计算方法简明教程插值法习题解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 插值法
1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解:
0120121200102021101201220211,1,2,
()0,()3,()4;()()1
()(1)(2)()()2()()1
()(1)(2)
()()6
()()1
()(1)(1)
()()3
x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------=
=-+--
则二次拉格朗日插值多项式为
2
20
()()k k k L x y l x ==∑
0223()4()
14
(1)(2)(1)(1)23
537623
l x l x x x x x x x =-+=---+
-+=
+- 2.给出()ln f x x =的数值表
用线性插值及二次插值计算的近似值。
解:由表格知,
01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144
x x x x x f x f x f x f x f x ======-=-=-=-=-
若采用线性插值法计算ln0.54即(0.54)f , 则0.50.540.6<<
2
112
1
221
11122()10(0.6)()10(0.5)()()()()()
x x l x x x x x x l x x x x L x f x l x f x l x -==----=
=---=+
6.93147(0.6) 5.10826(0.5)x x =---
1(0.54)0.62021860.620219L ∴=-≈-
若采用二次插值法计算ln0.54时,
1200102021101201220212001122()()
()50(0.5)(0.6)
()()
()()
()100(0.4)(0.6)
()()()()
()50(0.4)(0.5)
()()
()()()()()()()
x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------=
=----=++
500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5)
x x x x x x =-⨯--+---⨯--2(0.54)0.615319840.615320L ∴=-≈-
3.给全cos ,090x x ≤≤的函数表,步长1(1/60),h '==若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。
解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤时, 令()cos f x x = 取0110,(
)606018010800
x h ππ===⨯= 令0,0,1,...,5400i x x ih i =+= 则5400902
x π
=
=
当[]1,k k x x x -∈时,线性插值多项式为
11111()()
()k k
k k k k k k
x x x x L x f x f x x x x x ++++--=+--
插值余项为
111
()cos ()()()()2
k k R x x L x f x x x x ξ+''=-=
-- 又
在建立函数表时,表中数据具有5位有效数字,且[]cos 0,1x ∈,故计算中有误差传播
过程。
*5
**11
2111*11
11*1*1
(())102
()(())(())
(())(
)
1
(())()
(())
k k k k k k k k k k k k k k k k
k k k k f x x x x x R x f x f x x x x x x x x x f x x x x x f x x x x x h
f x εεεεεε-++++++++++∴=⨯--=+----≤+--=-+-=
∴总误差界为
12*1*12*85
5()()
1
(cos )()()(())21
()()(())211
()(())22
1
1.0610102
0.5010610k k k k k k k R R x R x x x x x f x x x x x f x h f x ξεεε++---=+=
---+≤⨯--+≤⨯+=⨯+⨯=⨯ 4.设为互异节点,求证: (1)
0()n
k k
j j j x l x x
=≡∑ (0,1,,);k n =
(2)0
()()0n
k j
j j x
x l x =-≡∑ (0,1,
,);k n =
证明
(1) 令()k
f x x =