第11讲容斥原理

合集下载

五年级下册数学奥数课件11较复杂的容斥原理人教版(21张PPT)

五年级下册数学奥数课件11较复杂的容斥原理人教版(21张PPT)
动手做一做吧!
A:10×10=100﹙cm2﹚ B:8×8=64﹙cm2﹚ C:4×4=16﹙cm2﹚ AB:5×5=25﹙cm2﹚ AC:4×2=8﹙cm2﹚ BC:4×2=8﹙cm2﹚ ABC:2×2=4﹙cm2﹚
100+64+16-25-8-8+4=143﹙cm2﹚
答:它们盖住的面积是143平方厘米。
小结
容斥原理(一)
如果被计数的事物有A、B两类,那么: A类或B类元素个数= A类元素个数+ B类元素个数— 既是A类又是B类的元素个数。
简单记做:
A或B总和= A+B-A又B。
即学即练
学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有
24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人,
投掷 游泳、投掷
17 18 15
6
6
5
2
求这个班的学生共有多少人?
短游 投 跑泳 掷
17 18 15
短跑 游泳
6
短跑 投掷
6
游泳 投掷
5
短跑、 游泳、投掷
2
A或B或C=A+B+C-AB-AC-BC+ABC
? 17 18 15 6 6 5 2
达到了优秀的学生: 17+18+15-6-6-5+2=35(人)
全班的学生:35+4=39 (人)
答:这个班的学生共有39人。
即学即练
六年级100名学生中,15人既不会骑自行车也不会游泳,有 62人会骑自行车,75人会游泳。既会自行车又会游泳的有多少人?
62+75-(100-15)=52(人)
答:既会自行车又会游泳的有52人。
例5:如图,边长分别为10厘米、8厘米和4厘米的三块正 方形纸片放在桌面上,它们盖住的面积是多少平方厘米?

初中数学重点梳理:容斥原理

初中数学重点梳理:容斥原理

容斥原理知识定位在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。

它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A个,属于集合B 的东西有B个,既属于集合A 又属于集合B 的东西记为B A ,有BA 个;属于集合A 或属于集合B 的东西记为B A ,有BA 个,则有:B A =A +B -BA 。

知识梳理知识梳理1.容斥原理容斥原理可以用一个直观的图形来解释。

如图,左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A ,由图可知:B A =A +B -BA 。

容斥原理又被称作包含排除原理或逐步淘汰原则。

例题精讲【试题来源】【题目】在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个? 【答案】67【解析】根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。

A BAB在1到200的整数中,能被2整除的整数个数为:2⨯1,2⨯2,…,2⨯100,共100个;在1到200的整数中,能被3整除的整数个数为:3⨯1,3⨯2,…,3⨯66,共66个;在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6⨯1,6⨯2,…,6⨯33,共33个;所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:200-100-66+33=67(个)【知识点】容斥原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】求1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S。

【答案】1633【解析】1到100的自然数中,所有自然数的和是:1+2+3+…+100=50501到100的自然数中,所有2的倍数的自然数和是:2⨯1+2⨯2+…+2⨯50=2⨯(1+2+3+…+50)= 2⨯1275=25501到100的自然数中,所有3的倍数的自然数和是:3⨯1+3⨯2+…+3⨯33=3⨯(1+2+3+…+33)= 3⨯561=16831到100的自然数中,所有既是2的倍数又是3的倍数,即是6的倍数的自然数和是:6⨯1+6⨯2+…+6⨯16=6⨯(1+2+3+…+16)= 6⨯136=816所以,1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S=5050-2550-1683+816=1633【知识点】容斥原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】求不大于500而至少能被2、3、5中一个整除的自然数的个数。

五年级下册数学奥数课件--.11较复杂的容斥原理 人教版 (共21页)

五年级下册数学奥数课件--.11较复杂的容斥原理 人教版 (共21页)
24+17-8=33(人)
答:这个文艺组一共有33人。
例2:榆树园小学五(1)班许多同学参加了学习小组,已 知参加语文学习小组的有35人,参加数学小组的的有32人,参 加英语小组的有45人,同时参加语文和数学小组的有10人,同 时参加语文和英语小组的有12人,同时参加数学和英语小组的 有15人,三个学习小组都参加的有5人。问这个班一共有多少 学生参加了学习小组?
容斥原理(一)
如果被计数的事物有A、B两类,那么: A类或B类元素个数= A类元素个数+ B类元素个数— 既是A类又是B类的元素个数。
简单记做:
A或B总和= A+B-A又B。
学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有 24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人, 这个文艺组一共多少人?
五年级下册数学奥数课件--.11较复杂 的容斥 原理 人教版 (共21页)
答:它们盖住的面积是143平方厘米。
五年级下册数学奥数课件--.11较复杂 的容斥 原理 人教版 (共21页)
在一个边长为90厘米的正方形桌面上,放上两张边长分别为 20厘米和45厘米的正方形纸,如图。桌面上没被纸片盖住的面积 是多少?

5.反复手法的运用是本诗在表现形式 上的一 大特色 。本诗 的前三 节,都 用大致 相同的 语言形 式表明 作者相 信未来 不变的 信念, 每一节 最后都 由“相 信未来 ”四个 字结尾 。而且 用冒号 把它们 凸现出 来,如 音乐中 的主题 句反复 出现, 强化了 作品的 主旋律 ,增强 了诗文 的感染 力,突 出了诗 歌的主 旨。
五年级下册数学奥数课件--.11较复杂 的容斥 原理 人教版 (共21页)

2.同学们,相信你们大多数同学都有 旅游的 经历, 请大家 交流一 下,到 过哪些 名山大 川,有 什么感 受?大 自然中 的山水 ,不仅 能给我 们带来 美感也 给我们 带来灵 感,今 天让我 们从诸 子大家 对山水 的体悟 中,学 习为人 为事的 道理。

容斥原理的三个公式

容斥原理的三个公式

容斥原理的三个公式容斥原理是数学中一个挺有意思的概念,它有三个重要的公式,今天咱们就来好好聊聊这三个公式。

我先跟您说啊,这容斥原理在解决集合相关的问题时,那可真是大显身手。

就拿咱们生活中的例子来说吧,比如说学校组织活动,有参加书法比赛的同学,有参加绘画比赛的同学,还有既参加书法又参加绘画比赛的同学。

那怎么算总共有多少同学参加了这两类比赛呢?这时候容斥原理就派上用场啦!咱们先来说说容斥原理的第一个公式。

这个公式可以表述为:两个集合 A 和 B 的并集的元素个数,等于 A 的元素个数加上 B 的元素个数,再减去 A 和 B 的交集的元素个数。

简单来说就是:|A∪B| = |A| + |B| -|A∩B| 。

举个例子哈,一个班级里,喜欢语文的有 20 个同学,喜欢数学的有 30 个同学,既喜欢语文又喜欢数学的有 10 个同学。

那喜欢语文或者喜欢数学的同学一共有多少个呢?咱们就可以用这个公式来算。

|A|就是喜欢语文的 20 个同学,|B|就是喜欢数学的 30 个同学,|A∩B|就是既喜欢语文又喜欢数学的 10 个同学。

把数字带进去,那就是 |A∪B| = 20 + 30 - 10 = 40 个同学。

您瞧,是不是很清楚明了?再来说说第二个公式。

如果是三个集合 A、B、C ,那它们的并集的元素个数就是:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| +|A∩B∩C| 。

咱们还是拿例子来说事儿。

比如说在一个班级里,喜欢体育的有 25 个同学,喜欢音乐的有 15 个同学,喜欢美术的有 20 个同学,既喜欢体育又喜欢音乐的有8 个同学,既喜欢音乐又喜欢美术的有6 个同学,既喜欢体育又喜欢美术的有 9 个同学,三个都喜欢的有 3 个同学。

那喜欢体育或者音乐或者美术的同学一共有多少个呢?咱们就把数字往公式里带:|A|是 25 ,|B|是 15 ,|C|是 20 ,|A∩B|是 8 ,|B∩C|是 6 ,|C∩A|是 9 ,|A∩B∩C|是 3 。

四年级第十一讲包含与排除及答案(附例题答案)

四年级第十一讲包含与排除及答案(附例题答案)

101中学坑班2013年春季四年级第十一讲包含与排除及答案一、 知识要点日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题,容斥原理就是重叠问题的解题原理,也叫包含与排除原理。

在数学里,我们把具有某种相同性质的对象放在一起考虑,这些相同性质的对象便组成了一个“集合”,每个集合总是由一些成员组成的,集合中的这些成员叫做这个集合的元素。

名词解释:(1)由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 、B 的并集(又叫A 与B 的和)。

记作A B ,记号“ ”读作“并”,A B 读作“A 并B ”。

(2)A 、B 两个集合公共的元素,也就是那些既属于A ,又属于B 的元素,它们所组成的集合叫做A 和B 的交集,记作“A B ”,记号“ ”读作“交”,A B 读作“A 交B ”。

二、 典型例题例1、四(1)班同学中有37人喜欢打乒乓球,26人喜欢打羽毛球,21人既爱打乒乓球又爱打羽毛球。

问全班喜欢打乒乓球或羽毛球活动的有多少人?解析:37+26-21=42人例2、四年级一班在期末考试中,语文得“优”的有15人,数学得“优”的有17人,老师请得“优”的同学都站起来,数了数有24人。

两科都得“优”的有几人?解析:15 + 17—24 = 8(人)或者15-(24-17)=8或者17-(24-15)=8例3、图新小学四年级二班有24人参加了美术小组,有18人参加了音乐小组,其中11人两个小组都参加,还有5人什么组都没参加。

这个班共有学生多少人?解析:24+18-11=31人 31+5=36人例4、某班学生参加音乐组的有11人,参加美术组的有8人,参加英语组的有12人,既参加音乐组又参加美术组的有5人,既参加音乐组又参加英语组的有3人,既参加美术组又参加英语组的有4人,三个组都参加的只有1人,问:至少参加一个组的有多少人? 解析:11+8+12-5-4-3+1=20人例5、有82名参加数学与作文课外班的学生,其中参加作文班的有60人,参加数学班的有48人。

容斥原理及其应用

容斥原理及其应用

容斥原理及其应用容斥原理是组合数学中一种重要的计数技巧,被广泛运用于排列组合、概率统计等领域。

它的核心思想是通过求出多个集合的交集和并集来计算所需的数量,从而避免重复计数,确保准确性和全面性。

本文将介绍容斥原理的基本概念、推导过程以及其在实际问题中的应用。

一、容斥原理的基本概念容斥原理是根据集合的性质和运算规则推导出的一种计数方法。

在给定一组集合时,容斥原理可以帮助我们计算这些集合的交集和并集的元素个数。

在具体运用中,我们将问题转化成求解几个集合的元素个数之和的问题。

容斥原理表达式如下:∣A1∪A2∪⋯∪An∣=∣A1∣+∣A2∣+⋯+∣An∣−∣A1∩A2∣−∣A1∩A3∣−⋯−∣An−1∩An∣+⋯+(−1)^n−1∣An−1∩An∣其中,∣A∣表示集合A的元素个数,∪表示集合的并集,∩表示集合的交集,n表示集合的数量。

二、容斥原理的推导过程容斥原理的推导过程可以通过数学归纳法来实现,下面简要介绍:首先,我们给定两个集合A和B,我们用∣A∣表示集合A的元素个数,用∣B∣表示集合B的元素个数。

如果我们要计算A和B的并集∣A∪B∣,那么可以采取如下步骤:1. 首先,我们直接将∣A∣和∣B∣相加,得到∣A∣+∣B∣。

2. 然后,我们需要减去重复计算的部分,即集合A和B的交集∣A∩B∣。

因为∣A∩B∣这部分元素已经在∣A∣和∣B∣中被计算了一次,所以需要减去∣A∩B∣。

通过以上步骤,我们得到了∣A∪B∣=∣A∣+∣B∣−∣A∩B∣。

这就是容斥原理的基本推导过程。

接下来,我们将容斥原理推广到更多集合的情况。

假设我们有三个集合A、B和C,我们想要计算它们的并集∣A∪B∪C∣,我们可以按照以下步骤进行:1. 首先,我们将∣A∣、∣B∣和∣C∣相加,得到∣A∣+∣B∣+∣C∣。

2. 然后,我们需要减去两两集合的交集部分,即∣A∩B∣、∣A∩C∣和∣B∩C∣。

这是因为这些部分元素在∣A∣、∣B∣和∣C∣中都被计算了一次,所以需要减去。

小学高级奥数第11讲-容斥原理

小学高级奥数第11讲-容斥原理

课后作业
<作业1>
实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人, 两种都能表演的有7人.这个表演队共有多少人能登台表演歌舞?
课后作业
<作业2>
六(二)班有48名学生,在一节自习课上,写完语文作业的有30人,写完数 学作业的有20人,语文数学都没写完的有6人。 (1)问语文数学都写完的有多少人? (2)只写完语文作业的有多少人?
例四
某班学生手中分别拿着红、黄、蓝、三种颜色的小旗。已知手中有红 旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人。其 中手中有红、黄、蓝三种小旗的有6人。而手中只有红、黄两种小旗的 有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗 有3人,那么这个班共有多少人?
练一练
练一练
对全班同学调查发现,会游都不会的有9人。这个班一共有多少人?
例三
一个班48人,完成作业的情况有三种:一种是完成语文作业没完成 数学作业;一种是完成数学作业没完成语文作业;一种是语文、数 学作业都完成了的。已知做完语文作业的有37人;做完数学作业的 有42人。这些人中语文、数学作业都完成的有多少人?
例一
实验小学五年级二班,参加语文兴趣小组的共有28人,参加数学兴趣 小组的共有29人,有12人两个小组都参加。请问这个班有多少人参加 了语文或数学兴趣小组?
AC B
例二
某班共有46人,参加美术小组的有12人,参加音乐小组的有23人, 有5人两个小组都参加了。这个班既没参加美术小组也没参加音乐 小组的有多少人?
A
B
10
C
练一练
如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平 方厘米。阴影部分的面积总和是40平方厘米,3张板盖住的总面积是 100平方厘米,3张纸板重叠部分的面积是多少平方厘米?

数量关系系统课讲义(11-容斥原理)

数量关系系统课讲义(11-容斥原理)

数量关系系统课讲义第二章经典题型第十一节容斥原理两集合标准型公式|A| +|B| −|A∩B| = 总数−都不满足三集合标准|A| +|B| + |C| −|A∩B|−|B∩C| −|A∩C| +|A∩B∩C| = 总数−都不满足三集合非标准|A| + |B| + |C| −只满足两个条件的− 2 × 满足三个条件= 总数−都不满足使用场景:只有当题目中出现“(只)满足两个条件”时,使用非标准公式。

文氏图法:每一个封闭区域内只有一个数字,并且代表该区域的面积。

使用原则:出现“只满足某一个条件”时,优先画图法。

不能直接代入公式的,使用画图法(规范画图)。

【例 1】某班有 38 名学生,一次数学测验共有两道题,答对第一题的有 26人,答对第二题的有 24 人,两题都答对的有 17 人,则两题都答错的人数是()。

A.3B.5C.6D.7M=38-(26+24-17)=38-33=5 或结合【尾数法】【例 2】某单位有 107 名职工为灾区捐献了物资,其中 78 人捐献衣物,77人捐献食品。

该单位既捐献衣物,又捐献食品的职工有多少人?A.48B.50C.52D.54交叉部分:N=78+77-107=X8【例3】篮子里有苹果和梨两种水果若干个,将这些水果分发给13 个人,每人最少拿一个,最多拿两个不同的水果。

已知有9 个人拿到了苹果,有8 个人拿到了梨,最后全部分完。

那么,有()人只拿到了苹果。

A.4B.5 C.6 D.7交叉部分:N=9+8-13=5只拿苹果=9-5=4【例4】针对100 名旅游爱好者进行调查发现,28 人喜欢泰山,30 人喜欢华山,42 人喜欢黄山,8 人既喜欢泰山又喜欢华山,10 人既喜欢泰山又喜欢黄山,5 人既喜欢华山又喜欢黄山,3 人喜欢这三个景点,则不喜欢这三个景点中任何一个的有()人。

A.20B.18C.17D.15E.14F.13G.12H.10M=100-[(28+30+42)-8-10-5+3]=100-80=20【例5】某公司招聘员工,按规定每人至多可投考两个职位,结果共42 人报名,甲、乙、丙三个职位报名人数分别是22 人、16 人、25 人,其中同时报甲、乙职位的人数为8 人,同时报甲、丙职位的人数为6 人,那么同时报乙、丙职位的人数为:A.7 人B.8 人C.5 人D.6 人42=22+16+25-8-6-X+0→X=7 或结合【尾数法】【例6】某乡镇举行运动会,共有长跑、跳远和短跑三个项目。

实用的计数原理之容斥原理(内含大量实例和详细分析)

实用的计数原理之容斥原理(内含大量实例和详细分析)

在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。

例1 、一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。

试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。

)容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?分析:仿照例1的分析,你能先说一说吗?例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。

我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。

11较复杂的容斥原理人教版

11较复杂的容斥原理人教版
五 11年 较级 复下 杂册 的数 容学 斥奥 原数 理课 人件 教-版-.11较复杂 的容斥 原理 人教版 (共21张PPT)PPT优秀课件ppt完美 课件PPT 免费课 件PPT 课件免 费下载P PT精品 课件数 容学 斥奥 原数 理课 人件 教-版-.11较复杂 的容斥 原理 人教版 (共21张PPT)PPT优秀课件ppt完美 课件PPT 免费课 件PPT 课件免 费下载P PT精品 课件
学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有 24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人, 这个文艺组一共多少人?
24+17-8=33(人)
答:这个文艺组一共有33人。
五 11年 较级 复下 杂册 的数 容学 斥奥 原数 理课 人件 教-版-.11较复杂 的容斥 原理 人教版 (共21张PPT)PPT优秀课件ppt完美 课件PPT 免费课 件PPT 课件免 费下载P PT精品 课件
答:至少有一门得满分的同学有23人。
五 11年 较级 复下 杂册 的数 容学 斥奥 原数 理课 人件 教-版-.11较复杂 的容斥 原理 人教版 (共21张PPT)PPT优秀课件ppt完美 课件PPT 免费课 件PPT 课件免 费下载P PT精品 课件 五 11年 较级 复下 杂册 的数 容学 斥奥 原数 理课 人件 教-版-.11较复杂 的容斥 原理 人教版 (共21张PPT)PPT优秀课件ppt完美 课件PPT 免费课 件PPT 课件免 费下载P PT精品 课件
五 11年 较级 复下 杂册 的数 容学 斥奥 原数 理课 人件 教-版-.11较复杂 的容斥 原理 人教版 (共21张PPT)PPT优秀课件ppt完美 课件PPT 免费课 件PPT 课件免 费下载P PT精品 课件
例2:榆树园小学五(1)班许多同学参加了学习小组,已 知参加语文学习小组的有35人,参加数学小组的的有32人,参 加英语小组的有45人,同时参加语文和数学小组的有10人,同 时参加语文和英语小组的有12人,同时参加数学和英语小组的 有15人,三个学习小组都参加的有5人。问这个班一共有多少 学生参加了学习小组?

第11讲 重叠问题

第11讲 重叠问题

第11讲重叠问题容斥原理一:总量C = A + B –AB 这一公式可计算出两个集合圈的有关问题。

(A对应的量为a,B对应的量是b)AA BB C容斥原理二:总量D = A + B +C –AB-AC-BC+ABC,这一公式可计算出三个集合圈的有关问题。

(A对应的量是b,C对应的量是c)(一)例题1、某班学生每人都要到图书馆借课外书;借语文书的39人,借数学书的32人,语文、数学两科书都借的有26人。

问全班学生共几人?(答案:45)2、暑假期间,有12名同学去冷饮店,有6个人要可乐,有5人要雪碧,有3个人既要可乐又要雪碧,有2个人既要雪碧又要果汁;有1个人既要可乐、雪碧,又要果汁。

问有没有人什么冷饮都没有要,如果有的话,有几个人?(答案:3)3、某班学生中78%喜欢游泳,80%喜欢玩游戏机,84%喜欢下棋,88%喜欢看小说,该班学生中同时有四种爱好的学生所占的最小百分比应是多少?(答案:30%)4、某班参加升学考试,得满分人数如下:语文20人,数学20人,英语20人,语文、数学两科满分8人,数学、英语两科满分7人,语文、英语两科满分9人,三科都没有满分3人,问这个班最多多少人?最少多少人?(答案:46、39)5、某校对五年级100名同学进行学习兴趣调查,结果有58人喜欢语文,有38人喜欢数学,有52人喜欢外语。

而且喜欢语文和数学(但不喜欢外语)的有6人,喜欢数学和外语(但不喜欢语文)的有4人,三科都喜欢的有12人,而且每人至少喜欢一科。

问有多少同学只喜欢语文?(答案:26)6、有三个面积各为20平方厘米的圆纸片放在桌面上(如图)。

三个纸片共同重叠的面积是8平方厘米,三个纸片盖住桌面的总面积是36平方厘米,问:图中阴影部分的面积之和是多少?(答案:8)7、分母是385的最简真分数有多少个?(答案:240)(二)练习1、某区100个外语老师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师多少人?(答案:45)2、在桌面上放置三个两两重叠的圆纸片(如图),它们的面积都是120平方厘米,并知A、B两圆重叠面积是40平方厘米,A、C两圆重叠面积是65平方厘米,B、C两圆重叠面积是45平方厘米,三个圆共同重叠面积为32平方厘米。

最新容斥原理PPT课件

最新容斥原理PPT课件

n !S (m ,m )A 1 A 2 ... A n n m C (n ,1 )(n 1 )m
( 1 )kC (n ,k)(nk)m ( 1 )nC (n ,n )0 m .
即:
S(m ,n)1 nC(n,k)(nk)m.
n!k0
例11 求方程x1+x2+x3=15的非负整数解的数目。 这个问题相当于15个相同的球放入3个不同的盒子的 不同方案数,为C(15+3-1,15)=C(17,2)。
A BC D 1 2 3 4
如左图,斜线区域表示禁区。
R(
)=1+6x+10x2+4x3,
方案数为:4!-6×3!+10×2!-4×1!=4。
例14 再解错排问题。 对应于棋盘上对角线格子为禁区的布子问题。
棋盘多项式为:
n
C = ··· R(C)(1x)n C(n,k)xk, k0 即:rk(C)=C(n,k)。
类似有:|A2∩A3|=0,|A2∩A4|=20!, |A2∩A5|=20!, |A3∩A4|=20!, |A3∩A5|=20!, |A4∩A5|=19!。
A1 A2 A3 0, A1 A2 A4 0,
A1 A2 A5 0, A1 A3 A4 0,
A1 A3 A5 0, A1 A4 A5 0,
ABCUA BCABBC
ACABC 4 n 3 3 n 3 2 n 1 .
例7 用26个英文字母作不允许重复的全排列,要求 排除dog,god,gum,depth,thing字样的出现,求 满足这些条件的排列数。
令Ai (i=1,2,3,4,5)分别表示出现以上五个单词之一的 排列的集合。
下面回到有禁区的排列问题,有如下的定理:

高中数学,容斥原理

高中数学,容斥原理

容斥原理是一种常见的统计原理,它主要应用于多个集合的交集和并集的计算。

在高中数学中,容斥原理的应用非常广泛,尤其是在解决组合问题、排列问题、计数问题等方面。

下面我将从定义、应用和注意事项三个方面,详细介绍高中数学中的容斥原理。

一、容斥原理的定义容斥原理的基本思想是,当两个集合不重叠时,它们的并集的数量可以看作是两个集合数量的和,减去重叠数量的两倍。

具体来说,假设我们有两个集合A和B,它们的并集数量为N,重叠数量为K,那么A中元素属于B或B中元素属于A的数量为N-K。

同时,我们需要减去A和B完全重叠的元素数量,即K。

这个原理可以用公式表示为:(A∪B)个案数= A个案数+ B个案数- (A∩B)个案数。

二、容斥原理的应用1. 组合问题:在解决组合问题时,常常需要考虑多个事件同时发生的情况。

例如,从n个人中选出m个组成一个小组,需要考虑到每个人是否被选中。

这时,我们可以用容斥原理来计算选出小组的总人数和被选中的人数。

2. 排列问题:在解决排列问题时,也常常需要考虑多个事件同时发生的情况。

例如,将n 个元素按照一定的顺序排列,需要考虑元素之间的顺序关系。

这时,我们可以用容斥原理来计算所有可能的排列数和满足某种条件的排列数。

3. 计数问题:在解决计数问题时,需要考虑到一些条件对计数的影响。

例如,计算从n个元素中取出k个元素的方案数时,需要考虑k的取值范围和元素之间的相关性。

这时,我们可以用容斥原理来计算总的方案数和满足条件的方案数。

三、注意事项1. 容斥原理的前提条件是两个集合之间没有重叠。

如果两个集合之间有重叠,那么需要使用其他的方法来计算它们的并集数量和重叠数量。

2. 在使用容斥原理时,需要正确理解公式中的各个量所代表的含义,并且需要仔细考虑问题中的条件和限制。

3. 容斥原理的应用范围比较广泛,需要灵活运用公式和方法来解决不同类型的问题。

总之,容斥原理是高中数学中一个非常重要的统计原理,它可以帮助我们更好地理解和解决组合、排列、计数等问题。

巨人学校五年级尖子仁华预备班 第十一讲容斥原理 第十一讲容斥原理

巨人学校五年级尖子仁华预备班 第十一讲容斥原理 第十一讲容斥原理

第十一讲 容斥原理『方法总结』:一、二元容斥原理:||||||||A B A B A B =+-。

二、三元容斥原理:||||||||||||||||A B C A B C A B A C B C A B C =++---+三、学会画出图形来表示两个或者三个对象之间的关系,利用田字格方块图来表示两个对象的容斥原理,掌握对应数在图形中的特定位置,利用三圆环交叉画来理解三个对象的容斥原理。

例题:1、六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 人.[分析与解答]所求人数=全班人数-(会骑车人数+会游泳人数-既会骑车又会游泳人数)=46-(17+14-4)=19(人)2、在1至10000中不能被5或7整除的数共有 个.[分析与解答]在1到10000中,能被5整除的有2000510000=⎥⎦⎤⎢⎣⎡(个),能被7整除的有1428710000=⎥⎦⎤⎢⎣⎡(个),能被35整除的有2857310000=⎥⎦⎤⎢⎣⎡⨯(个).因此能被5或7整除的共有2000+1428-285=3143(个).从而不能被5或7整除的有10000-3143=6857(个).3、在1至10000之间既不是完全平方数,也不是完全立方数的整数有 个.[分析与解答]1~10000中完全平方数有100个(因为1002=10000),完全立方数有21个(因为213<10000<223),完全六次方数有4个(因为46<10000<56).故1~10000中是完全平方数或完全立方数的数共有100+21-4=117(个);从而既不是完全平方数,又不是完全立方数的数有10000-117=9883(个).4、某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没有一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有 人.[分析与解答]如图所示,设既参加是球队又参加排球队的人数为x ,则依容斥原理,有20+12+10-6-2-x =30,解得x =4.5、分母是1001的最简真分数有 个.[分析与解答]1~1001中,有7的倍数14371001=⎥⎦⎤⎢⎣⎡(个);有11的倍数91111001=⎥⎦⎤⎢⎣⎡(个),有13的倍数77131001=⎥⎦⎤⎢⎣⎡(个);有7⨯11=77的倍数13771001=⎥⎦⎤⎢⎣⎡(个),有7⨯13=91的倍数11911001=⎥⎦⎤⎢⎣⎡(个),有11⨯13=143的倍数71431001=⎥⎦⎤⎢⎣⎡(个).有1001的倍数1个. 由容斥原理知:在1~1001中,能被7或11或13整除的数有(43+91+7)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个. 10 12 20 6 2 x 排球队 足球队 蓝球队6、在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有 人,最多有 人.[分析与解答]如图,当100人都是或者音乐爱好者,或者体育爱好者时,这两者都爱好的人数为最小值即56+75-100=31(个).当所有的音乐爱好者都是音乐爱好者时,这两者都爱好的人数最大可为56人.7、某进修班有50人,开甲、乙、丙三门进修课、选修甲这门课的有38人,选修乙这门课有的35人,选修丙这门课的有31人,兼选甲、乙两门课的有29人,兼选甲、丙两门课的有28人,兼选乙、丙两门课的有26人,甲、乙、丙三科均选的有24人.问三科均未选的人数?[分析与解答]如图,选甲乙而不选丙的有a =29-24=5(人),选甲丙而不选乙的b =28-24=4(人),选乙丙而不选甲的有c =26-24=2(人), 仅选了丁的人有d =35-24-a -c =4(人),仅选了丙的人有e =31-24-b -c =1(人),故少选了一科的人数是:甲+d +c +e =45(人),故三门均未选的人数为50-45=5(人).8、求小于1001且与1001互质的所有自然数的和.[分析与解答]由第5题的结论知分母是1001的最简分数的个数是720.又真分数1001a 和真分数10011001a - (a 与1001互质)是成对出现的,故上述720个真分数可以分成360对,每一对=数之和为1,故上述720个分母是1001的真分数之和为360.所以所有小于1001且与1001互质的数之和为360⨯1001=360360.音乐 爱好者 体育 爱好者甲 乙 丙 24 a b c d e9、如图所示,A 、B 、C 分别代表面积为8、9、11的三张不同形状的纸片,它们重叠放在一起盖住的面积是18,且A 与B ,B 与C ,C 与AC三个图形公共部分(阴影部分)的面积. [分析与解答]设阴影部分的面积是x ,由容斥原理知28-(5+3+4)+x =18,故x =2.10、分母是385的最简真分数有多少个,并求这些真分数的和.[分析与解答]因为385=5⨯7⨯11,故在1~385这385个自然数中,5的倍数有 765385=⎥⎦⎤⎢⎣⎡(个),7的倍数有557385=⎥⎦⎤⎢⎣⎡(个),11的倍数有355385=⎥⎦⎤⎢⎣⎡(个), 5⨯7=35的倍数有1135385=⎥⎦⎤⎢⎣⎡(个),5⨯11=55的倍数有755385=⎥⎦⎤⎢⎣⎡(个),7⨯11=77的倍数有⎥⎦⎤⎢⎣⎡77385=5(个),385的倍数有1个. 由容斥原理知,在1~385中能被5、7或11整除的数有77+55+35-(11+7+5)+1=145(个),而5、7、11互质的数有385-145=240(个).即分母为385的真分数有240(个).如果有一个真分数为385a ,则必还有另一个真分数385385a -,即以385为分母的最简真分数是成对出现的,而每一对之和恰为1.故以385为分母的240最简分数可以分成120时,它们的和为1⨯120=120.11、64人订A 、B 、C 三种杂志.订A 种杂志的28人,订B 种杂志的有41人,订C 种杂志的有20人, 订A 、B 两种杂志的有10人,订B 、C 两种杂志的有12人,订A 、C 两种杂志的有12人,问三种杂志都订的有多少人?[分析与解答]设三种杂志均订的人数为x ,则有28+41+20-10-12-12+x =64,解得x =9,即三种杂志都订的有9人.练习题 1、求从1到1994中不能被5整除,也不能被6或7整除的自然数的个数.[分析与解答]在1~1994中,能被5整除的个数为39851994=⎥⎦⎤⎢⎣⎡;能被6整除的个数为33261994=⎥⎦⎤⎢⎣⎡;能被7整除的个数为28471994=⎥⎦⎤⎢⎣⎡;能被5⨯6=30整除的个数为66301994=⎥⎦⎤⎢⎣⎡;能被5⨯7=35整除的数为56351994=⎥⎦⎤⎢⎣⎡;能被6⨯7=42整除的个数为47421994=⎥⎦⎤⎢⎣⎡;能被5⨯6⨯7=210整除的个数为92101994=⎥⎦⎤⎢⎣⎡. 根据容斥原理,1~1994中或能被5,或能被6,或能被7整除的数的个数为:(398+332+284)-(66+54+47)+9=854,从而不能被5整除,也不能被6或7整除的自然数的个数为1994-854=1140(个).2、夏日的一天,有10个同学去吃冷饮.向服务员交出需要冷饮的统计,数字如下,有6个人要可可;有5个人要咖啡;有5个人要果汁;有3个人既要可可又要果汁;有2个人要可可又要咖啡;有3个人要咖啡又要果汁;有1个人既要可可、咖啡又要了果汁.求证其中一定有一个人什么冷饮也没有要[分析与解答]要了冷饮的总人数为6+5+5-3-2-3+1=9(人),但总人数为10人,故一定有一个人什么冷饮也没有要. A B Cx。

什么是容斥原理

什么是容斥原理

什么是容斥原理容斥原理是组合数学中的一种重要的计数方法,常常用于解决包含排列组合的问题。

容斥原理的核心思想是通过排除重复计数的方法,来求解包含多个集合的问题。

在实际问题中,容斥原理有着广泛的应用,特别是在概率统计、组合数学、计算机算法等领域。

首先,我们来了解一下容斥原理的基本概念。

假设有n个集合A1、A2、……、An,我们希望求解这些集合的并集的元素个数。

容斥原理告诉我们,这个并集的元素个数可以通过如下的公式来计算:|A1 ∪ A2 ∪……∪ An| = Σ|Ai| Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak| …… + (-1)^(n-1) |A1 ∩ A2 ∩……∩ An|。

其中,|A|表示集合A的元素个数,Σ表示求和运算。

公式右边的第一项是将所有集合的元素个数相加,第二项是将两两集合的交集的元素个数相减,第三项是将三个集合的交集的元素个数相加,以此类推。

最后一项是将所有集合的交集的元素个数相加,并且交替加减。

通过这个公式,我们可以清晰地看到容斥原理的核心思想,通过交替相加和相减集合的交集元素个数,来排除重复计数,最终得到并集的元素个数。

接下来,我们通过一个具体的例子来说明容斥原理的应用。

假设有一个集合包含了所有小于100的正整数中能被2、3或5整除的数,我们希望求解这个集合中元素的个数。

首先,我们分别求解能被2、3和5整除的数的个数,分别记为A2、A3和A5。

然后,我们求解能同时被2和3、2和5、3和5以及2、3和5整除的数的个数,分别记为A2∩3、A2∩5、A3∩5和A2∩3∩5。

最后,根据容斥原理的公式,我们可以得到集合中元素的个数:|A2 ∪ A3 ∪ A5| = |A2| + |A3| + |A5| |A2 ∩ A3| |A2 ∩ A5| |A3 ∩ A5| + |A2 ∩ A3 ∩ A5|。

通过具体的计算,我们可以得到最终的结果。

这个例子清晰地展现了容斥原理在实际问题中的应用,通过排除重复计数,我们可以准确地求解集合的并集元素个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲容斥原理知识要点:一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B=+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影面积.图示如下:A表示小圆部分,B 表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影面积.A B、的并集A B的元素的个数,可分以下两步进行:第一步:分别计算集合A B、的元素个数,然后加起来,即先求A B+(意思是把A B、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B=(意思是“排除”了重复计算的元素个数).二、三量重叠问题A类、B 类与C类元素个数的总和A=类元素的个数B+类元素个数C+类元素个数-既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A B C A B C A B B C A C=++---+.图示如下:模块一、两量重叠问题1.实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组?2.芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?3.某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了.这个班既没参加美术小组也没参加音乐小组的有多少人?4.四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?5.实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都能表演的有7人.这个表演队共有多少人能登台表演歌舞?6.某次英语考试由两部分组成,结果全班有12人得满分,第一部分有25人做对,第二部分有19人有错,问两部分都有错的有多少人?7.对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人?1.先包含——A B+重叠部分A B计算了2次,多加了1次;2.再排除——A B A B+-把多加了1次的重叠部分A B减去.图中小圆表示A的元素的个数,中圆表示B的元素的个数,大圆表示C的元素的个数.1.先包含:A B C++重叠部分A B、B C、C A重叠了2次,多加了1次.2.再排除:A B C A B B C A C++---重叠部分A B C重叠了3次,但是在进行A B C++-A B B C A C--计算时都被减掉了.3.再包含:A B C A B B C A C A B C++---+.两部分全对的两部分都有错的只做对第二部分的只做对第一部分的会打篮球的会游泳的两项都会的两项都不会的BA8. 某班组织象棋和军棋比赛,参加象棋比赛的有32人,参加军棋比赛的有28人,有18人两项比赛都参加了,这个班参加棋类比赛的共有多少人?9. 在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的有7人,既没采樱桃又没采杏的有6人,问:只采了杏的有多少人?10. 甲、乙、丙三个小组学雷锋,为学校擦玻璃,其中68块玻璃不是甲组擦的,52块玻璃不是乙组擦的,且甲组与乙组一共擦了60块玻璃.那么,甲、乙、丙三个小组各擦了多少块玻璃?11. 育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年级的画共有多少幅?12. 47名学生参加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人?13. 科技活动小组有55人.在一次制作飞机模型和制作舰艇模型的定时科技活动比赛中,老师到时清点发现:制作好一架飞机模型的同学有40人,制作好一艘舰艇的同学有32人.每个同学都至少完成了一项制作.问两项制作都完成的同学有多少人?14. 有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?15. 一次数学测验,甲答错题目总数的14,乙答错3道题,两人都答错的题目是题目总数的16.求甲、乙都答对的题目数.模块二、三量重叠问题16. 某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?17. 某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?18. 四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.19. 五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.(6级)两项比赛都参加的只参加军棋比赛的只参加象棋比赛的B A丙乙甲B A 两门都不在95分以上的数学95分以上的语文95分以上的两门95分以上的AB20.光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?21.新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有________人.22.五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数.23.六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?24.在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:⑴三种都带了的有几人?⑵只带了一种的有几个?25.盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.26.全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,⑴数学成绩优秀的有几个学生?⑵有几个人既会游泳,又会滑冰?27.五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组,若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参加B组的有_______人.28.五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人?29.在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回答下列问题吗?①有人摘了山莓;②有人同时摘了三种水果;③有人只摘了山莓;④有人摘了李子和草莓,而没有摘山莓;⑤有人只摘了草莓.30.某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?李子草莓山莓FGE DCBA科学51人文艺56人17154体育55人x模块三、图形中的重叠问题31. 长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?32. 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?33. 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?34. 如图,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.35. 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.36. 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?37. 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?38. 如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、B 、C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少?模块四、容斥原理在数论问题中的应用39. 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?40. 在自然数1100~中,能被3或5中任一个整除的数有多少个?41. 在前100个自然数中,能被2或3整除的数有多少个?42. 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?43. 求在1至100的自然数中能被3或7整除的数的个数.44. 以105为分母的最简真分数共有多少个?它们的和为多少? 45. 分母是385的最简真分数有多少个?并求这些真分数的和.46. 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 个.47. 在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?48. 50名同学面向老师站成一行.老师先让大家从左至右按1,2,3,…,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?图32厘米4厘米图3C B A1049.有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3,…,2000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?50.写有1到100编号的灯100盏,亮着排成一排,每一次把编号是3的倍数的灯拉一次开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?51.在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:那么游艺会为该项活动准备的奖品铅笔共有多少支?(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.52.在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成________段.53.一根101厘米长的木棒,从同一端开始,第一次每隔2厘米画一个刻度,第二次每隔3厘米画一个刻度,第三次每隔5厘米画一个刻度,如果按刻度把木棒截断,那么可以截出段.54.一根1.8米长的木棍,从左端开始每隔2厘米画一个刻度,涂完后再从左端开始每隔3厘米画一个刻度,再从左端每隔5厘米画一个刻度,再从左端每隔7厘米画一个刻度,涂过按刻度把木棍截断,一共可以截成多少段小木棍?模块五、容斥原理中的最值问题55.将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?56.如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?57.某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?58.某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.59.60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?60.图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?61.甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?62.在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆?恰好被1个人浇过的花最多有多少盆?63.甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?。

相关文档
最新文档