边缘检测原理与方法(英文)
(整理)基于sobel、canny的边缘检测实现
基于sobel 、canny 的边缘检测实现一.实验原理Sobel 的原理:索贝尔算子(Sobel operator )是图像处理中的算子之一,主要用作边缘检测。
在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。
在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量.该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
如果以A 代表原始图像,Gx 及Gy 分别代表经横向及纵向边缘检测的图像,其公式如下:101202*101x G A -+⎛⎫ ⎪=-+ ⎪ ⎪-+⎝⎭ 121000*121y G A+++⎛⎫ ⎪= ⎪ ⎪---⎝⎭在以上例子中,如果以上的角度Θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。
在边沿检测中,常用的一种模板是Sobel 算子。
Sobel 算子有两个,一个是检测水平边沿的 ;另一个是检测垂直平边沿的 。
与 和 相比,Sobel 算子对于象素的位置的影响做了加权,因此效果更好。
Sobel 算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的 ,另一个是检测垂直平边沿的 。
各向同性Sobel 算子和普通Sobel 算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。
由于建筑物图像的特殊性,我们可以发现,处理该类型图像轮廓时,并不需要对梯度方向进行运算,所以程序并没有给出各向同性Sobel 算子的处理方法。
由于Sobel 算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。
美中不足的是,Sobel 算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel 算子没有基于图像灰度进行处理,由于Sobel 算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。
在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。
基于sobel和canny的边缘检测原理
基于sobel和canny的边缘检测原理
Sobel的原理:
Sobel 算子是图像处理中的算子之一,主要用作边缘检测。
它是一种离散性差分算子,用来运算图像亮度函数的梯度之近似值。
在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量.
该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
以I代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:
由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数,简单有效,因此应用广泛。
但是Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。
在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。
Canny的原理:
1、图象边缘检测必须满足两个条件:其一必须有效地抑制噪声;其次必须尽量精确确
定边缘的位置。
2、根据对信噪比与定位乘积进行测度,得到最优化逼近算子。
这就是Canny边缘检测
算子。
3、类似于LoG边缘检测方法,属于先平滑后求导数的方法。
Canny边缘检测算法可以分为四个步骤:
1)用高斯滤波器平滑图象;
2)用一阶偏导的有限差分来计算梯度的幅值和方向;3)对梯度幅值进行非极大值抑制
4)用双阈值算法检测和连接边缘。
edge_detection_边缘检测
边缘检测-edge detection1.问题描述边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。
图像属性中的显著变化通常反映了属性的重要事件和变化。
这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化(iv)场景照明变化。
边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。
边缘检测的评价是指对边缘检测结果或者边缘检测算法的评价。
诚然,不同的实际应用对边缘检测结果的要求存在差异,但大多数因满足以下要求:1)正确检测出边缘2)准确定位边缘3)边缘连续4)单边响应,即检测出的边缘是但像素的2.应用场合图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。
基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。
基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。
3.研究历史和现状边缘检测作为图像处理的一个底层技术,是一个古老又年轻的课题,有着悠久的历史。
早在1959年,B.Julez就提到过边缘检测,随后,L.G.Robert于1965年对边缘检测进行系统的研究。
3.1一阶微分算子一阶微分算子是最原始,最基本的边缘检测方法,它的理论依据是边缘是图像中灰度发生急剧变化的地方,而图像的提督刻画了灰度的变化速率。
因此,通过一阶微分算子可以增强图像中的灰度变化区域,然后对增强的区域进一步判断边缘。
在点(x,y)的梯度为一个矢量,定义为:梯度模值为:梯度方向为:根据以上理论,人们提出了许多算法,经典的有:Robert算子,Sobel算子等等,这些一阶微分算子的区别在于算子梯度的方向,以及在这些方向上用离散化数值逼近连续导数的方式和将这些近似值合成梯度的方式不同。
Sobel边缘检测算子
经典边缘检测算子比较一各种经典边缘检测算子原理简介图像的边缘对人的视觉具有重要的意义,一般而言,当人们看一个有边缘的物体时,首先感觉到的便是边缘。
灰度或结构等信息的突变处称为边缘。
边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。
需要指出的是,检测出的边缘并不等同于实际目标的真实边缘。
由于图像数据时二维的,而实际物体是三维的,从三维到二维的投影必然会造成信息的丢失,再加上成像过程中的光照不均和噪声等因素的影响,使得有边缘的地方不一定能被检测出来,而检测出的边缘也不一定代表实际边缘。
图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。
边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘,如下图所以。
不同的是一阶导数认为最大值对应边缘位置,而二阶导数则以过零点对应边缘位置。
(a )图像灰度变化(b )一阶导数(c )二阶导数基于一阶导数的边缘检测算子包括Roberts 算子、Sobel 算子、Prewitt 算子等,在算法实现过程中,通过22⨯(Roberts 算子)或者33⨯模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。
拉普拉斯边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。
一种改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是LOG 算子。
前边介绍的边缘检测算子法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数的过零点。
Canny 算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。
1 Roberts (罗伯特)边缘检测算子景物的边缘总是以图像中强度的突变形式出现的,所以景物边缘包含着大量的信息。
由于景物的边缘具有十分复杂的形态,因此,最常用的边缘检测方法是所谓的“梯度检测法”。
设(,)f x y 是图像灰度分布函数;(,)s x y 是图像边缘的梯度值;(,)x y ϕ是梯度的方向。
log边缘检测方法的原理
log边缘检测方法的原理
Log边缘检测是一种基于图像处理技术的算法,用于检测图像中的边缘。
它可以有效地检测图像的边缘,从而提高图像的品质和处理速度。
Log边缘检测的原理是基于Laplacian Of Gaussian(LOG)算子。
LOG算子是一个卷积核,它可以用来检测图像中的边缘。
LOG算子是一个高斯平滑操作,可以检测图像中的局部变化。
它是一个高斯函数,可以把图像中的小噪声去除,然后用一个Laplacian算子对模糊的图像进行检测。
LOG算子的核心思想是先对图像进行高斯平滑,然后再用Laplacian算子进行边缘检测。
LOG算子把高斯平滑操作和Laplacian操作结合起来,使边缘检测更加精确和有效。
LOG算子的计算过程是:先对图像进行高斯滤波,然后用Laplacian算子进行边缘检测,最后将检测结果转换为一个二值图像,其中强度大于一个阈值的像素为边缘,强度小于阈值的像素为非边缘。
LOG边缘检测的优点是它可以检测图像的边缘,并且可以抑制噪声,使得边缘检测更加准确。
LOG边缘检测的缺点是它的检测速度比其他方法要慢,而且它检测的精度也不是很高。
总之,Log边缘检测是一种有效的边缘检测算法,它可以抑制噪声,提高图像边缘检测的准确性和精确度,但是它的检测速度较慢。
学习笔记-canny边缘检测
学习笔记-canny边缘检测Canny边缘检测声明:阅读本⽂需要了解线性代数⾥⾯的点乘(图像卷积的原理),⾼等数学⾥的⼆元函数的梯度,极⼤值定义,了解概率论⾥的⼆维⾼斯分布1.canny边缘检测原理和简介2.实现步骤3.总结⼀、 Canny边缘检测算法的发展历史 边缘检测是从图像中提取有⽤的结构信息的⼀种技术,如果学过信息论就会知道,⼀⾯充满花纹的墙要⽐⼀⾯⽩墙的信息量⼤很多,没学过也没关系,直观上也能理解:充满花纹的图像要⽐单⾊图像信息更丰富。
为什么要检测边缘?因为我们需要计算机⾃动的提取图像的底层(纹理等)或者⾼层(时间地点⼈物等)的信息,边缘可以说是最直观、最容易发现的⼀种信息了。
Canny提出了⼀个对于边缘检测算法的评价标准,包括:1) 以低的错误率检测边缘,也即意味着需要尽可能准确的捕获图像中尽可能多的边缘。
2) 检测到的边缘应精确定位在真实边缘的中⼼。
3) 图像中给定的边缘应只被标记⼀次,并且在可能的情况下,图像的噪声不应产⽣假的边缘。
简单来说就是,检测算法要做到:边缘要全,位置要准,抵抗噪声的能⼒要强。
接下来介绍最经典的canny边缘检测算法,很多边缘检测算法都是在此基础上进⾏改进的,学习它有利于⼀通百通。
⼆、实现步骤 step1:⾼斯平滑滤波没有哪张图⽚是没有噪声的。
————鲁迅 滤波是为了去除噪声,选⽤⾼斯滤波也是因为在众多噪声滤波器中,⾼斯表现最好(表现怎么定义的?最好好到什么程度?),你也可以试试其他滤波器如均值滤波、中值滤波等等。
⼀个⼤⼩为(2k+1)x(2k+1)的⾼斯滤波器核(核⼀般都是奇数尺⼨的)的⽣成⽅程式由下式给出:‘ 下⾯是⼀个sigma = 1.4,尺⼨为3x3的⾼斯卷积核的例⼦,注意矩阵求和值为1(归⼀化): 举个例⼦:若图像中⼀个3x3的窗⼝为A,要滤波的像素点为e,则经过⾼斯滤波之后,像素点e的亮度值为: 其中*为卷积符号,sum表⽰矩阵中所有元素相加求和,简单说,就是滤波后的每个像素值=其原像素中⼼值及其相邻像素的加权求和。
sobel边缘检测算法代码python
sobel边缘检测算法代码python Sobel边缘检测算法是一种常用的数字图像处理方法,用于在图像中检测出边界。
其原理是利用图像灰度值的变化来确定图像边缘的位置。
Sobel算法是一种简单而有效的边缘检测算法,可以在Python中快速实现。
Sobel算法的本质可以视为一种滤波器。
它使用一组水平和垂直的像素值累加器,将卷积运算应用于图像中的像素。
该算法对像素值的变化率进行计算,就可以检测出物体的边缘。
通常,Sobel算法用于物体边缘和轮廓的识别,通过滤波器之后,灰度值大的像素就会变得更加亮,而灰度值低的像素则会变得更加暗。
Python中Sobel算法的实现相对简单,以下是一个基本步骤:1.导入必要库:opencv-python, numpy``` import cv2 import numpy as np ```2.读取图像文件并转换成灰度图``` img = cv2.imread('path/to/image',cv2.IMREAD_GRAYSCALE) ```3.应用Sobel算子:可以应用两个权重矩阵,分别代表水平和垂直方向的边缘变化。
可以使用OpenCV的cv2.Sobel()函数来进行计算,其中参数1代表应用的输入图像,参数2代表深度,通常值为-1,参数3和参数4代表权重矩阵。
``` sobelHorizontal = cv2.Sobel(img,cv2.CV_64F, 1, 0) ``` ``` sobelVertical =cv2.Sobel(img, cv2.CV_64F, 0, 1) ```4.以合适的形式呈现边缘图像:边缘检测图像通常需要处理掉噪声,并调整颜色和对比度。
这一步骤有多种方式实现,例如使用cv2.convertScaleAbs()函数将数据类型转换为8位无符号整数,并将其转换为灰度格式的边缘图像。
``` magnitudeImage =cv2.convertScaleAbs(np.sqrt(np.power(sobelHorizonta l, 2) + np.power(sobelVertical, 2))) ```以上是一个基本的代码实现,可以生成一张带有高亮边缘的图像。
sobel边缘检测算法原理
sobel边缘检测算法原理Sobel边缘检测算法是一种常用的图像处理算法,用于检测图像中的边缘。
它是一种基于图像一阶导数的算子,可以在图像灰度变化较为明显的地方找到边缘的位置。
该算法的原理是基于梯度的计算,对于一副图像的灰度值,它的梯度可以用两个方向的一阶导数来描述。
Sobel算子就是一种常用的一阶导数算子,其中x方向的Sobel算子是:-1 0 1-2 0 2-1 0 1y方向的Sobel算子是:-1 -2 -10 0 01 2 1对于一副灰度图像I(x,y),分别将x方向和y方向的Sobel算子与原图像进行卷积操作,可以得到两个梯度值Gx(x,y)和Gy(x,y):Gx(x,y)=I(x-1,y-1)*(-1)+I(x+1,y-1)*(1)+I(x-1,y)*(-2)+I(x+1,y)*(2)+I(x-1,y+1 )*(-1)+I(x+1,y+1)*(1)Gy(x,y)=I(x-1,y-1)*(-1)+I(x-1,y+1)*(1)+I(x,y-1)*(-2)+I(x,y+1)*(2)+I(x+1,y-1 )*(-1)+I(x+1,y+1)*(1)然后,将Gx和Gy用勾股定理计算出总梯度G(x,y):G(x,y)=sqrt(Gx(x,y)^2+Gy(x,y)^2)最后,根据总梯度大小,可以确定图像中的边缘位置。
如果总梯度很大,则表示该点为边缘点,否则则为非边缘点。
值得注意的是,Sobel算子是一种一阶导数算子,因此它的结果会比较粗略,对于比较细致的边缘,可能会出现一些错误的识别。
此时,可以使用更高阶的导数算子,如拉普拉斯算子,以获取更精细的边缘信息。
总之,Sobel边缘检测算法是一种简单而有效的边缘检测方法,广泛应用于图像处理领域。
尽管它在某些场景下有一些局限性,但是在实际应用中仍然具有很大的价值。
拉普拉斯边缘检测算法步骤
拉普拉斯边缘检测算法步骤
拉普拉斯边缘检测算法步骤
拉普拉斯边缘检测算法步骤
一、算法原理
拉普拉斯边缘检测算法主要利用离散拉普拉斯算子对图像进行处理,从而检测出像素的边缘和轮廓,可以有效提取出图像中特征的精确位置。
拉普拉斯边缘检测的基本思想是:对于一个局部区域,如果该区域内的灰度值均匀,那么在该区域上拉普拉斯算子(Laplacian operator)的结果将接近于0;反之,如果该区域内的灰度分布不均匀,即存在边缘,则拉普拉斯算子的结果将不为0,通过比较结果的大小,可以判别该像素是否为边缘。
二、算法步骤
1.从原始图像中提取出高斯滤波处理后的二维离散拉普拉斯算子;
2.将拉普拉斯算子应用于原始图像的每个像素上,并计算出该像素的拉普拉斯算子结果;
3.根据拉普拉斯算子的结果,对原始图像上的像素进行细化:如果满足大于阈值要求的条件,则说明该像素点是边缘;
4.最后,对于被标记为边缘的像素点,用某种颜色或者灰度等表示,从而有效地提取出图像中的边缘和轮廓特征。
- 1 -。
canny边缘检测原理
canny边缘检测原理Canny边缘检测,是John F. Canny在1986年发表的论文《A Computational Approach to Edge Detection》中对边缘检测(Edge Detection)技术进行了改进,被认为是一种非常有效的图像边缘检测算法。
它是四个步骤(降噪、计算梯度强度、非最大值抑制和双阈值检测)的顺序应用,能够从图像中检测出边缘特征。
Canny边缘检测中的首先步骤是降噪,通过低通滤波器来做图像的高斯模糊处理,有利于减少噪点的影响,使边缘检测更加准确。
接下来是计算梯度强度,即图像梯度。
采用两个Sobel算子来计算图像的水平和垂直梯度,然后相加就得到图像的梯度强度,即边缘的粗略位置。
第三步是非最大值抑制,Canny算法可以自动减少某些边缘点,即抑制非边缘部分的梯度,使边缘更清晰。
双阈值检测(Double Thresholding)是Canny边缘检测的最后一步,采用双阈值的方法,可以用来调节边缘的细节,把不重要的部分过滤掉,有利于边缘的连接以及信息的提取。
总的来说,Canny边缘检测算法能够有效的对图像进行处理,从而清晰的检测出边缘特征,比其他算法更加精准。
因此,Canny边缘检测算法在图像处理中得到了广泛的应用,是一种非常有用的领域。
虽然Canny边缘检测算法具有较高的准确度,但是它也存在一定的局限性,比如在边缘检测的时候,可能会有一些误差,导致无法准确检测到边缘;另外,它也不适用于那种没有清晰轮廓和边界的图片检测。
因此,想要更好地使用Canny边缘检测算法,就需要在应用前进行充分的测试,以便更好地提取图片中边缘信息,清晰地检测出边缘特征,而不会出现不必要的错误。
从上述描述可以看出,Canny边缘检测算法是一种非常有效的边缘检测算法,具有较高的准确度,但也有一定的局限性,因此在使用时需要结合实际情况,特别是在处理含有较复杂边缘的图片时,需要经过充分的测试和调整,以获得更高的准确度。
zerocross边缘检测算子步骤
zerocross边缘检测算子步骤在图像处理中,边缘检测是一项非常重要的任务,zerocross边缘检测算子是其中的一种。
下面将从步骤、原理、应用等方面详细讲解zerocross边缘检测算子。
1.步骤(1)对原图像进行灰度化处理,将其转化为灰度图像。
(2)对灰度图像进行高斯滤波,以消除一些噪声,提高边缘检测的效果。
(3)计算图像中每个像素点的二阶导数,用来检测像素点的边缘信息。
(4)对图像中每个像素点进行均值化处理,以消除高频噪声。
(5)进行过零点检测,找到边缘的位置。
(6)对边缘进行非极大值抑制,以保留边缘的最大值,同时抑制不是边缘的噪声。
2.原理zerocross边缘检测算子是根据零点交叉来检测图像边缘的。
其原理是对图像中每个像素点进行二阶导数计算,得到的结果为一个具有零值交叉的图像。
通过找到这些零值交叉的位置,就可以确定图像中的边缘位置。
而非极大值抑制则是为了保留边缘的最大值,同时抑制不是边缘的噪声。
3.应用zerocross边缘检测算子可以应用于很多领域。
例如,在医学图像处理中,可以用于CT和MRI图像的分割和边缘检测;在机器视觉中,可以用于自动检测机器人的运动轨迹;在智能交通中,可以用于车辆和行人的检测和跟踪等。
总之,zerocross边缘检测算子是图像处理中常用的一种边缘检测方法,通过对图像中每个像素点的二阶导数计算,可以对边缘位置进行快速准确的检测和定位。
它具有简单易实现、计算速度快、检测效果好等优点,因此被广泛应用于不同领域的图像处理中。
susan边缘检测算法
susan边缘检测算法Susan边缘检测算法是一种常用的图像处理算法,它可以有效地检测出图像中的边缘信息。
本文将介绍Susan边缘检测算法的原理和应用,并分析其优缺点。
一、Susan边缘检测算法原理Susan边缘检测算法是由Smith和Brady于1997年提出的,它通过对图像中每个像素点的邻域进行比较,来确定该像素点是否为边缘点。
Susan算法以一个邻域模板为基础,模板的大小可以根据具体应用而定。
对于模板中的每个像素点,算法将计算其与邻域内其他像素点的差异程度,并根据差异的大小来判断该像素点是否为边缘点。
具体而言,Susan算法首先计算邻域内所有像素点与中心点的灰度差值,并将差值小于某个阈值的像素点标记为邻域点。
然后,算法根据邻域点的数量来判断中心点是否为边缘点。
如果邻域点的数量超过某个预设的阈值,那么中心点被认为是非边缘点;反之,如果邻域点的数量小于阈值,中心点被认为是边缘点。
二、Susan边缘检测算法应用Susan边缘检测算法在图像处理领域有广泛的应用。
它可以用于图像分割、目标识别、图像增强等方面。
1. 图像分割:Susan边缘检测算法可以将图像分割成不同的区域,从而实现对图像的分析和处理。
通过检测图像中的边缘信息,可以将图像中不同的物体或区域分离开来,为后续的图像处理提供基础。
2. 目标识别:Susan边缘检测算法可以帮助识别图像中的目标物体。
通过检测图像中物体的边缘信息,可以提取出物体的轮廓,从而实现对目标物体的识别和定位。
3. 图像增强:Susan边缘检测算法可以用于图像增强,提高图像的质量和清晰度。
通过检测图像中的边缘信息,可以增强图像的纹理和细节,使图像更加清晰和鲜明。
三、Susan边缘检测算法优缺点分析1. 优点:(1)Susan算法对噪声具有一定的鲁棒性,能够有效地抑制噪声对边缘检测的影响。
(2)Susan算法可以同时检测出边缘的内部和外部,不仅可以提取出边缘的轮廓,还可以获取边缘的纹理和细节信息。
sobel、prewitt、roberts边缘检测方法的原理
sobel、prewitt、roberts边缘检测方法的原理边缘检测是图像处理技术中一个基本的操作,它将图像中具有显著特征的部分作为有意义的边缘提取出来。
Sobel、Prewitt、Roberts 等滤波器是边缘检测方法中最基本的滤波算子,它们以2×2或3×3窗口的形式获取图像的空间响应,能够从图像中提取特征,大大提高图像质量。
本文将介绍这三种方法的原理与实现过程,以加深对边缘检测的理解。
首先,介绍Sobel算子的原理。
Sobel算子是一种空间滤波算子,它能通过运算来获得图像中的边缘特征,主要利用Laplacian算子与二阶矩对图像求导来提取图像中边缘特征。
Sobel算子包含两个模板:水平方向模板与垂直方向模板,差分求导是其基本的计算方式,能从图像中提取出边缘的变化,提取边缘的方式主要有三种:图像深度的差分(GrayScale)、灰度差分与颜色差分。
其次,介绍Prewitt算子的原理。
Prewitt算子是一种空间滤波算子,它是在Sobel算子的基础上改进而来,和Sobel算子一样具有边缘检测的作用,主要利用了梯度计算,并采用平滑处理,使边缘检测更加准确。
Prewitt算子有三种模板:水平方向模板、垂直方向模板和斜向模板,也可以通过不同的模板来提取不同的边缘特征,可以提高检测的精度。
最后,介绍Roberts算子的原理。
Roberts算子是一种基于空间滤波算子,旨在检测图像中的边缘信息,它只有一种模板,模板是由两个互相垂直的2×2的小窗口组成,可以检测到沿着水平和垂直方向的强边缘。
Roberts算子像素值的变化大小与边缘方向有关,因此可以获得较高的边缘检测精度。
综上所述,Sobel、Prewitt、Roberts三者都是边缘检测方法中最基本的滤波算子,它们能从图像中提取特征,具有良好的效果,但同时也存在一些局限性,比如会检测出细长的边缘或者会检查出一些非边缘位置的像素。
边缘检测-中英文翻译
Digital Image Processing and Edge DetectionDigital Image ProcessingInterest in digital image processing methods stems from two principal application areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for autonomous machine perception.An image may be defined as a two-dimensional function, f(x,y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we call the image a digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are referred to as picture elements, image elements, pels, and pixels. Pixel is the term most widely used to denote the elements of a digital image.Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in human perception. However, unlike humans, who are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that humans are not accustomed to associating with images. These include ultrasound, electron microscopy, and computer generated images. Thus, digital image processing encompasses a wide and varied field of applications.There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and computer vision, start. Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition,even the trivial task of computing the average intensity of an image (which yields a single number) would not be considered an image processing operation. On the other hand, there are fields such as computer vision whose ultimate goal is to use computers to emulate human vision, including learning and being able to make inferences and take actions based on visual inputs. This area itself is a branch of artificial intelligence(AI) whose objective is to emulate human intelligence. The field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The area of image analysis (also called image understanding) is in between image processing and computer vision.There are no clearcut boundaries in the continuum from image processing at one end to computer vision at the other. However, one useful paradigm is to consider three types of computerized processes in this continuum: low, mid, and highlevel processes. Low-level processes involve primitive operations such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its inputs and outputs are images. Mid-level processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual objects. A midlevel process is characterized by the fact that its inputs generally are images, but its outputs are attributes extracted from those images (e.g., edges, contours, and the identity of individual objects). Finally, higherlevel processing involves “making sense” of an ensemble of recognize d objects, as in image analysis, and, at the far end of the continuum, performing the cognitive functions normally associated with vision.Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts, consider the area of automated analysis of text. The processes of acquiring an image of the area containing the text, preprocessing that image, extracting (segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making sense.” As will become evident shortly, digital image processing, as we have defined it, is used successfully in a broad range of areas of exceptional social and economic value.The areas of application of digital image processing are so varied that some formof organization is desirable in attempting to capture the breadth of this field. One of the simplest ways to develop a basic understanding of the extent of image processing applications is to categorize images according to their source (e.g., visual, X-ray, and so on). The principal energy source for images in use today is the electromagnetic energy spectrum. Other important sources of energy include acoustic, ultrasonic, and electronic (in the form of electron beams used in electron microscopy). Synthetic images, used for modeling and visualization, are generated by computer. In this section we discuss briefly how images are generated in these various categories and the areas in which they are applied.Images based on radiation from the EM spectrum are the most familiar, especially images in the X-ray and visual bands of the spectrum. Electromagnetic waves can be conceptualized as propagating sinusoidal waves of varying wavelengths, or they can be thought of as a stream of massless particles, each traveling in a wavelike pattern and moving at the speed of light. Each massless particle contains a certain amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral bands are grouped according to energy per photon, we obtain the spectrum shown in fig. below, ranging from gamma rays (highest energy) at one end to radio waves (lowest energy) at the other. The bands are shown shaded to convey the fact that bands of the EM spectrum are not distinct but rather transition smoothly from one to the other.Fig1Image acquisition is the first process. Note that acquisition could be as simple as being given an image that is already in digital form. Generally, the image acquisition stage involves preprocessing, such as scaling.Image enhancement is among the simplest and most appealing areas of digital image processing. Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to highlight certain features of interest in an image.A familiar example of enhancement is when we increase the contrast of an image because “it looks better.” It is important to keep in mind that enhancement is a verysubjective area of image processing. Image restoration is an area that also deals with improving the appearance of an image. However, unlike enhancement, which is subjective, image restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabilistic models of image degradation. Enhancement, on the other hand, is based on human subjective preferences regarding what constitutes a “good” en hancement result.Color image processing is an area that has been gaining in importance because of the significant increase in the use of digital images over the Internet. It covers a number of fundamental concepts in color models and basic color processing in a digital domain. Color is used also in later chapters as the basis for extracting features of interest in an image.Wavelets are the foundation for representing images in various degrees of resolution. In particular, this material is used in this book for image data compression and for pyramidal representation, in which images are subdivided successively into smaller regions.F i g2Compression, as the name implies, deals with techniques for reducing the storage required to save an image, or the bandwidth required to transmi it.Although storage technology has improved significantly over the past decade, the same cannot be said for transmission capacity. This is true particularly in uses of the Internet, which arecharacterized by significant pictorial content. Image compression is familiar (perhaps inadvertently) to most users of computers in the form of image file extensions, such as the jpg file extension used in the JPEG (Joint Photographic Experts Group) image compression standard.Morphological processing deals with tools for extracting image components that are useful in the representation and description of shape. The material in this chapter begins a transition from processes that output images to processes that output image attributes.Segmentation procedures partition an image into its constituent parts or objects. In general, autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged segmentation procedure brings the process a long way toward successful solution of imaging problems that require objects to be identified individually. On the other hand, weak or erratic segmentation algorithms almost always guarantee eventual failure. In general, the more accurate the segmentation, the more likely recognition is to succeed.Representation and description almost always follow the output of a segmentation stage, which usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels separating one image region from another) or all the points in the region itself. In either case, converting the data to a form suitable for computer processing is necessary. The first decision that must be made is whether the data should be represented as a boundary or as a complete region. Boundary representation is appropriate when the focus is on external shape characteristics, such as corners and inflections. Regional representation is appropriate when the focus is on internal properties, such as texture or skeletal shape. In some applications, these representations complement each other. Choosing a representation is only part of the solution for transforming raw data into a form suitable for subsequent computer processing. A method must also be specified for describing the data so that features of interest are highlighted. Description, also called feature selection, deals with extracting attributes that result in some quantitative information of interest or are basic for differentiating one class of objects from another.Recognition is the pro cess that assigns a label (e.g., “vehicle”) to an object based on its descriptors. As detailed before, we conclude our coverage of digital image processing with the development of methods for recognition of individual objects.So far we have said nothing about the need for prior knowledge or about theinteraction between the knowledge base and the processing modules in Fig2 above. Knowledge about a problem domain is coded into an image processing system in the form of a knowledge database. This knowledge may be as simple as detailing regions of an image where the information of interest is known to be located, thus limiting the search that has to be conducted in seeking that information. The knowledge base also can be quite complex, such as an interrelated list of all major possible defects in a materials inspection problem or an image database containing high-resolution satellite images of a region in connection with change-detection applications. In addition to guiding the operation of each processing module, the knowledge base also controls the interaction between modules. This distinction is made in Fig2 above by the use of double-headed arrows between the processing modules and the knowledge base, as opposed to single-headed arrows linking the processing modules.Edge detectionEdge detection is a terminology in image processing and computer vision, particularly in the areas of feature detection and feature extraction, to refer to algorithms which aim at identifying points in a digital image at which the image brightness changes sharply or more formally has discontinuities.Although point and line detection certainly are important in any discussion on segmentation,edge dectection is by far the most common approach for detecting meaningful discounties in gray level.Although certain literature has considered the detection of ideal step edges, the edges obtained from natural images are usually not at all ideal step edges. Instead they are normally affected by one or several of the following effects:1.focal blur caused by a finite depth-of-field and finite point spread function; 2.penumbral blur caused by shadows created by light sources of non-zero radius; 3.shading at a smooth object edge; 4.local specularities or interreflections in the vicinity of object edges.A typical edge might for instance be the border between a block of red color and a block of yellow. In contrast a line (as can be extracted by a ridge detector) can be a small number of pixels of a different color on an otherwise unchanging background. For a line, there may therefore usually be one edge on each side of the line.To illustrate why edge detection is not a trivial task, let us consider the problem of detecting edges in the following one-dimensional signal. Here, we may intuitively say that there should be an edge between the 4th and 5th pixels.If the intensity difference were smaller between the 4th and the 5th pixels and if the intensity differences between the adjacent neighbouring pixels were higher, it would not be as easy to say that there should be an edge in the corresponding region. Moreover, one could argue that this case is one in which there are several edges.Hence, to firmly state a specific threshold on how large the intensity change between two neighbouring pixels must be for us to say that there should be an edge between these pixels is not always a simple problem. Indeed, this is one of the reasons why edge detection may be a non-trivial problem unless the objects in the scene are particularly simple and the illumination conditions can be well controlled.There are many methods for edge detection, but most of them can be grouped into two categories,search-based and zero-crossing based. The search-based methods detect edges by first computing a measure of edge strength, usually a first-order derivative expression such as the gradient magnitude, and then searching for local directional maxima of the gradient magnitude using a computed estimate of the local orientation of the edge, usually the gradient direction. The zero-crossing based methods search for zero crossings in a second-order derivative expression computed from the image in order to find edges, usually the zero-crossings of the Laplacian or the zero-crossings of a non-linear differential expression, as will be described in the section on differential edge detection following below. As a pre-processing step to edge detection, a smoothing stage, typically Gaussian smoothing, is almost always applied (see also noise reduction).The edge detection methods that have been published mainly differ in the types of smoothing filters that are applied and the way the measures of edge strength are computed. As many edge detection methods rely on the computation of image gradients, they also differ in the types of filters used for computing gradient estimates in the x- and y-directions.Once we have computed a measure of edge strength (typically the gradient magnitude), the next stage is to apply a threshold, to decide whether edges are present or not at an image point. The lower the threshold, the more edges will be detected, and the result will be increasingly susceptible to noise, and also to picking out irrelevant features from the image. Conversely a high threshold may miss subtle edges, or result in fragmented edges.If the edge thresholding is applied to just the gradient magnitude image, the resulting edges will in general be thick and some type of edge thinning post-processing is necessary. For edges detected with non-maximum suppression however, the edge curves are thin by definition and the edge pixels can be linked into edge polygon by an edge linking (edge tracking) procedure. On a discrete grid, the non-maximum suppression stage can be implemented by estimating the gradient direction using first-order derivatives, then rounding off the gradient direction to multiples of 45 degrees, and finally comparing the values of the gradient magnitude in the estimated gradient direction.A commonly used approach to handle the problem of appropriate thresholds for thresholding is by using thresholding with hysteresis. This method uses multiple thresholds to find edges. We begin by using the upper threshold to find the start of an edge. Once we have a start point, we then trace the path of the edge through the image pixel by pixel, marking an edge whenever we are above the lower threshold. We stop marking our edge only when the value falls below our lower threshold. This approach makes the assumption that edges are likely to be in continuous curves, and allows us to follow a faint section of an edge we have previously seen, without meaning that every noisy pixel in the image is marked down as an edge. Still, however, we have the problem of choosing appropriate thresholding parameters, and suitable thresholding values may vary over the image.Some edge-detection operators are instead based upon second-order derivatives of the intensity. This essentially captures the rate of change in the intensity gradient. Thus, in the ideal continuous case, detection of zero-crossings in the second derivative captures local maxima in the gradient.We can come to a conclusion that,to be classified as a meaningful edge point,the transition in gray level associated with that point has to be significantly stronger than the background at that point.Since we are dealing with local computations,the method of choice to determine whether a value is “significant” or not id to use a threshold.Thus we define a point in an image as being as being an edge point if its two-dimensional first-order derivative is greater than a specified criterion of connectedness is by definition an edge.The term edge segment generally is used if the edge is short in relation to the dimensions of the image.A key problem in segmentation is to assemble edge segments into longer edges.An alternate definition if we elect to use the second-derivative is simply to define the edge ponits in an imageas the zero crossings of its second derivative.The definition of an edge in this case is the same as above.It is important to note that these definitions do not guarantee success in finding edge in an image.They simply give us a formalism to look for them.First-order derivatives in an image are computed using the gradient.Second-order derivatives are obtained using the Laplacian.数字图像处理与边缘检测数字图像处理数字图像处理方法的研究源于两个主要应用领域:其一是改进图像信息以便于人们分析;其二是为使机器自动理解而对图像数据进行存储、传输及显示。
最新Canny边缘检测基本原理
C a n n y边缘检测基本原理2 Canny边缘检测基本原理Canny边缘检测器是高斯函数的一阶导数,是对信噪比与定位之乘积的最优化逼近算子[1]。
Canny认为好的边缘检测具有3个特点:(1)低概率的错标非边缘点和低概率不标真实边缘点;(2)检测出来的边缘点应该尽可能的靠近真实边缘中心;(3)边缘响应是单值的。
设表示两维高斯函数,表示图像;Canny边缘检测算子为式中:是边缘曲线的法向量,由于事先不知道边缘的方向,所以取。
那么边缘点是方程的解,即然后通过双阈值去掉伪边缘,Canny算子检测到的是边缘点是高斯函数平滑后的图像拐点。
Canny算法的实现步骤:Step1:用高斯滤波器平滑图像,去除图像噪声。
一般选择方差为1.4的高斯函数模板和图像进行卷积运算。
Step2:用一阶偏导的有限差分来计算梯度的幅值和方向。
使用的梯度算子计算x和y方向的偏导数和,方向角,梯度幅值。
Step3:对梯度幅值应用非极大值抑制。
幅值M越大,其对应的图像梯度值也越大,但这还不足以确定边缘,因为这里仅把图像快速变化的问题转化成求幅值局部最大值问题,为确定边缘,必须细化幅值图像中的屋脊带,只保留幅值局部变化最大的点,生成细化的边缘。
Step4:用双阈值算法检测并且连接边缘。
双阈值法使Canny算子提取的边缘点更具有鲁棒性,高低阈值分别表示为Hth和Lth,对于高阈值Hth的选折,基于计算出的图像梯度值对应的直方图进行选取。
在一幅图像中,非边缘点数目在总图像像素点数目中占的比例表示为Hratio,根据图像梯度值对应的直方图累加,累加数目达到总像素数目的Hratio时,对应的图像梯度值设置为Hth,在文中设定Hratio为0.7。
低阈值Lth的选择通过Lth=Lratio*Hth得到,文中Lratio设定为0.4。
最后通过对边缘点的标记和领域关系进行连接得到最后的边缘检测图。
3亚像素级Zernike矩算子精确定位边缘Zernike矩算子的基本思想是通过计算每个像素点的4个参数来判断该点是否为边缘点。
sobel、prewitt、roberts边缘检测方法的原理
sobel、prewitt、roberts边缘检测方法的原理Sobel、Prewitt、Roberts边缘检测方法是三种重要的边缘检测方法,用于图像处理中的目标探测、图像分割等应用中,其原理及实现方法也极其重要。
本文将详细阐述Sobel、Prewitt和Roberts三种边缘检测方法的原理,并介绍它们在实际应用中的优势和不足。
一、Sobel边缘检测方法的原理Sobel边缘检测方法是基于拉普拉斯算子的一种边缘检测方法。
它在基于图像灰度密度函数的基础上,采用不同的滤波模板,对图像的指定的位置用微分操作,计算图像像素点灰度值变化的大小,从而提取图像边缘信息,检测图像中出现的边缘。
Sobel算子是由一个3x3窗口内图像像素组成,采用一个简单的二阶导数来实现,其对应的模板为:Gx=[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]Gy=[[-1, -2, -1], [0, 0, 0], [1, 2, 1]]使用这两个模板分别做X、Y方向上的微分计算,其微分结果用以下公式计算:G(x,y)=√(Gx(x,y)^2+Gy(x,y)^2)使用Sobel边缘检测法的步骤主要有,首先使用模板Gx、Gy对原图像做窗口移动,计算对应的每个像素点的梯度值;接着使用阈值处理得到的梯度值,以利用连通域的思想,将不同水平的梯度值精确标定;最后,可以用梯度值来进行边缘检测,以及图形分割等应用。
二、Prewitt边缘检测方法的原理Prewitt边缘检测方法是一种基于梯度计算的边缘检测方法,它是对Sobel算子的改进,采用比Sobel算子更底层的模板,它的模板为:Gx=[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]Gy=[[-1, -1, -1], [0, 0, 0], [1, 1, 1]]两个模板分别做X、Y方向上的微分计算,其微分结果用以下公式计算:G(x,y)=√(Gx(x,y)^2+Gy(x,y)^2)Prewitt算子比Sobel算子要简单,它不需要计算图像像素点灰度值变化的大小,可以很快地检测图像中出现的边缘,而且由于采用的简单模板,可以更好地抑制噪声和处理带有高斯噪声的图像,并且可以获得较好的实时性能。
log边缘检测方法的原理
log边缘检测方法的原理
1边缘检测原理
边缘检测是应用于图像处理中的一种技术,目的是在图像中检测出两个不同物体的边界部分,也就是边缘或轮廓的形状。
边缘检测可以用来对图像的对象进行分类和抽取,它也是很多其他图像处理技术的基础技术。
边缘检测常见的方法有Canny边缘检测(Canny edge
detection)和Sobel边缘检测(Sobel edge detection)。
它们都是基于运动和梯度变化来检测边缘的。
Canny边缘检测是以不同形式计算梯度来发现边缘的,而Sobel边缘检测是直接用梯度滤波器(如拉普拉斯滤波器)直接对图像进行滤波,然后从滤波后的图像中检测出边缘。
最近出现的一种新的边缘检测方法叫做Laplacian特征选择(Laplacian Feature Selection),也叫做LoG边缘检测(LoG Edge Detection)。
这种方法使用拉普拉斯算子(Laplacian Operator)来计算图像的梯度,然后将图像梯度变化曲线和梯度方向进行计算,来寻找边缘,实现边缘检测。
LoG边缘检测和之前的Canny和Sobel技术相比,准确度更高,速度更快,并且具有很好的鲁棒性,能够自动的抗噪,改善图像的噪声问题。
它在自然图像处理、医学图像处理等领域中都有广泛的应用。
LoG边缘检测的原理是,先通过计算二阶导数的幅值和极大值,然后在领域中进行局部匹配,以判断像素点是否为边缘点。
边缘检测是基于梯度方向、梯度幅值来完成的,通过比较梯度值的大小和方向,从而消除多余的噪声点,提高边缘检测的准确度,得到清晰的边缘检测结果。
因此,LoG边缘检测是一种准确、稳健、鲁棒性强的图像处理技术,在许多领域有广泛的应用。
sobel边缘检测算法
sobel边缘检测算法
Sobel边缘检测算法是一种用来检测图像中边缘的算法,它可以帮助计算机发现任何形状和大小的边缘和对象的边界的高级图像处
理算法。
它的基本原理是利用一组检测器去检测图像中的灰度变化。
Sobel边缘检测算法被分为两个步骤:首先,应用称为滤波器”小窗口去平滑图像,其次,应用Sobel算子去计算图像中两组邻近像素之间的灰度变化,并应用阈值去生成边缘的二进制图像。
Sobel算子的应用经常被用于图像边缘检测和边缘定位,其有许多优点,比如准确性和速度都不错,它也易于实现,是一种在图像处理中常用的边缘检测算法。
Sobel边缘检测算法的一个缺点是它无法检测立体图像中多层次的边缘。
此外,Sobel算子也可能会捕获并不是真正边缘的像素,比如图像中某些细节或光照变化。
虽然Sobel边缘检测算法有一些缺点,但它的应用却已经变得非常广泛。
它可以用来识别平滑的边缘,可以用来预处理图像,也可以用来比较图像中的变化。
另外,它也被用来检测三维形状的边缘,比如对象轮廓、边缘曲线和表面特征。
在近些年里,Sobel边缘检测算法在计算机视觉领域发挥着重要作用,它提供了一种快速和简单的方法来识别图像中的边界,并用来定位和比较图像中的某些物体和图案。
Sobel边缘检测算法的应用非常广泛,包括但不仅限于:人脸识别、车牌识别、机器视觉与自动控制、行为分析、地形测量、工业机
器检测及安全监控系统等等。
综上所述,Sobel边缘检测算法是一种快速、精确的图像处理算法,它可以帮助计算机快速识别和定位图像中的边界和特征。
它的应用可以涉及到许多不同的领域,可以说是计算机视觉中最重要的算法之一。
sobel、prewitt、roberts边缘检测方法的原理
sobel、prewitt、roberts边缘检测方法的原理边缘检测是图像处理的重要工具,可以检测图像中的线条和轮廓。
它是一种基于领域差分算子的一种技术,它是用来识别图像中的边缘。
边缘检测算法可以分为线性和非线性。
其中,sobel、prewitt和roberts是线性边缘检测算法,它们是最常用的边缘检测算法。
Sobel算子是一种二维空间域差分算子,它可以检测空间域中图像的边缘。
它使用双重离散微分操作,将图像分解为多个部分,每个部分的梯度值可以作为向量的分量,有助于找出边缘的位置。
Prewitt算子也是一种领域差分操作,通过对图像上每个点的领域梯度进行滤波,检测出图像中的边缘,并计算梯度方向和梯度大小。
Prewitt算子与Sobel算子类似,但使用的滤波器却有所不同,它分为水平和垂直滤波器,分别识别水平和垂直方向的边缘。
Roberts算子是一种基于图像二阶差分的算子,它可以就近检测边缘,是一种常用的算法。
它的操作简单,可以在没有滤波器的情况下,运用加权平均的方式计算图像的梯度大小和方向,从而检测边缘。
Sobel、Prewitt、Roberts三种算子的区别主要体现在梯度计算方面,Sobel算子可以计算出图像中梯度的细节,但可能存在噪声;Prewitt算子在计算梯度时采用滤波器,从而抑制了噪声,但可能损失梯度细节;而Roberts算子不需要滤波器,检测速度更快,但效果不够准确。
Sobel、Prewitt和Roberts这三种算子都是空间域差分算子,它们的操作简单,精度较高,它们的检测速度也是比较快的,所以它们是常用的边缘检测算法。
一般来说,在选择边缘检测算法时,除了要考虑检测的准确性和精确性,还要考虑操作的复杂度、检测的速度以及算法的可移植性。
在不同的应用场景中,可以根据实际需要,选择合适的边缘检测算法,从而获得较好的处理效果。
sobel、prewitt、roberts边缘检测方法的原理
sobel、prewitt、roberts边缘检测方法的原理边缘检测是一种图像处理技术,它可以识别图像中的结构和边界,为后续图像处理操作提供依据。
边缘检测技术主要有Sobel、Prewitt和Roberts三种。
本文将介绍这三种边缘检测方法的原理以及它们之间的区别。
Sobel边缘检测是由Ivan E.Sobel于1960年研发的一种边缘检测技术,它是根据图像中的灰度值变化来计算出一个像素的梯度,从而检测出图像的边缘。
Sobel算子是一种以一阶微分运算为基础的滤波算子,它采用一种双线性结构,可以检测图像中横向、竖向、水平和垂直等多种边缘。
Sobel算子能够有效地检测出图像中的轮廓线,并降低噪声的影响。
Prewitt边缘检测也是基于一阶微分运算,它是由JohnG.Prewitt于1970年研发的一种滤波算子。
它可以植入到一个3×3的矩阵中,将每个像素点处的灰度值变化量进行累加,从而检测出图像中的边缘。
Prewitt边缘检测的优点是能够获得图像中的更多细节,而且对噪声具有较强的抗干扰能力。
Roberts边缘检测也是由一阶微分运算为基础,是由Larry Roberts于1966年研发的一种边缘检测技术。
它采用3×3的矩阵,把相邻的像素点的灰度值变化量进行累加,以检测出图像的边缘,它同样也能够获得更多的细节,并且对噪声也有较强的抗干扰能力。
总结起来,Sobel、Prewitt和Roberts三种边缘检测方法都是基于一阶微分运算,它们的算法类似,从某种程度上来说,它们都是拿某一个像素点处的灰度值变化量与其周围像素点的灰度值变化量进行累加比较,来检测出图像中的边缘。
但是它们在具体运用算子上还是略有不同,Sobel算子采用双线性结构,能够检测图像中横向、竖向、水平和垂直等多种边缘;而Prewitt和Roberts边缘检测方法的算法都是采用一个3×3的矩阵,将相邻的像素点的灰度值变化量累加,从而检测出边缘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(x)
x
f ’(x)
f ’(x)
x
Gradient of the intensity level is maximal at the edge points
f ’’(x)
x
edges = {P = ( x, y ) / arg(max(| ∇I ( P ) |))}
Ù Local extremum along the gradient direction
∇(|| ∇I ||).∇( I ) = 0
∂ ∇I ∂x Ix + ∂ ∇I ∂y Iy = 0
CAS – Course Computer Vision : Edge detection - Part 1
z z z z
General recall Marr Theory Edge detection : what for ? Edge detection & Segmentation
CAS – Course Computer Vision : Edge detection - Part 1
1
General recalls
Physical meaning z Edge & ridge representations z Principal edge detection methods
z
CAS – Course Computer Vision : Edge detection - Part 1
1
Illustration (2)
The second derivative is zero at the edge points
1
CAS – Course Computer Vision : Edge detection - Part 1
2D case : Edge as maximal gradient
• Maximal gradient :
1
CAS – Course Computer Vision : Edge detection - Part 1
1D case : Mathematical formulation
Two equivalent formulations 1) signal S(x) first derivative Sx is locally maximum. {edges} = { x | arg max(Sx(x)) locally)} 2) second derivative is equal to zero. {edges} = { x | Sxx(x)=0 }
●
Discrete space :
●
Ii,j at point (i,j)
CAS – Course Computer Vision : Edge detection - Part 1
1
Convention
I J
I0
J0
I(i0,j0)
i , j N2 0„ i „ n 1 0„ j „ m 1
Y X – Course Computer Vision : Edge detection - Part 1 CAS
CAS – Course Computer Vision : Edge detection - Part 1
1
Physical meaning
Edges correspond to many different physical
z
properties from the “real” world :
contours of objects (1), z borders (2), z shadow (3), z change of intensity level, color, texture (4) z …
z
CAS – Course Computer Vision : Edge detection - Part 1
z z
z
Give a simplified representation of the image Provide information for higher level processing
z
Key difficulties
z
To extract physical information (and overcome the probleme of noise, shadow, lightening, ...) No unique approach
CAS – Course Computer Vision : Edge detection - Part 1
1
Ridge detection
f(x)
Edge detection
Edges are points were the intensity level changes sharply
Ridges are points were the intensity level is maximal
CAS – Course Computer Vision : Edge detection - Part 1
z
1
Edge detection and Segmentation
• Segmentation
∀ i Ri ≠ φ ∀ i, j i ≠ j A = U Ri
i
Ri ∩ R j = φ
• Two major “families” of segmentation
Differential approach Variational approach Mathematical Morphology Surface Model Markovian approach ….
CAS – Course Computer Vision : Edge detection - Part 1
High level processing 1
CAS – Course Computer Vision : Edge detection - Part 1
Edge detection : what for ?
z
Edge detection is a low level processing. Edge detection
Zero laplacien are given by zero-crossing points along the gradient direction => sub-pixel accuracy.
CAS – Course Computer Vision : Edge detection - Part 1
1
III – Edge detection : Derivative approaches
z z z z z z z z
Mathematical definition Convolution masks An ill posed problem Gaussian filter & Optimal filters Crest/ridges points detection in 2D Extension to 3D images Multi-scale approach Performance analysis
CAS – Course Computer Vision : Edge detection - Part 1
1
Definition
Edge points = points were the intensity level changes sharply.
●
CAS – Course Computer Vision : Edge detection - Part 1
Chaining, thinning / Active contours / Derivative vs variational approaches
5. Conclusion
CAS – Course Computer Vision : Edge detection - Part 1
1
I -Introduction
●
Contour based segmentation
●
Edge detection + Contour closing
●
Region based segmentation
CAS – Course Computer Vision : Edge detection - Part 1
1
II- First notions of Edge & Ridge Detection
Edge Detection Basis of Theory and Practice (1)
CAS – Computer Vision Course (2005.03.11) Veronique PRINET prinet@
CAS – Course Computer Vision : Edge detection - Part 1
1
Contents
1. Introduction 2. First notions of Edge detection
Physical meaning / Mathematical representation / An ill posed problem / Overview of edge detection methods
3. Derivative approaches
Computation of the partial derivatives / Gaussian & Optimal filters / Multi-scale approach / Assessment / …