行星的运动ppt
合集下载
行星的运动(课件)-高中物理(人教版2019必修第二册)
功预言哈雷彗星的回归,哈雷彗星最近出现的时间是1986年,预测下次飞近地球
星经过近日点时的速度 vb 为( D )
b
A. va
a
B.
a
va
b
C.
b
va
a
a
D. va
b
[解析] 取极短时间Δt 研究,根据开普勒第二定律知行星与太阳的连线在相
等时间内扫过的面积相等.
1
1
则有: a·va·Δt= b·vb·Δt
2
2
a
得到:vb= va.
b
04
拓展:认识太阳系
太
阳
系
示
意
图
太阳系的天体构成包括太阳、
导入新课
自古以来,人们就观察到日出日落:
由于地球的自转,我们在地球上看到天上的星星,感觉上都是绕地球运动,
太阳与月亮也一样,这样人们就很容易得出,地球是宇宙的中心,太阳、月亮
及所有的星星都是绕地球转动的。这就是地心说。
01
地心说
托勒密
地
心
说
地球是宇宙的中心,并且静止不动,一切行星围绕地球做
圆周运动
由于月球绕地球运动,地球绕太阳运动,中心天体质量不同,即k值不同,所以即
使已知月球与地球之间的距离,也无法求出地球与太阳之间的距离,故C正确,
BD错误。
【例题】地球的公转轨道接近圆,但彗星的运动轨道是一个非常扁的椭圆如图所
示。近日点与太阳中心的距离为 ,远日点到太阳的距离为 。天文学家哈雷成
在中学阶段的研
究中我们可按圆
轨道处理。
1. 行星绕太阳运动的轨道近似为圆,太阳处于圆心。
2. 行星绕太阳做匀速圆周运动。
3. 所有行星轨道半径的三次方与它的公转周期的二次
星经过近日点时的速度 vb 为( D )
b
A. va
a
B.
a
va
b
C.
b
va
a
a
D. va
b
[解析] 取极短时间Δt 研究,根据开普勒第二定律知行星与太阳的连线在相
等时间内扫过的面积相等.
1
1
则有: a·va·Δt= b·vb·Δt
2
2
a
得到:vb= va.
b
04
拓展:认识太阳系
太
阳
系
示
意
图
太阳系的天体构成包括太阳、
导入新课
自古以来,人们就观察到日出日落:
由于地球的自转,我们在地球上看到天上的星星,感觉上都是绕地球运动,
太阳与月亮也一样,这样人们就很容易得出,地球是宇宙的中心,太阳、月亮
及所有的星星都是绕地球转动的。这就是地心说。
01
地心说
托勒密
地
心
说
地球是宇宙的中心,并且静止不动,一切行星围绕地球做
圆周运动
由于月球绕地球运动,地球绕太阳运动,中心天体质量不同,即k值不同,所以即
使已知月球与地球之间的距离,也无法求出地球与太阳之间的距离,故C正确,
BD错误。
【例题】地球的公转轨道接近圆,但彗星的运动轨道是一个非常扁的椭圆如图所
示。近日点与太阳中心的距离为 ,远日点到太阳的距离为 。天文学家哈雷成
在中学阶段的研
究中我们可按圆
轨道处理。
1. 行星绕太阳运动的轨道近似为圆,太阳处于圆心。
2. 行星绕太阳做匀速圆周运动。
3. 所有行星轨道半径的三次方与它的公转周期的二次
行星的运动ppt课件
道处理。
思考2:既然我们可以将行星运动近似认为做圆周运动,那么行星在做
什么样的圆周运动?
对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行
星做匀速圆周运动。
若将行星运动轨道按圆处理,则开普勒三定律又该如何表述?
所有行星轨道半径的三次方与它的公转周期的二次方的比值都相等,即
r
3
T
2
3
3
2.开普勒第二定律(面积定律)
对于任意一个行星而言,它和太阳的
连线在相等的时间内扫过相等的面积。
说明:行星在近日点速率大于远日点速率。
你认为春夏两季的时间长还是秋冬两季的时间长?
春夏两季(186天)比秋冬两季(179天)要长。
3.开普勒第三定律(周期定律)
(1)内容:所有行星的轨道的半长轴的三次方跟公转周期的二次方的
r1
r2
k或 2 2
T1
T2
1.(多选)探索宇宙的奥秘,一直是人类孜孜不倦的追求。下列说法正确
的是( CD )
A.地球是宇宙的中心,太阳、月球及其他行星都绕地球运动
B.太阳是静止不动的,地球和其他行星都绕太阳运动
C.地球是绕太阳运动的一颗行星
D.日心说和地心说都是错误的
2.关于行星绕太阳运动的下列说法正确的是( D )
知,太阳应位于( C )
A.A处
B.B处
C.1 处 D.2 处
4.1980年10月14日,中国科学院紫金山天文台发现了一颗绕太阳运行的小行
星,2001年12月21日,经国际小行星中心和国际小行星命名委员会批准,将这
颗小行星命名为“钱学森星”。若将地球和“钱学森星”绕太阳的运动都看作
匀速圆周运动,它们的运行轨道如图所示。已知“钱学森星”绕太阳运行一周
思考2:既然我们可以将行星运动近似认为做圆周运动,那么行星在做
什么样的圆周运动?
对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行
星做匀速圆周运动。
若将行星运动轨道按圆处理,则开普勒三定律又该如何表述?
所有行星轨道半径的三次方与它的公转周期的二次方的比值都相等,即
r
3
T
2
3
3
2.开普勒第二定律(面积定律)
对于任意一个行星而言,它和太阳的
连线在相等的时间内扫过相等的面积。
说明:行星在近日点速率大于远日点速率。
你认为春夏两季的时间长还是秋冬两季的时间长?
春夏两季(186天)比秋冬两季(179天)要长。
3.开普勒第三定律(周期定律)
(1)内容:所有行星的轨道的半长轴的三次方跟公转周期的二次方的
r1
r2
k或 2 2
T1
T2
1.(多选)探索宇宙的奥秘,一直是人类孜孜不倦的追求。下列说法正确
的是( CD )
A.地球是宇宙的中心,太阳、月球及其他行星都绕地球运动
B.太阳是静止不动的,地球和其他行星都绕太阳运动
C.地球是绕太阳运动的一颗行星
D.日心说和地心说都是错误的
2.关于行星绕太阳运动的下列说法正确的是( D )
知,太阳应位于( C )
A.A处
B.B处
C.1 处 D.2 处
4.1980年10月14日,中国科学院紫金山天文台发现了一颗绕太阳运行的小行
星,2001年12月21日,经国际小行星中心和国际小行星命名委员会批准,将这
颗小行星命名为“钱学森星”。若将地球和“钱学森星”绕太阳的运动都看作
匀速圆周运动,它们的运行轨道如图所示。已知“钱学森星”绕太阳运行一周
高一物理《行星的运动》课件
详细描述
总结词
牛顿万有引力定律解释了行星之间的相互作用力,是理解天体运动的关键。
详细描述
牛顿万有引力定律指出任何两个物体都相互吸引,引力的大小与它们的质量成正比,与它们之间距离的平方成反比。这个定律不仅适用于行星和太阳之间的相互作用,也适用于其他天体之间的相互作用。
总结词
行星轨道的数学描述提供了精确预测行星位置和运动轨迹的方法。
行星运动定律
行星绕太阳运动的规律可以用开普勒三定律来描述,即椭圆轨道定律、面积定律和周期定律。这些定律是理解行星运动的基础。
行星运动的规律
开普勒三定律揭示了行星绕太阳运动的规律,是理解行星运动的基础。
总结词
开普勒第一定律,也称椭圆定律,指出行星绕太阳运动的轨道是椭圆,太阳位于其中一个焦点。开普勒第二定律,也称面积定律,指出在相等的时间内,行星与太阳的连线扫过的面积相等。开普勒第三定律,也称周期定律,指出行星绕太阳运动的周期的平方与其轨道半长轴的立方成正比。
对地球科学的影响
行星运动的研究是探索宇宙的重要途径之一,通过研究行星运动,可以了解太阳系的起源、演化以及宇宙的尺度等。
探索宇宙的途径
行星轨道
行星绕太阳运动的路径称为轨道,通常呈椭圆形。轨道的特性参数包括偏心率、倾角、近地点和远地点等。
天体坐标系
为了描述行星和其他天体的位置和运动,需要建立天体坐标系,如赤道坐标系、黄道坐标系等。
详细描述
行星轨道的数学描述通常使用椭圆方程、抛物线方程、双曲线方程等几何学和解析几何学的知识。通过这些方程,我们可以精确地计算出任意时刻行星的位置、速度和加速度等物理量。此外,这些方程还可以用来研究行星之间的相互作用力和动力学系统等问题。
行星运动的物理原理
牛顿第二定律
总结词
牛顿万有引力定律解释了行星之间的相互作用力,是理解天体运动的关键。
详细描述
牛顿万有引力定律指出任何两个物体都相互吸引,引力的大小与它们的质量成正比,与它们之间距离的平方成反比。这个定律不仅适用于行星和太阳之间的相互作用,也适用于其他天体之间的相互作用。
总结词
行星轨道的数学描述提供了精确预测行星位置和运动轨迹的方法。
行星运动定律
行星绕太阳运动的规律可以用开普勒三定律来描述,即椭圆轨道定律、面积定律和周期定律。这些定律是理解行星运动的基础。
行星运动的规律
开普勒三定律揭示了行星绕太阳运动的规律,是理解行星运动的基础。
总结词
开普勒第一定律,也称椭圆定律,指出行星绕太阳运动的轨道是椭圆,太阳位于其中一个焦点。开普勒第二定律,也称面积定律,指出在相等的时间内,行星与太阳的连线扫过的面积相等。开普勒第三定律,也称周期定律,指出行星绕太阳运动的周期的平方与其轨道半长轴的立方成正比。
对地球科学的影响
行星运动的研究是探索宇宙的重要途径之一,通过研究行星运动,可以了解太阳系的起源、演化以及宇宙的尺度等。
探索宇宙的途径
行星轨道
行星绕太阳运动的路径称为轨道,通常呈椭圆形。轨道的特性参数包括偏心率、倾角、近地点和远地点等。
天体坐标系
为了描述行星和其他天体的位置和运动,需要建立天体坐标系,如赤道坐标系、黄道坐标系等。
详细描述
行星轨道的数学描述通常使用椭圆方程、抛物线方程、双曲线方程等几何学和解析几何学的知识。通过这些方程,我们可以精确地计算出任意时刻行星的位置、速度和加速度等物理量。此外,这些方程还可以用来研究行星之间的相互作用力和动力学系统等问题。
行星运动的物理原理
牛顿第二定律
人教版(新)高中物理必修2-行星的运动-(29张)-PPT优秀课件
2、开普勒行星运动定律
第三定律:所有行星轨道的半长轴的三次方跟
它的公转周期的二次方的比值相等。
(周期定律)
地球
F
F
半长轴
a3
表达式:
=k
a
T2
行星绕太阳
公转的周期
人教版(2019)高中物理必修2-7.1 行星的运动-课件(共29张PPT)
人教版(2019)高中物理必修2-7.1 行星的运动-课件(共29张PPT)
a
149.6
56.7 108.1R 149.5
1、行星火轨星道是圆2,27太.9阳处在圆2心26;.9
木星
778.3
777.4
2、行星土做星匀速圆14周2运7.动0 ; 1424.8
3、所天有王行星星轨道28半8径2.的3 三次方28跟7它9.1的公转周 期的二海次王方星的比4值5都23相.9等。 4523.8
F
F
(面积定律)
行星在远离太阳的过程中速度如何变化? 秋
F
F
冬
夏
春 近日点速度快,远日点速度慢。
练一练
1椭、圆某轨行道星的绕两太个阳焦运点行,的行椭星圆在轨A道点如的图速所率示比,在FB1点和的F2大是,
则太阳是位于(A )
A.F2 B.A点 C.F1 D.B点
探究三: 寻找行星绕太阳运动的周期与距离关系
T木 2 T地 2
a木3 13
12 2 12
人教版(2019)高中物理必修2-7.1 行星的运动-课件(共29张PPT)
人教版(2019)高中物理必修2-7.1 行星的运动-课件(共29张PPT)
3、行行星星运动轨的a(道近10半似6k长处m轴理)
轨道半短轴 b(106km)
行星的运动ppt课件正式版
行星系统动力学
研究行星与其卫星、彗星等天体之间 的相互作用和动力学演化,揭示行星 系统的稳定性和演化规律。
THANKS
感谢观看
古代天文观测
哥白尼的日心说
古代天文学家通过对行星的观测,记录了 行星的位置变化,为后来的行星运动研究 提供了基础。
哥白尼提出日心说,认为太阳位于宇宙中 心,行星绕太阳公转,改变了人们对宇宙 的认识。
开普勒定律
现代天文学的发展
开普勒通过对火星运动的深入研究,发现 了行星运动的三定律,为行星运动的研究 奠定了基础。
行星运动的未来探索
行星探测器的设计与应用
探测器设计
未来行星探测器将更加注重轻量 化、高效能和自主导航能力,以 降低发射成本和提高探测效率。
探测任务
未来的行星探测任务将更加多样 化,包括对行星大气、地表、磁 场和重力场的详细探测,以及对
行星形成和演化的深入研究。
Байду номын сангаас数据处理与分析
随着探测器技术的进步,将产生 大量数据,因此需要发展高效的 数据处理和分析技术,以提取更
原因
行星自转的原因主要与其 形成过程有关,是由原始 星云在引力作用下逐渐凝 聚、旋转而形成的。
方向
行星的自转方向大部分与 地球的自转方向相同,但 也有部分行星的自转方向 与地球相反。
行星自转的周期与速度
周期
行星自转的周期各不相同,例如地球的自转周期为24小时,而金星的自转周期则 长达243地球日。
行星的运动ppt课件正式 版
• 行星运动的概述 • 行星的轨道运动 • 行星的自转运动 • 行星的公转运动 • 行星运动的规律与定律 • 行星运动的未来探索
01
行星运动的概述
行星运动的基本概念
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
符合人们的日常经验,也符合宗教神学关于 地球是宇宙中心的说法.
(4)托勒密的“地心说”模型 存在的问题
随着人们对天体运动的不断研究,发现“地心说” 所描述的天体的运动不仅复杂而且问题很多.如果把地球 从天体运动的中心位置移到一个普通的、绕太阳运动的行 星的位置,换一个角度来考虑天体的运动,许多问题都可 以解决,行星运动的描述也变得简单了. 随着世界航海事业的发展,人们希望借助星星的位 置为船队导航,因而对行星的运动观测越来越精确,科学 家经过长期观测及记录的大量的观测数据,用托勒密的 “地心说”模型很难得出完美的解答。 对行星的运动很难得出完满的解答,所描述的行星运动 也很复杂.
(5)哥白尼日心说的进步:行星运动的描述简单了,地 心说遇到的问题解决了
(6)哥白尼日心说为什么在发表一个世纪中完全被人们 所忽视 ? (1)在他的著作中,“日心说”只是一个“假设” (2)当时的欧洲正处于基督教改革与反改革的骚乱中. (3)在哥白尼的著作中有一些很不精确的数据,根据 这些数据得出的计算结果不能很好地与行星位置的 观测结果相符合,
2、日心说
(1)日心说提出的背景
在当时,哥伦布和麦哲伦的探险航行已经使不少人相 信地球并不是一个平台,而是一个球体。 (2)哥白尼的推测
是不是地球每天在围绕自己的 轴线旋转一周 .
(3).内容:
他假设地球并不是宇宙的中心, 太阳是静止不动的,地球和其他 行星都是围绕着太阳做匀速圆周 运动.
(4).代表人物:哥白尼
• 以上两种观点正确吗?
二.天文学家对天体运动进一步的研究
其后,许多天文学家对天体运动进行不断的探索、完 善,建立了最初的天体运动理论。
(1)丹麦天文学家第谷 的探索: 在哥白尼之后,第谷连续20年对行星的位置进行 了较仔细的测量,大大提高了测量的精确程度。在第 谷之前,人们测量天体位置的误差大约是10’,第谷把 这个不确定性减小到2’。得出行星绕太阳做匀速圆周 运动的模型.
②对于同一个行星的不同卫星,它们也符合运动规律:
R
3 2
T ③月球人造卫星以及其他行星的卫星不是绕太阳运 动,它们和行星的运动比较,就有:
K '
典例5.宇宙飞船围绕太阳在近似圆形的轨道上运动, 若轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳 运行的周期是 ( ) A.3年 B.9年 C.27年 D.81年
(2)德国物理学家开普勒的研究.
总结了他的导师第谷的 全部观测资料,在他最初 研究时,他得到的结果与 第谷的观察数据相差8/,而 当时第谷公认的误差位2/, 开普勒想,这8/可能就是认 为行星绕太阳匀速圆周运 动造成的.后来他花了四年 时间一遍一遍地进行数学 计算,通过计算这一怀疑 使他发现了行星运动三大 定律.
(4)意义:开普勒关于行星运动的描述为万 有引力定律的发现奠定了基础。
四、高中阶段对行星运动的近似化研究 虽然,行星的运动是椭圆轨道,运动速度大小不断的 变化,但实际上,多数大行星的轨道与圆十分接近, 所以在中学阶段的研究中能够按圆处理,所以 ①多数大行星绕太阳运动的轨道十分接近圆,太阳处 在圆心 ②对某一行星来说,它绕太阳做圆周运动的角速度 (线速度)大小不变,即行星做匀速圆周运动 ③所以行星轨道半径的三次方跟它的公转周期的二次 方的比值都相等。 总体来说,就是变速椭圆运动作为匀速圆周运动 处理,对应的半长轴即为圆的半径。
一、行星的运动 首先,我们来了解对太阳、行星运动的
认识过程。 在古代,人们对于天体的运动存在着 地心说和日心说两种对立的看法。 “地心说”和“日心说”的发展过程
1、地心说
(1).内容:认为地球是静止不动的,地球是宇宙的 中心,太阳和月亮以及其他行星绕地球转动。 (2).代表人物:托勒密 (3).地心说为什么统治了人们很长时间?
一、行星的运动
太阳系主要成员——太阳和其八大行星: 水星、金星、地球、火星、木星、土星、天王星、海王星
美丽的家园——地球
木星
壮观的太阳日冕
我们的银河系
我国自行开发研 究并成功飞行的 载人飞船“神州 号”。
我国宇航员乘着 飞船遨游太空!
航天飞机发射瞬间
让我们开始学习、探索 天体运行的奥秘吧!
(2).开普勒第二定律 (面积定律)
对于每一个行星而言,太阳和行星的联线在相等 的时间内扫过相等的面积。
(3).开普勒第三定律 (周期定律)
所有行星的轨道的半长轴的三次方跟公转周期 的二次方的比值都相等。
a T
3 2
k
①行星绕太阳运动都符合:
对于地球和木星,就有:
R地 T地
3
2
R木 T木
3
2
三.开普勒行星运动定律
(1).开普勒第一定律 (轨道定律) 所有行星围绕太阳运动的轨道都是椭圆,太 阳处在椭圆的一个焦点上。
F 太阳 F R
①开普勒第一定律,解决了行星动行的轨道问题,得出了行星运动的轨道不是圆,行 星与太阳的距离不断的变化,有时远离太阳,有时靠近太阳,所以行星的运动就不是 哥白尼在“日心说”中所提出的行星的运动是圆周运动。 ②可以推证,当行星离太阳比较近时,运动速度比较快,而离太阳比较远时速度比较 慢,这也就是在地理中所提到的,在近日点速度大于远日点速度。 注意:1、太阳并不是位于椭圆中心,而是位于焦点处。 2、不同行星轨道不同,但所有轨道的焦点重合。
典例6.把月球及绕地球的同步卫星看作绕地 球做匀速圆周运动,试计算一下月球与同 步卫星到地球球心的距离比。
典例7.飞船沿半径为R的圆周绕地球运动,其 周期为T,如果飞船要返回地面,可在轨道 上的某一点A处,将速率降低到适当数值, 从而使飞船沿以地心为焦点的椭圆轨道运 动,椭圆和地球表面在B处相切,如图,如 果地球半径为R0,则飞船由A点到B点所需 要的时间是多少?
k
注意: 比值k是一个与行星本身无关的物理
典例4、地球绕太阳运行的轨道半长轴为 1.50×1011m,周期为365天;月球绕地球 运行的轨道半长轴为3.82×108 m,周期 为27.3天, 则对于绕太阳运行的行星, R3/T2的值为 m3/s2;对于绕地球运 动的物体, R3/T2值为 m3一、行星的运动 “地心说”和“日心说”的发展过程
二.天文学家对天体运动进一步的研究 三.开普勒行星运动定律
四、高中阶段对行星运动的近似化研究
(4)托勒密的“地心说”模型 存在的问题
随着人们对天体运动的不断研究,发现“地心说” 所描述的天体的运动不仅复杂而且问题很多.如果把地球 从天体运动的中心位置移到一个普通的、绕太阳运动的行 星的位置,换一个角度来考虑天体的运动,许多问题都可 以解决,行星运动的描述也变得简单了. 随着世界航海事业的发展,人们希望借助星星的位 置为船队导航,因而对行星的运动观测越来越精确,科学 家经过长期观测及记录的大量的观测数据,用托勒密的 “地心说”模型很难得出完美的解答。 对行星的运动很难得出完满的解答,所描述的行星运动 也很复杂.
(5)哥白尼日心说的进步:行星运动的描述简单了,地 心说遇到的问题解决了
(6)哥白尼日心说为什么在发表一个世纪中完全被人们 所忽视 ? (1)在他的著作中,“日心说”只是一个“假设” (2)当时的欧洲正处于基督教改革与反改革的骚乱中. (3)在哥白尼的著作中有一些很不精确的数据,根据 这些数据得出的计算结果不能很好地与行星位置的 观测结果相符合,
2、日心说
(1)日心说提出的背景
在当时,哥伦布和麦哲伦的探险航行已经使不少人相 信地球并不是一个平台,而是一个球体。 (2)哥白尼的推测
是不是地球每天在围绕自己的 轴线旋转一周 .
(3).内容:
他假设地球并不是宇宙的中心, 太阳是静止不动的,地球和其他 行星都是围绕着太阳做匀速圆周 运动.
(4).代表人物:哥白尼
• 以上两种观点正确吗?
二.天文学家对天体运动进一步的研究
其后,许多天文学家对天体运动进行不断的探索、完 善,建立了最初的天体运动理论。
(1)丹麦天文学家第谷 的探索: 在哥白尼之后,第谷连续20年对行星的位置进行 了较仔细的测量,大大提高了测量的精确程度。在第 谷之前,人们测量天体位置的误差大约是10’,第谷把 这个不确定性减小到2’。得出行星绕太阳做匀速圆周 运动的模型.
②对于同一个行星的不同卫星,它们也符合运动规律:
R
3 2
T ③月球人造卫星以及其他行星的卫星不是绕太阳运 动,它们和行星的运动比较,就有:
K '
典例5.宇宙飞船围绕太阳在近似圆形的轨道上运动, 若轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳 运行的周期是 ( ) A.3年 B.9年 C.27年 D.81年
(2)德国物理学家开普勒的研究.
总结了他的导师第谷的 全部观测资料,在他最初 研究时,他得到的结果与 第谷的观察数据相差8/,而 当时第谷公认的误差位2/, 开普勒想,这8/可能就是认 为行星绕太阳匀速圆周运 动造成的.后来他花了四年 时间一遍一遍地进行数学 计算,通过计算这一怀疑 使他发现了行星运动三大 定律.
(4)意义:开普勒关于行星运动的描述为万 有引力定律的发现奠定了基础。
四、高中阶段对行星运动的近似化研究 虽然,行星的运动是椭圆轨道,运动速度大小不断的 变化,但实际上,多数大行星的轨道与圆十分接近, 所以在中学阶段的研究中能够按圆处理,所以 ①多数大行星绕太阳运动的轨道十分接近圆,太阳处 在圆心 ②对某一行星来说,它绕太阳做圆周运动的角速度 (线速度)大小不变,即行星做匀速圆周运动 ③所以行星轨道半径的三次方跟它的公转周期的二次 方的比值都相等。 总体来说,就是变速椭圆运动作为匀速圆周运动 处理,对应的半长轴即为圆的半径。
一、行星的运动 首先,我们来了解对太阳、行星运动的
认识过程。 在古代,人们对于天体的运动存在着 地心说和日心说两种对立的看法。 “地心说”和“日心说”的发展过程
1、地心说
(1).内容:认为地球是静止不动的,地球是宇宙的 中心,太阳和月亮以及其他行星绕地球转动。 (2).代表人物:托勒密 (3).地心说为什么统治了人们很长时间?
一、行星的运动
太阳系主要成员——太阳和其八大行星: 水星、金星、地球、火星、木星、土星、天王星、海王星
美丽的家园——地球
木星
壮观的太阳日冕
我们的银河系
我国自行开发研 究并成功飞行的 载人飞船“神州 号”。
我国宇航员乘着 飞船遨游太空!
航天飞机发射瞬间
让我们开始学习、探索 天体运行的奥秘吧!
(2).开普勒第二定律 (面积定律)
对于每一个行星而言,太阳和行星的联线在相等 的时间内扫过相等的面积。
(3).开普勒第三定律 (周期定律)
所有行星的轨道的半长轴的三次方跟公转周期 的二次方的比值都相等。
a T
3 2
k
①行星绕太阳运动都符合:
对于地球和木星,就有:
R地 T地
3
2
R木 T木
3
2
三.开普勒行星运动定律
(1).开普勒第一定律 (轨道定律) 所有行星围绕太阳运动的轨道都是椭圆,太 阳处在椭圆的一个焦点上。
F 太阳 F R
①开普勒第一定律,解决了行星动行的轨道问题,得出了行星运动的轨道不是圆,行 星与太阳的距离不断的变化,有时远离太阳,有时靠近太阳,所以行星的运动就不是 哥白尼在“日心说”中所提出的行星的运动是圆周运动。 ②可以推证,当行星离太阳比较近时,运动速度比较快,而离太阳比较远时速度比较 慢,这也就是在地理中所提到的,在近日点速度大于远日点速度。 注意:1、太阳并不是位于椭圆中心,而是位于焦点处。 2、不同行星轨道不同,但所有轨道的焦点重合。
典例6.把月球及绕地球的同步卫星看作绕地 球做匀速圆周运动,试计算一下月球与同 步卫星到地球球心的距离比。
典例7.飞船沿半径为R的圆周绕地球运动,其 周期为T,如果飞船要返回地面,可在轨道 上的某一点A处,将速率降低到适当数值, 从而使飞船沿以地心为焦点的椭圆轨道运 动,椭圆和地球表面在B处相切,如图,如 果地球半径为R0,则飞船由A点到B点所需 要的时间是多少?
k
注意: 比值k是一个与行星本身无关的物理
典例4、地球绕太阳运行的轨道半长轴为 1.50×1011m,周期为365天;月球绕地球 运行的轨道半长轴为3.82×108 m,周期 为27.3天, 则对于绕太阳运行的行星, R3/T2的值为 m3/s2;对于绕地球运 动的物体, R3/T2值为 m3一、行星的运动 “地心说”和“日心说”的发展过程
二.天文学家对天体运动进一步的研究 三.开普勒行星运动定律
四、高中阶段对行星运动的近似化研究