水中无机污染物讲义的迁移转化
第二节、水中无机污染物的迁移转化
于晶格中离子的同晶替代造成的,例如硅氧四面体中的Si4+被
Al3+所取代,或者铝氢氧八面体中的Al3+被Mg2+所取代等,都会 产生这种永久负电荷。另一部分为可变电荷,主要随着环境pH
的改变而发生改变,原因是 Si-OH中的H+ 在碱性溶液中的离解。
Si-OH+OH-=Si-O-+H2O。
特征:这种吸附是一种可逆反应,能够迅速达到平衡。 不受温度影响,酸碱条件下均可进行,其交换吸附能力 与溶质的性质、浓度及吸附剂性质等有关。对于那些具 有可变电荷表面的胶体,当体系pH高时,也带负电荷并
n
以lgG对lgc作图可得一直线。lgk为截距,因此, k值是c=1时的吸附 1
n 量,它可以大致表示吸附能力的强弱。
浓度增长的强度。
该等温线不能给出饱和吸附量。 L型等温式为:G=G0c/(A+c)
为斜率,它表示吸附量随
式中:G0——单位表面上达到饱和时间的最大吸附量; A——常数。 G对c作图得到一条双曲线,其渐近线为G=G0,即当c→∞时,G→G0。 在等温式中A为吸附量达到时溶液的平衡浓度。 转化为:1/G = 1/G0 + (A/G0)(1/c)
1 以G
1 对 作图,同样得到一直线。 c
等温线在一定程度上反映了吸附剂与吸附物的特性,其形式在许
多情况下与实验所用溶质浓度区段有关。当溶质浓度甚低时,可能在 初始区段中呈现H型,当浓度较高时,曲线可能表现为F型,但统一起 来仍属于L型的不同区段。 影响吸附作用的因素有以下几种: 首先是溶液pH值对吸附作用的影响。在一般情况下,颗粒物对重金 属的吸附量随pH值升高而增大。当溶液pH超过某元素的临界pH值时, 则该元素在溶液中的水解、沉淀起主要作用。吸附量(G)与pH、平衡 浓度(C)之间的关系可用下式表示:G = A· C· 10BpH式中:A、B—常数。
3.2水中无机污染物的迁移转化(3)
第三章:水环境化学——污染物存在形态第二节、水中无机污染物的迁移转化一、颗粒物与水之间的迁移、二、水中胶体颗粒物聚集的基本原理和方式 三、溶解和沉淀 四、氧化—还原1、概述2、天然环境中的氧化剂和还原剂3、氧化还反应概念回顾4、电子活度和氧化还原电位5、天然水体的pE-pH 关系图● 在氧化还原体系中,往往有H +或OH -离子参与转移,因此,pE 除了与氧化态和还原态浓度有关外,还受到体系pH 的影响,这种关系可以用pE-pH 图来表示。
该图显示了水中各形态的稳定范围及边界线。
● 由于水中可能存在物类状态繁多,于是会使这种图变得非常复杂。
例如一个金属,可以有不同的金属氧化态、羟基配合物、金属氢氧化物、金属碳酸盐、金属硫酸盐、金属硫化物等。
(1)水的氧化-还原限度绘制pE —pH 图时,必须考虑几个边界情况。
首先是水的氧化还原反应限定图中的区域边界。
选作水氧化限度的边界条件是1.0130×105Pa 的氧分压,水还原限度的边界条件是1.0130×105Pa 的氢分压(此时P H2=1,P O2=1),这些条件可获得把水的稳定边界与pH 联系起来方程。
天然水中本身可能发生的氧化还原反应分别是: 水的还原限度(还原反应):221H e H ↔++ pE 0=0.00 pE = pE 0 – lg((P H2)1/2/[H +])pE = –pH水的氧化限度(氧化反应):O H e H O 222141↔+++ pE 0 = +20.75]}[lg{4120++=H po pE pEpE=20.75—pH(2)pE—PH图假定溶液中溶解性铁的最大浓度为1.0×10-7mol/L,没有考虑Fe(OH)2+及FeCO3等形态的生成,根据上面的讨论,Fe的pE—pH图必须落在水的氧化还原限度内。
下面将根据各组分间的平衡方程把pE—pH的边界逐一推导。
①Fe(OH)3(s)和Fe(OH)2(s)的边界。
第三章 第二节 水中无机污染物的迁移转化要点
常见的吸附等温线
G G
n是一个经验 值,不是由一个 过程控制,一般 适用于有机物 lgG
lgK
H型
G0/2
单分子吸附 适用于金属
L型 c
L型 1/c
0 A
当溶质浓度甚低时,可能在初始阶段呈现 H 型,当浓度较 高时,可能表现为 F 型,但统一起来仍属于 L 型的不同区段。
2、异体凝聚理论
(1)适用条件:适用于物质本性不同、粒径不等、电荷符
号不同、电位高低不等的分散体系。 (2)主要论点: A、电荷符号相异的胶体微粒接近时,吸引力总是占优势; B、电荷符号相同但电性强弱不等,则位能曲线上的能峰高 度总是决定于荷电较弱而电位较低的一方。
因此异体凝聚时,只要有一种胶体的稳定性甚低而电位
纯饱和溶液中 [S2-]= Ksp/ [H+]2 = 1.16×10-23 / 8.9×10-9 = 1.3×10-15mol/L 任意水体中 [S2-]= 1.16×10-23 / [H+]2 [Me2+] [S2-]=Ksp 因此,在 H2S 和硫化物均达到饱和的溶液中,溶液重金属离子
的饱和浓度为:
2、硫化物
H2S H++ HSK1 = 8.9×10-8 HSH++ S2K2 = 1.3×10-15 两者相加可得: H2S 2H+ + S2K12 = K1·K2 = 1.16×10-22
在饱和水溶液中,H2S 浓度总是保持在 0.1mol/L,因此可认
为饱和溶液中 H2S 分子浓度也保持在 0.1mol/L,得: [H+]2[S2-] =1.16×10-22×0.1 = 1.16×10-23 = Ksp´
第二节 水无机污染物的迁移转化
第二节水中无机污染物的迁移转化水中无机污染物特别是重金属污染物进入水体,不能被生物降解,主要是通过沉淀-溶解、氧化-还原、配合作用、胶体形成、吸附-解吸等作用进行迁移转化。
一、颗粒物与水之间的迁移1、矿物颗粒物和黏土颗粒物常见矿物颗粒物为石英、长石、云母及黏土矿物等硅酸盐矿物,主要由物理作用形成。
2、金属水合氧化物:铝、铁、锰、硅等金属以无机高分子及溶胶等形态存在。
例:铝在岩土中是丰量元素,在水中浓度低,<0.1mg/L。
水解,主要形态是:Al3+Al(OH)2+Al2(OH)24+Al(OH)22+Al(OH)3+等铁水合氧化物:Fe3+Fe(OH)2+Fe(OH)2+ Fe2(OH)24+Fe(OH)3等硅酸聚合物:Si n O2n-m(OH)2m3、腐殖质是一种代负电的高分子弱电解质。
4、水体悬浮沉积物是以矿物微粒为核心骨架,有机物和金属水合氧化物结合在矿物微粒表面上,经絮凝成为较粗颗粒而沉积在底部。
5、其它藻类、细菌、病毒、表面活性剂、油滴等。
二、水环境中颗粒物的吸附作用1、表面吸附:胶体具有巨大的表面积和表面能;属物理吸附,胶体表面积越大,吸附越强。
2、离子吸附:由于胶体表面的电荷引力。
3、专属吸附:除了化学键以外,尚有加强的憎水键及范德华力或氢键起作用。
水锰矿对Co、Cu、Ni、K和Na离子的吸附及其随pH的变化图:对于碱金属离子,在低浓度时,体系pH在水锰矿ZPC以上时发生吸附。
表明其为离子吸附。
而Co 、Cu 、Ni 等在体系pH 在ZPC 处或小于时都能进行吸附,这表明不带电荷或带正电均能吸附过渡金属。
4、吸附理论――有效层流脱理论5、吸附方向和推动力6、吸附等温线和等温式(1) 等温吸附经验式――弗罗因德利希式Freundlich 型等温式为: G =kC 1/n两边取对数: log G =log k +1/nlog C,nkP P k n Γ=Γ--吸附量-吸附压力常数(2) 单分子层吸附理论――兰格缪尔吸附等温式单分子层吸附吸附剂表面是均匀被吸附的分子与其它同气体分子无作用力吸附是一个动态平衡φ被吸附质分子覆盖的吸附表面积覆盖率()=吸附剂的总表面积 Langmuir 型吸附等温线:G =G 0C /(A +C ) 1/G =1/G 0+(A /G 0)(1/C )G0------单位表面上达到饱和时间的最大吸附量; A-------常数(3)Henry 型吸附等温线为直线,等温式为: G =kCk------分配系数影响吸附作用的因素:(a) pH 值的影响:一般情况下,吸附量随pH 升高而增大。
水中无机污染物的迁移转化
[SiO2] + Al(Ⅲ) → [AlO2- ] + Si(Ⅳ)
第二节 水中无机污染物的迁移转化
3、水环境中颗粒物的吸附作用 吸附:指溶液中的溶质在界面层浓度升高的 现象。 表面吸附:由于颗粒物具有巨大的比表面和 表面能,产生表面吸附;物理吸附。
第二节 水中无机污染物的迁移转化
离子交换吸附:胶体颗粒大部分带负电荷,容 易吸附各种阳离子;物理化学吸附。
第三章
第二节
水环境化学
水中无机污染物的迁移转化
第二节 水中无机污染物的迁移转化
一、在颗粒物与水之间的迁移 1、水中颗粒物的类别
(1) 矿物颗粒和粘土矿物: 主要为硅酸盐 (2) 金属的水合氧化物:
第二节 水中无机污染物的迁移转化 (3)腐殖质 腐殖质是一种带负电的高分子弱电解质。腐殖质
是生物体物质在土壤、水和沉积物中转化而成。分子
G0
G0/2 L型
1/G=1/G0+(A/G0)(1/C)
G0------单位表面上达到饱
1/G
A
C
和时间的最大吸附量;
L型
A-------常数
1/C
第二节 水中无机污染物的迁移转化 影响吸附作用的因素: (a) pH值的影响 表3-9 重金属的临界pH值和最大吸附量 元 素 Zn 7.6 6.7 Co 9.0 3.3 Cu 7.9 3.9 Cd 8.4 8.2 Ni 9.0 2.2
根据溶度积:Ksp= [Men+][OH-]n [Men+] = Ksp/[OH-]n = Ksp[H+]n/Kwn
-lg[Men+] = -lgKsp - nlg[H+] + nlgKw
第二节水中无机污染物的迁移转化
2. pH对水解速率的影响 水解速率: RH = Kh [C]= {KA[H+] + KN + KB[OH-]} [C]
式中: KA、KN 、KB ——分别为酸性、碱性和中性催化过 程的二级反应水解速率常数
Kh = KA[H+] + KN + KBKw/[H+]
c溶解相中有机毒物的浓度kv挥发速率常数kv单位时间混合水体的挥发速率常数z水体的混合深度p在所研究的水体上面有机毒物在大气中的分压kh亨利定律常数?第三节水中有机污染物的迁移转化二挥发作用kvcpkhzkvcpkhtc??kvctc??有机物可溶解相分数w
第三章
第三节
水环境化学
有机污染物的迁移转化
第三节 水中有机污染物的迁移转化 水解速率常数:Kh = KA[H+] + KN + KBKw/[H+]
第三节 水中有机污染物的迁移转化 对于IAN点应满足于: lgKh = lg KA – pH = lg KN 三条切线得到三个交点, IAN IAB 和K INB / K ) pH= lg KN –lg KA = -、 lg ( N A 对于IAB点应满足于: lgKh = lg KA – pH = lgKBKw + pH pH = -1/2 lg(KBKw/KA) 对于INB点应满足于: lgKh = lgKBKw + pH = lg KN pH = - lg(KBKw/ KN)
水体中,若悬浮物中85%为细颗粒,有机碳含量为
5%,其余粗颗粒有机碳含量为1%,已知该有机物 在水中溶解度为0.05mg/L,那么,其分配系数(Kp)
就可根据公式计算出:
解: lgKow = 5.00-0.670lg(0.05×103/192)=5.39 则 Kow =2.46×105 Koc=0.63 Kow=1.55×105 Kp = 1.55×105[0.2(1-0.85)(0.01) + 0.85×0.05] = 6.63×103
优选环境化学第三章水中无机污染物的迁移转化
2020/9/4
21
水处理中新型絮凝剂
无机高分子絮凝剂 以三氯化铁、硫酸铝和碱式氯化铝等 为基体制备 如:聚合硫酸铁(poly ferric sulfate, PFS)、含硼聚硅硫酸铁、聚合硅铝酸铁 等Al2(SO4)3- CPAM(阳离子聚丙烯胺)
2020/9/4
22
水处理中新型絮凝剂
有机高分子絮凝剂
2020/9/4
18
天然水环境和水处理条件下主要的颗 粒物聚集方式
1.压缩双电层的聚集
水中电解质浓度增大而离子强度增大, 压缩扩散层,颗粒物吸引而聚集
2. 专属吸附凝聚
胶体颗粒专属吸附异电的离子化合态, 降低表面电位,产生电中和现象,使颗粒 物聚集
2020/9/4
19
天然水环境和水处理条件下主要的颗 粒物聚集方式
2020/9/4
7
一、颗粒物与水之间的迁移
悬浮沉积物
各种环境胶体物质的聚集物,组成不固定
其他
湖泊中的藻类、污水中的细菌、病毒、废 水中的表面活性剂或油滴。
2020/9/4
8
2.水环境中颗粒物的吸附作用
表面吸附—物理吸附,与胶体的比表面 积有关。
离子交换吸附—物理化学吸附,水环境中 一部分胶体带负电荷,吸附一部份阳离子, 同时释放等量其它阴离子。
属可逆反应,不受温度影响,交换吸附能力 与溶质的性质、浓度、吸附剂性质有关
2020/9/4
9
2.水环境中颗粒物的吸附作用
专属吸附—受化学键作用外,还受加强 的憎水键、 范德华力、氢键等的作用。 在水环境中:配合离子、无机高分子、有 机离子、 有机高分子专属吸附强烈,水 合氧化物胶体对金属离子有较强的专属吸 附。 氧化物表面配位吸附模式(p124)
水中无机污染物的迁移转化
一.颗粒物与水之间的迁移 二.水中颗粒物的聚集 三.溶解与沉淀 四.氧化与还原 五.配合作用
一、颗粒物与水之间的迁移
1. 水中颗粒物的类别:
a) 矿物微粒和黏土矿物:石英沙、长石等,云母、蒙脱石、 高岭土等有胶体特性的黏土矿物
b) 金属水合氧化物:铝、铁、锰、硅等元素,以无机高分 子及溶胶形式存在(聚合铝絮凝剂中铝的聚合形态?)
lg[Me2+] = 0.5lgKsp- 0.5lgK2-0.5pH lg[Me2+] = 0.5lgKsp- 0.5lgK1K2-0.5pH
三、溶解和沉淀
b) Me2+- H2O - CO2(g)开放体系 [Me2+] cT
cT
[CO2 ]
0
1Hale Waihona Puke 0KHpCO2
因为大气中CO2分压恒定,则据Henry定律,[CO2]恒定
液的离子强度增大而减小 2. VA随颗粒间距离增大而减弱,与离子强度
无关 3. VT必然在某个距离有最大值,只有粒子的
热运动能超过VT, 才能发生聚集 4. 提高溶液的离子强度有利于聚集
适合处理电解质凝聚体系
二、水中颗粒物的聚集
异体凝聚理论
适用于处理物质本性不同、粒径不等、电荷符号不同、电位 高低不等之类的分散体系
电性相异的胶粒相接近,吸引力占优势
电性相同的胶粒相接近,位能最大值取决于荷电较弱而电 位较低的一方。
只要有一种的稳定性甚低而电位达到临界状态,就必然 发生快速凝集
二、水中颗粒物的聚集
天然水环境和水处理过程的聚集方式
压缩双电层凝聚 专属吸附凝集 胶体相互凝集 边对面凝集 第二极小值凝集 聚合物粘结架桥凝集 无机高分子的絮凝 絮团卷扫絮凝 颗粒层吸附絮凝 生物絮凝
《水中无机污染物的迁移转化》课件
(1)某些非均相平衡进行得缓慢,在动态环境下不易达到平衡; (2)根据热力学对于一组给定条件所预测的稳定固相可能不一定就是
所形成的相。 (3)可能存在过饱和现象,即出现物质的溶解量大于溶解度极限值的
情况; (4)固体溶解所产生的离子可能在溶液中进一步进行反应; (5)引自不同文献的平衡常数有差异等。
形 最
态主是要H的3A是sO以3、HH22AAssOO43——、和
l的2.形5在的态p碱。H性 水4的中酸,性还水可中能,存则在可A能sO存43在—H,3甚As至O4H和AAsOsO32+—,及而A在sOp3H3—
(5)水中有机物的氧化
水中有机物可以通过微生物的作用,而逐步降解转化为无机 物。
19
(五) 环境中的配合作用
天然水体的配合作用
天然水体中有许多阳离子和阴离子,其中某些阳离子是良好 的配合物中心体,某些阴离子则可作为配位体。
天然水体中重要的无机配位体有OH—、Cl—、CO32—、F—、 S2—。
有机配位体情况比较复杂,天然水体中包括动植物组织的天 然降解产物,如氨基酸、腐殖酸,以及生活废水中的洗涤剂、清 洁剂、NTA、EDTA、农药和大分子环状化合物。腐殖酸是主要成 分,有机物相当一部分具有配合能力。
25
(五) 环境中的配合作用
与一个羧基形成配合物
腐殖酸对水休中重金属的配合作用还将影响重金属对水生生物的毒性。 腐殖酸与阴离子的作用。 腐殖酸对有机污染物的作用。
26
其他
4
(一) 颗粒物与水之间的迁移
水环境中颗粒物的吸附作用
表面吸附、离子交换吸附和专属吸附
由于胶体具有巨大的比表面和表面能,因此固液界面存在表 面吸附作用,胶体表面积愈大,所产生的表面吸附能也愈大,胶
3-2水中无机污染物的迁移转化
第二节 水中无机污染物的迁移转化一、 颗粒物与水之间的迁移1.水中颗粒物的类别(1)矿物微粒和粘土矿物 硅酸盐矿物(2)金属水合氧化物 Al 、Fe 、Mn 、Si 等(3)腐殖质 带负电荷的高分子弱电解质,多含有–COOH 、–OH 等(4)水体悬浮沉积物 胶体物质的聚集物,结构组成不固定(5)其他 藻类、细菌、病毒、表面活性剂或油滴。
2.水环境中颗粒物的吸附作用表面吸附—物理吸附,与胶体的比表面积有关。
离子交换吸附—物理化学吸附,胶体每吸附一部分阳离子,同时也放出等量其它阳离子。
可逆,不受温度影响,在酸碱条件下均可进行,交换吸附能力与溶质的性质、浓度及吸附剂性质等有关。
专属吸附—吸附过程中,除了受化学键作用外,尚有加强的憎水键、 范德华力或氢键等在起作用。
可使表面电荷改变符号或使离子化合物吸附在同号电荷的表面上;吸附作用发生在胶体双电层的Stern 层中,作用力较大。
配合离子、有机离子、 有机和无机高分子的专属吸附强烈;水合氧化物胶体对金属离子有较强的专属吸附。
(1)吸附等温线和等温式吸附是指溶液中的溶质在界面层浓度升高的现象。
在固定的温度下,当吸附达到平衡时,颗粒物表面上的吸附量(G )与溶液中溶质平衡浓度 (C) 之间的关系用吸附等温式表达。
H 型( Henry )等温式(直线型)式中:K ——分配系数F 型(Freundlich )等温式:用对数表示:Langmuir 型吸附等温线G =G 0C /(A +C )1/G =1/G 0+(A /G 0)(1/C ) G 0------单位表面上达到饱和时间的最大吸附量; A-------常数kC G =n kCG 1=C nk G lg 1lg lg +=(2)氧化物表面吸附的配合模式金属氧化物表面都含有≡MeOH 集团;把具体表面看作一种聚合酸,其大量羟基可发生表面配合反应。
在配合平衡过程中需将邻近集团的电荷影响考虑在内。
3.沉积物中重金属的释放1)盐浓度升高:碱金属和碱土金属离子可将吸附在颗粒物表面的重金属离子置换出来,重金属解吸的重要途径之一。
3.2.1水中无机物的迁移转化_1
一、天然水的基本特征
1、天然水的组成 2、天然水的性质
二、水中污染物的分布和存在形态
1、有机污染物 2、金属污染物
三、水中营养元素及水体富营养化
1、水中营养元素 2、水体富营养化
区域环境过程
大气迁移
水-气交换
农业源
土-气交换
城市源
河流径流
海洋
电子垃圾源
水解
(3)腐殖质:。
带负电的高分子弱电解质,其形态构型与官
能团(羧基、羰基、羟基)的离解程度有关。
在pH较高的碱性溶液中或离子强度低的条件下,溶液中的
OH- 将腐殖质离解出的H+ 中和掉,因而分子间的负电性增强, 排斥力增加,亲水性强,趋于溶解。
在pH较低的酸性溶液(H+ 多,正电荷多),或有
盐浓度升高 氧化还原条件的变化 pH值降低 水中配合剂的含量增加 其它生物化学迁移过程
胶体
颗粒物
沉积物
35
第二节水中无机污染物的迁移转化
重点介绍重金属污染物在水环境中的迁移转化 颗粒物与水之间的迁移 水中颗粒物的聚集 溶解和沉淀 氧化还原 配合作用
水中颗粒物的聚集
胶体颗粒的聚集亦可称为凝聚或絮凝。
较高浓度的金属阳离子存在时,各官能团难于离解而 电荷减少,高分子趋于卷缩成团,亲水性弱,因而趋 于沉淀或凝聚。
17
腐殖质的分离步骤
18
humic acid (胡敏酸)model structure
19
fulvic acid (富里酸) model structure
20
(4)水体悬浮沉积物
1