还有其它公 如果两个平面有一个公共点 共点,这些公共点的集合是一条直线 这些公共点的集合是一条直线. 共点 这些公共点的集合是一条直线 对于不重合的两个平面,只要它们有公共点 只要它们有公共点,它们就是相 注: ①对于不重合的两个平面 只要它们有公共点 它们就是相 交的位置关系,交集是一条直线 且交线有且只有一条.) α 交集是一条直线.(且交线有且只有一条 交的位置关系 交集是一条直线 且交线有且只有一条 符号表示:若 ∈ ②符号表示 若P∈α, P∈ β ,则 α ∩ β =l且P∈l . ∈ 且 ∈ A 作用:判断两个平面相交的依据 找两个平面的交线, 判断两个平面相交的依据,找两个平面的交线 ③作用 判断两个平面相交的依据 找两个平面的交线, 证明点共线或线共点的依据。 证明点共线或线共点的依据。 公理3:经过不在同一条直线上的三点有且只有一个平面 经过不在同一条直线上的三点有且只有一个平面. 公理 经过不在同一条直线上的三点有且只有一个平面 注: ①过一点、两点或一直线上的三点都可以有无数个平面, 过一点、两点或一直线上的三点都可以有无数个平面 过不在同一直线上的四点不一定有平面. 过不在同一直线上的四点不一定有平面 ②“有 是说明图形存在,即存在性 只有一个” 即存在性;“ ②“有”是说明图形存在 即存在性 “只有一个”说明图 形唯一,即唯一性 本定理强调的是存在和唯一两方面. 即唯一性;本定理强调的是存在和唯一两方面 形唯一 即唯一性 本定理强调的是存在和唯一两方面 符合某一条件的图形既然存在且只有一个,说明图形 ③符合某一条件的图形既然存在且只有一个 说明图形 是确定的,因此 有且只有一个” 因此“ 确定”是同义词; 是确定的 因此“有且只有一个”和“确定”是同义词 过不共线三点A、 、 的平面又可记为 平面ABC”; 的平面又可记为“ ④过不共线三点 、B、C的平面又可记为“平面 ” 作用:确定平面的依据 证明两个平面重合的依据. 确定平面的依据.证明两个平面重合的依据 ⑤作用 确定平面的依据 证明两个平面重合的依据

2014年职高数学第一轮复习 平面的概念及基本性质

2014年职高数学第一轮复习 平面的概念及基本性质

三.异面直线所成的角
复习回顾 在平面内,两条直线相交成四 个角, 其中不大于90度的角称为它 们的夹角, 用以刻画两直线的错开 程度, 如图. 问题提出 在空间,如图所示, 正方体 ABCD-EFGH中, 异面直线AB
O
H E F
G
与HF的错开程度可以怎样来刻
画呢?
D A
B
C
解决问题
思想方法 : 平移转化成相交直线所成的角,即化空间图形问题为平面图形问题
已知: c, a,
b, a b O
求证:O c

c
O
证明:
a
b
O b,b , O O a,a , O
O在与的交线上,

O c 又 c,
练.判断下列命题是否正确: (1)经过三点确定一个平面。 (×) (2)经过同一点的三条直线确定一个平面。 (×) (3)若点A 直线a,点A 平面α,则a α. (×) (4)平面α与平面β相交,它们只有有限个公共点。(×)
o
o
思考 : 这个角的大小与O点的位置有关吗 ? 即O点位
置不同时, 这一角的大小是否改变?
练习3
下图长方体中 (1)说出以下各对线段的位置关系?
① EБайду номын сангаас ② BD ③BH
H E D A B F
G
和BH是 和FH是 和DC是
相交 平行 异面
直线 直线 直线
C
(2).与棱 A B 所在直线异面的棱共有 4 条?
分别是 :CG、HD、GF、HE
课后思考:
这个长方体的棱中共有多少对异面直线?
巩固: 1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.

平面的基本性质

平面的基本性质
答:因为不共线旳三点能够拟定一种平面.
D
C
A
B
符号表达:一般用希腊字母 , , 等来表示, 如:平面
也可用表达平行四边形旳两个相对顶点旳字母来
表达,如:平面AC,平面ABCD
一种平面在不同旳摆放状态下旳画法
四.点、直线、平面之间旳基本关系
空间图形旳基本元素是点、直线、平面, 从运动旳观点看,点动成线,线动成面,从而 能够把直线、平面看成是点旳集合.所以,它 们之间旳关系除了用文字和图形表达外,还能 够借用集合中旳符号语言来表达.
文字语言:
公理2.假如两个平面有一种公共点,那么它们还有 其他公共点,这些公共点旳集合是经过这个公共点 旳一条直线。
图形语言:
β
a
α
P
符号语言:P PFra bibliotekl且P l
公理2旳作用有二:
一是鉴定两个平面相交,即假如两个平面有一种 公共点,那么这两个平面相交;(画交线)
二是鉴定点在直线上,即点若是某两个平面旳公 共点,那么这点就在这两个平面旳交线上.
假如把桌面看作一种平面,把你旳笔看作 是一条直线旳话,你觉得在什么情况下, 才干使你旳笔所代表旳直线上全部旳点都 能在桌面上?
··
文字语言: 公理1.假如一条直线上两点在 一种平面内,那么这条直线上 旳全部旳点都在这个平面内 (即直线在平面内)。
图形语言:
α
A
B
符号语言: A B
直线AB
平面旳基本性质(1)
一.平面旳概念:
光滑旳桌面、平静旳湖面等都是我们很熟悉. 象这些桌面、平静旳湖面、镜面、黑板面等都
给我们以平__面__旳印象
数学中旳平面概念是现实平面加以抽象旳成果。

1.2.1平面的基本性质

1.2.1平面的基本性质

例题讲解
例2、在长方体A C1中, P为棱BB1的中点, 画出 由A1 ,C1 ,P三点所确定的平面 与长方体 表面的交线.
D1 A1 D A B1 P B C C1
D1 A1 D A B1 P B
C1
C
例题讲解
例3、两两相交且不同点的三条直线必在同一个平面内 已知:AB∩AC=A, AB∩BC=B, AC∩BC=C
D A B C
D1
C1 B1
A1
3.根据下列符号表示的语句,说出有关 点、线、面的关系,并画出图形.
(1) A , B (2)l , m
(3) l
(4) P l , P , Q l , Q
4填空
点A在直线l上 点A在直线l外 点A在平面 内 点A在平面 外 直线l在平面 内 直线l在平面 外
推论1 经过一条直线和这条直线外一点,有且只有 一个平面. B a 已知:点A a. A C
推论2.两条相交直线唯一确定一个平面。
a
β
b
C
数学语言表示:
直线a b C 有且只有一个平面, 使得a ,b .
推论2的证明
推论2:经过两条相交直线,有且只有一个平面。 已知:直线a与b交与A 求证:经过直线a、b有且只有一个平面α。 【证明】(存在性)如图所示,在直线a,b上分别 取不同于点A的点C、B,得不在同一直线上的三 点A、B、C,过这三个点有且只有一个平面α(公 理2)。又 (公理1) 所以平面α是过相交直线a,b的平面。
B
A
C
求证:直线AB,BC,AC共面. 证法一: 因为AB∩AB=A 所以直线AB,AC确定一个平面.(推论2) 因为B∈AB,C∈AC,所以B∈,C∈, 故BC.(公理1) 因此直线AB,BC,CA共面.

平面基本性质.ppt

平面基本性质.ppt

• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
a__lP, b__l_P
例题讲解
例2、求证:两两相交且不过同一个点的三条 直线必在同一平面内。
A C
B
已知 :如图 ,直线 AB、BC、CA两两相交 交 变 直线式点 ”:,如分 果命题条A别 还件、成改B为 、 立为C 吗“。 ?交于同一点的三条 求证:A直B、 线 BC、CA共面。
思考探究
。2020年11月9日星期一2020/11/92020/11/92020/11/9
• 15、会当凌绝顶,一览众山小。2020年11月2020/11/92020/11/92020/11/911/9/2020
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/11/92020/11/9November 9, 2020
P
l
P
P 且 P l且 P l
作用:用来判定两个平面相交或点在直线上。
例题讲解
B
A
l
a (1)
பைடு நூலகம்
b
lP
a
(2)
例1、如上图,用符号表示图形中点、直线、 平面之间的位置关系。

14.1平面及其基本性质

14.1平面及其基本性质

a b
14.1平面及其基本性质(1)
例1、正方体的各顶点如图所示,正方体的三个面所在平
面 A1C1,A1B1,B1C1,分别记作、、,试用适当的符号填空.
(1)A1______, _B1_______ (2)B1______, _C1_______ (3)A1______,_D1 _______
14.1平面及其基本性质(1)
❖ (二)平面的表示方法:
❖ 1、几何表示:

水平放置①:

正视垂直放置②: ② 侧视垂直放置③:
❖ 2、符号表示:
(1)直线AB,直线l,直线a
(2)平面ABCD(顶点字母),
平面αβγ(小写的希腊字母),平面M、N
❖ 3、点、线、面的位置关系(借用集合符号)
14.1平面及其基本性质(1)
❖ 例4、空间三个点能确定几个平面? 空间四个点能确定几个平面?
❖ 例5、 空间三条直线相交于一点,可以确定几个平面? 空间四条直线相交于一点,可以确定几个平面?
❖ 例6、两个平面可以把空间分成________部分, 三个平面呢?_________________。
三条直线相交于一点,可以确定几个平面?

m
(3) l
P

(4)P l,P ,Q l,Q
Q
14.1平面及其基本性质(1)
例3、如图,正方体 ABCDA1B1C1D 1,E,F分别是
B1C1, BB1的中点,问:直线EF和BC是否相交;
如果相交,交点在哪几个平面内?
D1
C1
A1
B1 E
DF C
A
B
14.1平面及其基本性质(1)
(4)_____A _1B_ 1 ______B_1B

数学曲面和平面的概念

数学曲面和平面的概念

数学曲面和平面的概念一、平面的概念1. 定义- 在人教版高中数学教材中,平面是一个不加定义的基本概念。

它是一个无限延展的、非常平的面。

例如,平静的湖面、桌面等都可以给我们以平面的局部形象。

我们通常用平行四边形来表示平面,当平面水平放置时,通常把平行四边形的锐角画成45°,横边画成邻边的2倍长。

2. 平面的基本性质- 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内- 符号表示:若A∈ l,B∈ l,且A∈α,B∈α,则l⊂α。

这一公理可以用来判断直线是否在平面内。

例如,在长方体ABCD - A'B'C'D'中,如果A∈平面ABCD,B∈平面ABCD,那么直线AB⊂平面ABCD。

- 公理2:过不在一条直线上的三点,有且只有一个平面- 这一公理也被称为确定平面的依据。

照相机的三脚架,三个脚不在同一条直线上,就可以确定一个平面。

不共线的三点A、B、C确定的平面可以记为平面ABC。

- 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线- 符号表示:若P∈α∩β,则α∩β = l且P∈ l。

在教室中,天花板和墙面相交,它们有一条公共的交线,这就是公理3的体现。

3. 平面的表示方法- 通常用希腊字母α、β、γ等表示平面,如平面α、平面β;也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面ABCD或者平面AC。

二、曲面的概念1. 定义- 曲面是一种不同于平面的几何图形,它是空间中弯曲的面。

例如,圆柱的侧面、圆锥的侧面、球面等都是曲面。

曲面可以看成是一条动线(直线或曲线)在空间连续运动所形成的轨迹。

2. 常见曲面的例子- 圆柱面- 圆柱面可以看作是一条平行于定直线并绕定直线旋转一周所形成的曲面。

将一个矩形绕着它的一条边旋转一周就可以得到一个圆柱面。

设矩形ABCD,边AD绕着AB边旋转一周,AD运动的轨迹就是一个圆柱面。

平面的基本性质课件

平面的基本性质课件
边相等、角相等的多边形。
性质
正n边形的内角和总是等于(n-2) × 180度。
三角形及其性质
1
定义
由三条线段连接的图形。
2
等边三角形
三条边相等的三角形。
3
等腰三角形
两边相等的三角形。
直角三角形及其性质
定义 勾股定理 特殊直角三角形
一个角为90度的三角形。 直角三角形的斜边的平方等于两腰的平方和。 45-45-90三角形和30-60-90三角形。
平面上任意两点可确定一条直线,平面上的三个点不共线,可确定一个平面,且任意两 个平面相交于一条直线。
3 平行性质
平面上的两条直线要么相交于一点,要么平行。
平面图形的分类
三角形
由三条线段连接的图形。
四边形
由四条线段连接的图形。

由一个固定点到平面上任意一点 的距离相等的点的集合。
正多边形及其性质
定义
运用平面图形基本性质的例题
通过解决一些实际问题,我们将学习如何运用平面图形的基本性质。
平面的基本性质ppt课件
这个PPT课件将帮助您了解平面的基本性质,包括平面的定义和分类,各种图 形及其性质,三角形的角度定理,四边形的性质以及圆的性质和周长面积计 算。
什么是平面?
平面是一个无限延伸的二维空间,由无数个点和直线组成。
平面的基本定义和性质
1 定义
平面由至少三个不共线的点确定。
2 性质
四边形及其性质
定义
由四条线段连接的图 形。
正方形
四条边相等,四个角 都是90度。
矩形
有四个角都是90度的 四边形。
平行四边形
没有角度为90度的四 边形。
圆及其性质

平面的基本性质(3课时)

平面的基本性质(3课时)

(3)相交两平面:
β B α α A
β B A
α β a A 图2 α a β B
四.用数学符号来表示点、线、面之间的位置关系: 用数学符号来表示点、 面之间的位置关系: (1)点与直线的位置关系: (1)点与直线的位置关系: 点与直线的位置关系 记为: 点A在直线a上: 记为:A∈a 在直线a 记为: 点B不在直线a上: 记为:B∈a 不在直线a (2)点与平面的位置关系: (2)点与平面的位置关系: 点与平面的位置关系 记为: 点A在平面α内: 记为:A∈α 在平面α 记为: 点B不在平面α上: 记为:B∈ α 不在平面α
可以用来检验某一个面是否为 (2)公理 可以用来检验某一个面是否为 )公理1可以用来 平面,检验的方法为: 平面,检验的方法为:把一条直线在面内 旋转,固定两个点在面内后, 旋转,固定两个点在面内后,如果其他点 也在面内,则该面为平面。 也在面内,则该面为平面。
将一把直尺置于桌面上, 将一把直尺置于桌面上,通过是否漏光 就能检查桌面是否平整. 就能检查桌面是否平整.
三条直线相交于一点, 三条直线相交于一点,用其中的两条确定 可以确定3个 平面,最多可以确定 平面,最多可以确定 个。
4条直线相交于一点时: 条直线相交于一点时: 条直线相交于一点时
)、4条直线全共面时 (1)、 条直线全共面时 )、 )、有 条直线共面时 (2)、有3条直线共面时 )、 )、每 条直线都确定 (c)、每2条直线都确定 )、 一平面时
A 反证法 D B C
填空题: 填空题
(1)三条直线相交于一点,用其中的两条确定平面, 三条直线相交于一点,用其中的两条确定平面, 最多确定的平面数是_______; 最多确定的平面数是 四条直线相交于一点呢?_____________ ?_____________。 四条直线相交于一点呢?_____________。

平面的基本性质及三大公理ppt课件

平面的基本性质及三大公理ppt课件
直线与平面的关系:l ,l
如果要把一根木条固定在墙 面上,至少需要几个钉子?
文 公理1:如果一条直线上的
字 两个点在平面内,那么这条
语 言
直线上所有的点都在这个 图形语言
平面内.

α AB

Al, B l, A, B
直AB
语 言
关键词: 两作点用, :用所有来证明或
证明: AB , AC
B,C BC
你骑车放学回家了,到家时如何才 能把自行车停稳?
B
A
C
公理2经过不在同一直线上的 三点有且只有一个平面.
B
α 。A
C
表示为:
A、B、C不共线 A、B、C确定一个平面 .
推论1:过直线和直线外一点,有且只有 一个平面.
推论2:过两条相交直线,有且只有一 个平面 .
例题
一、平面的概念
平面和点、直线一样,它是构成空间图形的基 本要素之一,是一个只描述而不定义的原始概念.
(1)数学中所说的平面在空间是无限伸展的(直 线是无限延伸的)
(2)平时接触到的平面实例都只是平面的一部分
1.平面的基本概念:
几何里的平面的特征:
1.平 2.无限延展 3.不计厚薄
(不是凹凸不平) (没有边界)
(没有质量)
二、平面的画法
直线是无限延伸的,通常我们画出直线的一部 分来表示直线,同样地,我们也可以画出平面的一 部分来表示平面.
通常用平行四边形来画平面 1、一个平面在不同的摆放状态下的画法
当 平 面 水 平 放 置 的 时,候 通 常 把 平 行 四 边 形 的 锐 角 画 成4 5
2、两个平面在不同的位置关系下的画法

平面的基本性质

平面的基本性质

平面的表示:希腊字母 、、 用平行四边形的两个对 顶点的字母
D
C
可写为:

A B
、、
平面ABCD或平面AC或平面BD
四、点、直线、平面的关系
把点作为基本元素,于是直线、平面都作为 “点的集合”,所以:
点与直线的关系: l , B l A 点与平面的关系: , B A 直线与平面的关系: , l l
B A三点,有且只有一个平面.
B α 。A C
表示为 : A、B、C不共线 A、B、C确定一个平面 .
推论1:经过一条直线和这条直线外一点, 有且只有一个平面.
推论2:经过两条相交直线,有且只有 一个平面 .
推论3:经过两条平行直线,有且只 有一个平面.
作用:作辅助平面;证明平面的唯一性
二、平面的画法
直线是无限延伸的,通常我们画出直线的一部 分来表示直线,同样地,我们也可以画出平面的一 部分来表示平面. 通常用平行四边形来画平面
1、一个平面在不同的摆放状态下的画法
当平面水平放置的时候 ,通常把 平行四边形的锐角画成45
2、两个平面在不同的位置关系下的画法
三、平面的表示
点的表示:大写的英文 A、B、C 字母 直线的表示:小写的英 文字母l、m、n
问题1 (1)两个平面可将空间分成 : 几部分? (2)三个平面可将空间分成 几部分?
问题1 (1)不共面的四个点可确定 : 几个平面? (2)四个点可确定几个平面 ? (3)三条直线两两平行可确 定几个平面?
(4)三条共点的直线可确定 几个平面?
(5)三条两两相交的直线可 确定几个平面?
问题2 : 如图,l1 // l2 , l l1 A, l l2 B, 求证:直线l、l1、l2共面。

第1讲平面及其基本性质讲义

第1讲平面及其基本性质讲义

平面及其基本性质知识点1 平面的概念平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象指出: 平面的两个特征:①无限延展②平的(没有厚度)。

平面的表示:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形对角顶点的字母来表示。

平面的画法:在立体几何中,通常画平行四边形来表示平面。

一个平面,通常画成水平放置,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长。

两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。

集合中“∈”的符号只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。

知识点2 公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂.知识点3 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:符号语言:P ∈α,且P ∈β⇒α∩β=l ,且P ∈l .知识点4 公理3 经过不在同一条直线上的三点,有且只有一个平面指出:符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 一条直线和直线外的一点确定一个平面.(证明见课本)指出:推论1的符号语言:A a ∉⇒有且只有一个平面α,使得A α∈,l α⊂推论2 两条相交直线确定一个平面推论3 两条平行直线有且只有一个平面三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 求证:两两相交而不通过同一点的四条直线必在同一平面内。

例3 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.例4 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行.求证:l 1、l 2、l 3相交于一点.基础练习:一、选择题:1.下面给出四个命题: ①一个平面长4m, 宽2m; ②2个平面重叠在一起比一个平面厚; ③一个平面的面积是25m 2; ④一条直线的长度比一个平面的长度大, 其中正确命题的个数是( )A. 0B.1C.2D.32.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( ) A、N α∈∈a B、N α⊂∈a C、N α⊂⊂a D、N α∈⊂a3.A,B,C表示不同的点,a, 表示不同的直线,βα,表示不同的平面,下列推理错误的是( ) A.A ααα⊂⇒∈∈∈∈ B B A ,;,B.βαβαβα⋂⇒∈∈∈∈B B A A ,;,=ABC.αα∉⇒∈⊄A A ,D.A,B,C α∈,A,B,C β∈且A ,B ,C 不共线α⇒与β重合4. 空间不共线的四点,可以确定平面的个数为( )A.0 B.1 C.1或4 D. 无法确定5. 空间 四点A ,B ,C ,D 共面但不共线,则下面结论成立的是( )A. 四点中必有三点共线 B. 四点中必有三点不共线C. AB ,BC ,CD ,DA 四条直线中总有两条平行D. 直线AB 与CD 必相交6. 空间不重合的三个平面可以把空间分成( )A. 4或6或7个部分B. 4或6或7或8个部分C. 4或7或8个部分D. 6或7或8个部分7.下列说法正确的是( )①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.A. ①②③B. ②③④C. ③④D. ②③8.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( )A. 1B.1或3C. 1或2或3D.1或 4二、填空题:9.水平放置的平面用平行四边形表示时,通常把横边画成邻边的___________倍.10.设平面α与平面β交于直线 , A αα∈∈B ,, 且直线AB C =⋂ ,则直线AB β⋂=_____________.11.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .12.直线AB 、AD α⊂,直线CB 、CD β⊂,点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上.三、解答题:13.判断下列说法是否正确?并说明理由.(1)平行四边形是一个平面; (2)任何一个平面图形都是一个平面;(3)空间图形中先画的线是实线,后画的线是虚线.14.如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG交于点O. 求证:B、D、O三点共线.15.证明梯形是平面图形。

《平面的基本性质》课件

《平面的基本性质》课件

平面解析几何在实际问题中的应用案例
物理学中的应用
在物理学中,许多概念和公式可以通过平面解析几何来描述和解 释,例如力学、电磁学和光学中的许多概念。
工程学中的应用
在工程学中,平面解析几何被广泛应用于机械设计、建筑设计、航 空航天等领域。
计算机图形学中的应用
在计算机图形学中,平面解析几何是生成和处理二维图形的基础, 例如在游戏开发、动画制作和计算机视觉等领域的应用。
THANKS FOR WATCHING
感谢您的观看
平面与几何体的关系
总结词
平面是几何体的重要组成部分,它可以作为几何体的边界或 表面。
详细描述
在几何学中,许多常见的几何体都是由平面构成的。例如, 长方体的每个面都是一个平面,球体的表面也是一个平面。 此外,平面还可以用来定义其他几何体的形状和大小,例如 通过平面的交线来定义三维空间的形状。
CHAPTER 02
平面上的直线的方程
两点式方程
通过平面上两点的坐标,可以求出直 线的方程。
点斜式方程
已知直线上的一个点和直线的斜率, 可以求出直线的方程。
平面上的点与直线的位置关系
点在直线上
如果一个点的坐标满足直线的方程,则该点在直线上。
点在直线外
如果一个点的坐标不满足直线的方程,则该点在直线外。
CHAPTER 04
与线性代数的联系
线性代数提供了研究平面几何对象 (如向量、矩阵和线性变换)的工 具。
平面解析几何的发展历程与未来展望
发展历程
从早期的欧几里得几何到文艺复兴时 期的笛卡尔几何,再到现代的解析几 何,平面解析几何经历了漫长的发展 历程。
未来展望
随着数学和其他学科的发展,平面解 析几何将继续发展,与其他数学分支 的交叉将更加深入,新的研究方法和 视角也将不断涌现。

平面的基本性质

平面的基本性质

平面的基本性质什么是平面?平面是指没有厚度的、笔直无限延伸的二维图形,它具有无限条直线,任意两条直线都可以被平面内一条直线所交叉,从而产生无限多个交点。

在平面上可以进行各种几何操作,如画直线、画线段、画射线、作图等。

平面的基本性质定义平面有以下基本性质:1.任意两点间只有一条直线与这两点相连。

2.任意一直线上有无数个点。

3.任意两条直线可以相交并在交点处确定一条平面。

4.三点不共线的情况下,可以确定一个唯一的平面。

相关概念在介绍平面的基本性质之前,我们需要先了解一些与平面相关的基础概念。

直线直线是无限长度、无限延伸的线段,任意一点到直线的距离都相等,直线上的任意两点可以通过直线相连。

线段线段是有限长度的部分直线,线段两端点可以通过线段连接。

射线射线是由一个起点开始,只有一个方向的无限长度的直线。

交点两条不平行的直线相交时,它们的交点是这两条直线的交点。

共面如果三个或多个点在同一个平面上,则这些点共面。

基本性质解析性质一:任意两点间只有一条直线与这两点相连。

任意两点之间距离不为零,因此这两点之间只能画出一条直线连接它们。

性质二:任意一直线上有无数个点。

对于一条直线上任意两点来说,直线上仍然可以找到一点,因此直线上有无数个点。

性质三:任意两条直线可以相交并在交点处确定一条平面。

任意两条直线可以在一点相交,如果在这一点的同时连上第三个点,那么这三个点可以确定一个平面。

性质四:三点不共线的情况下,可以确定一个唯一的平面。

如果三点不共线,那么它们会确定一个唯一的平面。

通过上述对平面的定义以及基本性质的解析,我们可以清晰地了解平面的基本概念和特征,从而更好地理解几何学中的相关概念和问题,为后续的学习奠定优秀的基础。

平面的基本性质

平面的基本性质

平面的基本性质
1平面的定义
平面是指三维空间中的两维物体,它由一组点所组成,且任意两点间的距离都是一样的。

在数学中,可用直线和点表示平面,它分为平行于坐标轴的抽象平面和构成几何图形的实际平面。

2特征
(1)法线性质
所有点在一个平面上,且这个平面有一个通用的法线,法线的方向总是指着所有平面上的点的一边。

因此,法线在某种程度上可以作为这个平面的一个标识,可以用来找出某点在这个平面上的位置。

(2)子平面性质
在一个平面上,可以在任意方向上投射任意许多的点,从而得到任意子空间。

一个子空间不再是一个完整的平面,但它具有平面和空间的某些性质,如二维特性和空间平行性等。

3经典定理
(1)平面垂直于坐标轴的定理:如果一个平面的法线都垂直于每一个坐标轴,那么这个平面在每一个坐标轴上垂直于另一条坐标轴。

(2)平面平行定理:如果一个平面和另一个平面的法线之间没有成比例的关系,那么这两个平面就是平行的。

4应用
平面的知识可以被广泛应用于不同领域,如机械技术、建筑设计、工程计算、人体解剖学等。

特别地,工程技术中,借助平面的计算可以得到准确的结果,进而更好地解决工程问题。

此外,可以用平面的性质来进行仿射变换。

在人体解剖学上,也经常会用到平面的几何图形,比如重建人体器官的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平静的湖面
光滑的桌面、地面面给你 留下怎样的印 象?
光滑的桌面、地面
平面的基本性质
1.平面的基本概念: 平面是一个只描述而不定义的最基 本的概念,它是从日常生活中见到的具 体的平面抽象出来的理想化的模型.
点评:几何里的平面的特征:
1.无限延展
(没有边界)
2.不计大小 3.不计厚薄
上,点是两个平面的公 共点,线是这两个平面 的公共交线,则这点在 交线上。
l
P
用手指头将一本书平衡地摆放在空 间某一位置,至少需要几个手指头?
这些手指需要满足什么条件?
根据这个实验你能得到什么结论?
公理3 过不在一条直线上的三点,有且只 有一个平面。
一是确定平 面,二是证 明点、线共 面。
B
αA
已知:如图,a∥b,l∩ a =A, l ∩b =B
求证:a,b,l三线共面
证明:∵ a∥b,
α
∴直线a,b确定一个平面α
又A∈a,a α,∴ A∈ α,同理B∈α,
由公理1有:l α
∴ a,b,l三线共面于α
Al a
Bb
证明三线共面,可先证其中两条直线共面,再证第三 条直线也在此平面内.
小结
文字语言这条直线在此平面内。
图形语言
判断直线是否在 平面内,点是否 在平面内 。
AB
l
α
如图:直尺所在的直线会在桌面 所在的平面内吗?
直尺
观察下面图片,你能得到什么结论?
天花板α
墙面γ
P 墙面β
β
a
α
P
(二)平面的基本一相是交性判的质定依两据个,平只面 要是 两否 个 公共公理点共2,直如那线果么。两它个们不平可相线有重面以交,且有判于二合只一定过是的有个这这判平公两点断一共个的点面条点 平 一 在有过, 面 条 直一就 必 直 线该个点公的
A
A∈a
B∈a
B
α
A
A∈α B∈α
b
a
aA
α
α
a α
b∩α=A
a∩α=φ 或 a∥α
练习
如图,用符号表示以下各概念:
①点A、B在直线a上 A a, B a ;
②直线a在平面内 a ;
点C 在平面内 C ;
③点D不在平面内 D ;
直线b不在平面内 b . b D
(无所谓面积) (没有质量)
2. 平面的画法: (1)通常用平行四边形表示,有时也 可根据需要用其它平面图形表示, 如:矩形;菱形;三角形;圆(椭圆)等 等;
(2) 通常画平行四边形表示平面,当 平面是水平放置的时候,通常把平行四 边形的锐角画成45°横边画成邻边长的 2倍。 (3)画直立平面时,要有一组对边为铅 垂线。
四.用数学符号来表示点、线、面之间的位置关系:
1.点与直线的位置关系:
⑴点A在直线a上: 记为:A∈a
a
点B不在直线a上: 记为:B∈a A ⑵直线a经过点A,直线a不过点B 2.点与平面的位置关系: ⑴点A在平面α上: 记为:A∈α
点B不在平面α上:记为:B∈ α ⑵平面α经过点A,平面α不过点B α
1.空间中点线面的位置关系 2.三个公理 公理1 公理2 公理3 3.平面的确定方法
4.文字语言、图形语言、符号语言 的相互转化
C A B a
如果把桌面看作一个平面,把你的笔看作 是一条直线的话,你觉得在什么情况下, 才能使你的笔所代表的直线上所有的点都 能在桌面上?
根据这个实验你能得到什么结论?
(二)平面的基本性质
符 号
Al, Bl且A, B l
语 言
公理1 如果一条直线上的
两点在一个平面内,那么
水平平面:
铅直平面
(4)在画图时,如果图形的一部分被另 一部分遮住,可以把遮住部分画成虚线, 也可以不画。
M
M
N
N
3、平面的表示法
α 平面α
A
C B
平面ABC
ß
平面 ß
A
D
B
C
平面AC或平面BD
在立几何体中通常把直线和 平面看作是点的集合,你能否借 助集合中的符号表示点与线、点 与面、线与面的关系呢?
C
A、B、C三点不共线 有且只有一个 平面α,使A∈α、B∈α、C∈α。
有且只有一个的含义:
至少有一个
“有” “只有一个”
说明图形是存在的! 说明图形是唯一的!
至多有一个
一扇门用两个合页加一把锁就固定了, 这是依据什么原理?
你能证明下列三个命题吗?
1.经过直线和这条直线外一点,有 且只有一个平面。
B
B A
3.直线与平面的位置关系: 直线a上的所有点都在平面α内,称直线a
在平面α内,或称平面α通过直线a.记为:a α
直线a与平面α只有一个公共点A时,称直 线a与平面α相交。 记为:a∩α=A
直线a与平面α没有公共点时,称直线a与 平面α平行。 记为:a∩α=φ 或 a∥α.
a
a
a
A
α
α
α
a B
A
l
α
B
C
2.经过两条相交直线有且只有一个平
面。
3.经过两条平行直线有且只有一个平面
确定平面的方法
公理3.过不在同一直线上的三点,有且只有一个平面.
B
αA
C
推论1.一条直线和直线外一点唯一确定一个平面。
A
l
α
B
C
推论2.两条相交直线唯一确定一个平面。
推论3.两条平行直线唯一确定一个平面。
例1.一条直线和两条平行线都相交,求证:这三条直线共面.
相关文档
最新文档